Loading Events

« All Events

  • This event has passed.

Soutenance de thèse : Florian Denis-le Coarer

10 December 2019 @ 10:00 am - 12:00 pm

Mardi 10 décembre 2019 à 10h, sur le campus de Metz de CentraleSupélec (2 rue Edouard Belin, 57070 Metz), en amphithéâtre.
Les travaux seront présentés en anglais.

Titre : « Neuromorphic computing using nonlinear ring resonators on a Silicon photonic chip »

Composition du jury :
M. Sylvain Gigan, Professeur des Universités, HDR, Université Sorbonne, LKB, Paris rapporteur
M. Serges Massar, Professeur, ULB, Bruxelles rapporteur
M. Peter Bienstman, Professeur, Ghent University examinateur
Mme Sylvie Menezo, Dr, CEO SCINTIL Photonics examinatrice
M. Marc Sciamanna, Professeur, LMOPS, CentraleSupélec directeur de thèse
M. Damien Rontani, Maître de conférences, LMOPS, CentraleSupélec co-directeur de thèse

 

Résumé :
Avec les volumes exponentiels de données numériques générées chaque jour, un besoin de traitement des données en temps réel et économe en énergie s’est fait sentir. Ces défis ont motivé la recherche sur le traitement non conventionnel de l’information. Parmi les techniques existantes, l’apprentissage machine est un paradigme très efficace de l’informatique cognitive. Il fournit, au travers de nombreuses implémentations dont celle des réseaux de neurones artificiels, un ensemble de techniques pour apprendre à un ordinateur ou un système physique à effectuer des tâches complexes, telles que la classification, la reconnaissance de formes ou la génération de signaux. Le reservoir computing a été proposé il y a une dizaine d’années pour simplifier la procédure d’entraînement du réseau de neurones artificiels. En effet, le réseau est maintenu fixe et seules les connexions entre la couche de lecture et la sortie sont entraînées par une simple régression linéaire. L’architecture interne d’un reservoir computer permet des implémentations au niveau physique, et plusieurs implémentations ont été proposées sur différentes plateformes technologiques, dont les dispositifs photoniques. Le reservoir computing sur circuits intégrés optiques est un candidat très prometteur pour relever ces défis. L’objectif de ce travail de thèse a été de proposer trois architectures différentes de réservoir intégré basées sur l’utilisation des micro-anneaux résonnants. Nous en avons numériquement étudié les performances et mis en évidence des vitesses de traitement de données pouvant atteindre plusieurs dizaines de Gigabit par seconde avec des consommations énergétiques de quelques milliwatt.

 

Abstract :
With the exponential volumes of digital data generated every day, there is a need for real-time, energy-efficient data processing. These challenges have motivated research on unconventional information processing. Among the existing techniques, machine learning is a very effective paradigm of cognitive computing. It provides, through many implementations including that of artificial neural networks, a set of techniques to teach a computer or physical system to perform complex tasks, such as classification, pattern recognition or signal generation. Reservoir computing was proposed about ten years ago to simplify the procedure for training the artificial neural network. Indeed, the network is kept fixed and only the connections between the reading layer and the output are driven by a simple linear regression. The internal architecture of a reservoir computer allows physical implementations, and several implementations have been proposed on different technological platforms, including photonic devices. On-chip reservoir computing is a very promising candidate to meet these challenges. The objective of this thesis work was to propose three different integrated reservoir architectures based on the use of resonant micro-rings. We have digitally studied its performance and highlighted data processing speeds of up to several tens of Gigabits per second with energy consumption of a few milliwatts.

 

Details

Date:
10 December 2019
Time:
10:00 am - 12:00 pm
Event Category:

Logo d'Inria