
Data	Flow	analysis	in	malicious	binary	codes.	Cartography	of	functionalities	
embedded	in	a	binary	codes	and	their	inter-relations.	

	
Contact:	Jean-Yves.Marion@loria.fr	

Abstract	
The	team	Carbone	at	LORIA	and	thanks	to	High	Security	Lab	(HSL)	has	devised	a	

novel	 method	 in	 order	 to	 analyse	 binary	 codes	 dubbed	 Morphological	 analysis.	 The	
morphological	method	finds	code	similarities	and	detects	malware.	The	objectif	of	 this	
thesis	is	to	reconstruct	the	data	flow	graph	inside	an	obfuscated	binary	code	in	order	to	
cartography	 the	 used	 functionalities	 together	 with	 the	 inter-relations	 between	
functionalities.	The	outcome	is	a	contribution	to	the	detection	of	new	threats.			
	

The	context	of	malware	detection	
Anti-virus	 companies	 keep	 a	 low	 profile	 on	 how	 their	 detection	methods	 work.	 That	
said,	the	standard	detection	method	of	malicious	codes	is	to	assign	a	signature	to	each	
malware	that	characterize	it.	A	signature	is	a	regular	expression,	or	quite	often	a	mere	
sequence	 of	 bytes,	 identifying	 a	malware.	 Usually,	 Yara	 [5]	 rules	 are	 used	 and	 a	 rule	
looks	like	{68	3B	DB	00	00	??	??	??	??	00	??	FF	15}	where	??	corresponds	to	any	bytes.	
(this	 sequence	 is	 a	 signature	 of	 the	 ransomware	 Cerber).	 All	 binary	 files	 or	 executed	
codes	 containing	 this	 signature,	 that	 is	 a	 sequence	 of	 bytes	 satisfying	 the	 regular	
expression,	 is	 then	 considered	 as	 infected.	 So	 given	 a	 data	 base	 of	 signatures,	 the	
detection	 engine	 is	 the	 part	 of	 the	 anti-virus	 which	 searches	 one	 of	 these	 signatures	
inside	 a	 program.	 The	 advantage	 of	 this	 approach	 is	 its	 speed	 et	 weak	 rate	 of	 false	
positive.	The	drawbacks	are	mainly	that	(i)	this	methods	is	not	able	to	detect	variants	or	
mutation	of	a	known	malware,	and	so	a	fortiori	unable	to	identify	a	new	threat	and	(ii)	
the	construction	of	signature	is	most	of	the	time	done	manually.	
	 In	order	 to	 respond	 to	both	difficulties,	we	have	developed	a	approach	 that	we	
named	Morphological	Analysis.	Morphological	analysis	leans	on	the	reconstruction	of	an	
abstraction	 of	 the	 control	 flow	 graph	 (CFG).	 This	 reconstruction	 necessitates	 the	
combination	of	both	a	static	and	a	dynamical	analysis.	The	dynamic	analysis	consist	 in	
executing	in	a	safe	environment	a	program	and	extracting	each	wave	of	codes	in	order	to	
thwart	 obfuscation	 based	 on	 code	 self-modification,	 which	 are	 most	 of	 the	 time	
produced	by	packers	[2],	see	also	[4].	The	static	analysis	consists	in	disassembling	each	
code	wave	 and	 to	 reconstruct	 the	 control	 flow	 graph.	 Then	 the	 control	 flow	 graph	 is	
abstracted	and	cut	in	graphlets	called	sites.	The	sites	compose	the	behavioural	data	base	
that	 identifies	a	malicious	code.	The	detection	engine	of	Gorille,	which	is	 the	named	of	
our	 tool	 implementing	 morphological	 analysis,	 searches	 sites	 inside	 the	 control	 flow	
graph	of	the	targeted	program.	

State	of	the	art	of	functionality	identification	
Compare	 to	 a	 model	 of	 detection	 based	 on	 signatures	 or	 on	 behaviours,	 we	 could	
propose	another	 approach	based	 in	 the	 identification	of	 implanted	 functionalities	 in	 a	
code	 and	 to	 determine	 the	 relationships	 between	 those	 functionalities.	 The	 first	
outcome	would	provide	a	valuable	help	to	reverse-engineering.	Recall,	the	sate	of	the	art	
disassemble	IDA	just	considers	the	header	of	a	function	correctly	compiled.	The	second	
outcome	would	to	predict	malicious	behaviours.	As	an	example,	take	an	application	that	
contains	 a	 communication	 function	 sending	 encrypted	 	message	with	 base64	 used	 by	
the	APT28.		



On	x86	obfuscated	binary	codes,	the	issue	is	hard.	It	consists	in	recovering	semantics	of	
binary	codes.	There	are	only	a	 few	studies.	Let	us	cite	 two	of	 them.	The	 first	one	 is	 to	
consider	 the	 problem	 has	 an	 interpolation	 [3].	 It	 has	 been	 successfully	 applied	 to	
cryptographic	primitives.	That	said,	this	approach	to	do	not	generalize	to	other	classes	
of	 functions.	 The	 second	 one	 [5]	 uses	 a	 symbolic	 analysis.	 It	 is	 also	 applied	 to	 the	
identification	 of	 cryptographic	 primitives.	 That	 said,	 the	 method	 is	 today	 inefficient	
because	of	its	complexity.		

Thesis	subject	
Morphological	analysis	could	bring	a	solution.	If	the	site	carving	is	not	enough	sharp	to	
identify	implemented	functionalities	nowadays,	it	is	still	possible	to	identify	some	
cryptographic	primitives	and	even	to	detect	the	compiler	and	the	used	options.	As	a	
result,	the	roadmap	is	quite	clear.		We	should	design	a	method	to	collect	a	set	of	sites	
that	will	collectively	characterizes	a	functionality.	Today,	we	have	all	the	tools	to	extract	
sites.	Consequently,	the	other	“variable”	on	which	we	can	“play”	is	the	data	flow.	If	this	
approach	was	partially	explored	by	[5],	we	have	here	two	assets:	(i)	we	know	how	to	
construct	an	abstraction	that	preserves	semantics	and	simplify	searches	and	(ii)	we	
could	extend	the	notion	of	site	on	(multi-)graphs	of	data.	In	other	words,	the	goal	is	to	
recover	a	data	flow	graph	and	to	cut	it	in	such	a	way	that,	combined	with	CFG	sites,	we	
could	be	able	to	identify	a	functionality.	One	this	issue	solved,	the	next	step	would	be	to	
determine	correlations	with	other	identified	functionalities.	The	result	would	be	a	
cartography	of	implement	functions	and	their	correlations.		
	

References	
[1]	Bardin,	S.,	R.	David,	et	J-Y	Marion.	«Backward-Bounded	DSE:	Targeting	Infeasibility	
Questions	on	Obfuscated	codes.»	IEEE	Symposium	on	Security	and	Privacy	(SP),	2017.	
[2]	Bonfante,	G.,	J.	Fernandez,	J-Y	Marion,	B.	Rouxel,	F.	Sabatier,	et	A.	Thierry.	«Codisasm:	
Medium	scale	concatic	disassembly	of	self-	modifying	binaries	with	overlapping	
instructions.»	CCS,	2015.	
[3]	Calvet,	J.,	J.	Fernandez,	et	J-Y	Marion.	«Aligot	:	cryptographic	function	identification	in	
obfuscated	binary	programs.»	ACM	Conference	on	Computer	and	Communications	
Security	-	CCS	,	2012.	
[4]	Cheng,	B.,	et	al.	«Towards	Paving	the	Way	for	Large-Scale	Windows	Malware	
Analysis:	Generic	Binary	Unpacking	with	Orders-of-Magnitude	Performance	Boos.»	ACM	
Conference	on	Computer	and	Communications	Security	(CCS).		
[5]	Lestringant,	P.	«Identification	d'algorithmes	Cryptographiques	dans	du	code	natif.»	
doctorat	Université	de	Rennes	1.	
[6]	Yara.	http://virustotal.github.io/yara/.		
	


