Tiny MPQS

References

The Multiple Polynomial Quadratic Sieve, Robert D. Silverman, Math. of Comp., vol. 48, num. 177, 1987 (attributes the idea to Montgomery)

The Quadratic Sieve Factoring Algorithm, Eric Landquist, MATH 488: Cryptographic Algorithms, December 14, 2001 Implementing the Hypercube Quadratic Sieve with Two Large Primes, Brian Carrier and Samuel S. Wagstaff, Jr., 2003

Factoring Small to Medium Size Integers: An Experimental Comparison, Jérôme Milan, hal.inria.fr/inria-00188645v3, 2010

Motivation

In CADO-NFS cofactorization, we currently use only $P-1, P+1$ and ECM

Goal: compare to MPQS (also used by Franke-Kleinjung GNFS)
Target size: up to 128 bits

Quadratic Sieve

First explicit version by Carl Pomerance (1981)
0 . Set up a factor base $F=\{-1\} \cup\{p$ prime, $p \leq P\}$

1. Let $b=\left\lfloor n^{1 / 2}\right\rceil$
2. Factor $S(x):=(x+b)^{2}-n$ for x in $[-M, M]$
3. If $m>\# F$ complete factorizations over F are found, find a subset that gives a square product and write:

$$
S\left(x_{1}\right) S\left(x_{2}\right) \cdots S\left(x_{m}\right)=\left(x_{1} x_{2} \cdots x_{m}\right)^{2} \bmod n
$$

4. If $X=\sqrt{S\left(x_{1}\right) S\left(x_{2}\right) \cdots S\left(x_{m}\right)}$ and $Y=x_{1} x_{2} \cdots x_{m}$, then $\operatorname{gcd}(X-Y, n)$ gives a non-trivial factor of n with probability $\geq 1 / 2$

Example: $n=2^{80-17}=20885856281 \times 57882511655239$
$b=\left\lfloor n^{1 / 2}\right\rceil=2^{40}=1099511627776$
$P=2^{16}: F$ contains (at most) 6542 primes
For $|x| \leq 108916$, we get 2508 relations over 2507 primes, for example:

$$
(-108916+b)^{2}-n=-1 \cdot 7 \cdot 67 \cdot 149^{2} \cdot 787 \cdot 3767 \cdot 7759
$$

Which primes can appear?

If $(x+b)^{2}-n=\cdots \times p \times \cdots$, then n is a square (quadratic residue) modulo p, thus

$$
\left(\frac{n}{p}\right)=1
$$

For $n=2^{80}-17$, we have 3329 odd primes p with $\left(\frac{n}{p}\right)=1$ up to 2^{16}, plus 2 plus -1 , thus 3331 factor base elements
$(x+b)^{2}-n$ for $-108916 \leq x \leq 108916:$

MPQS: Multiple Polynomial Quadratic Sieve

Main idea: for a positive integer, use

$$
S(x)=(a x+b)^{2}-n
$$

The integer b is chosen so that $0 \leq b<a$ and $b^{2}-n$ is divisible by a, say $b^{2}-n=a c$. Then:

$$
S(x)=a^{2} x^{2}+2 a b x+a c=a Q(x) \text { for } Q(x):=a x^{2}+2 b x+c
$$

If in addition a is a square, then it suffices to split $Q(x)$ over the factor base

MPQS: how to choose a ?

We choose a to be a square to only consider $Q(x)=a x^{2}+2 b x+c$ Basic MPQS: take $a=p^{2}$ where p is a prime. Since $b^{2}-n=a c$, n is a square modulo a, thus we need $\left(\frac{n}{a}\right)=1$.

Then take b as one of the square roots of n modulo a.
If we sieve $x \in[-M, M]$, then $\left[(a x+b)^{2}-n\right] / a$ goes from about $-n / a$ for $x=0$ to about $a M^{2}-n / a$ for $x= \pm M$.

The optimal value is $a \approx \sqrt{2 n} / M$, with values up to $M \sqrt{n / 2}$. In contrast for QS with $(x+b)^{2}-n$, we have values up to $2 M \sqrt{n}$: $\sqrt{8}$ improvement.

Sieve initialization

For each factor base prime p, precompute the (two) roots r of $x^{2}-n \bmod p$

Remember we want to sieve $Q(x)=(a x+b)^{2}-n$ over $[-M, M]$
(p, r) divides $(a x+b)^{2}-n$ whenever $a x+b=r \bmod p$
We thus need to compute $x_{p}=(r-b) / a \bmod p$ for each new polynomial $a x^{2}+2 b x+c$ and each factor base prime p !

The computation of $1 / a \bmod p$ is expensive
SIQS (Self Initializing) or HMPQS (Hypercube): taking $\sqrt{a}=p_{1} p_{2} \cdots p_{s}$ gives 2^{s} square roots.

Fast MPQS without SIQS/HMPQS (1/2)

Use Caramel technology!
We want to compute $1 / a \bmod p_{1}, 1 / a \bmod p_{2}, \ldots, 1 / a \bmod p_{s}$
Using Montgomery's batch inversion, we know how to compute $1 / p_{1} \bmod a, 1 / p_{2} \bmod a, \ldots, 1 / p_{s} \bmod a$

Kruppa's dual batch inversion: if $t_{j}=1 / p_{j} \bmod a$, then $t_{j} p_{j}+u_{j} a=1$ for some u_{j}, thus $u_{j}=1 / a \bmod p_{j}$

Fast MPQS without SIQS/HMPQS (2/2)

1. Compute $q_{1}=p_{1}, q_{2}=p_{1} p_{2} \bmod a, \ldots q_{s}=p_{1} \cdots p_{s} \bmod a$ [s -1 modular products]
2. Compute $r_{s}=1 / q_{s} \bmod a$ [one modular inverse]
3. Get $t_{j}=r_{j} q_{j-1} \bmod a$ and $r_{j-1}=r_{j} q_{j} \bmod a$ for $j=s, s-1, \ldots 1[2 s-2$ modular products]
4. Get $u_{j}=\left(1-t_{j} p_{j}\right) / a$ [s exact divisions]

Total cost: 3 modular products and one exact division per factor base prime for the batch inversion, and 2 modular products to compute $(r-b) u_{j}$ and $(-r-b) u_{j}$.

Remark: if $a=z^{2}$, we can perform all computations modulo z, and if $u_{j}=1 / z \bmod p_{j}$, then $u_{j}^{2}=1 / a \bmod p_{j}$

For $n=2^{80}-17$, about 4% of the total time is spent in the batch inversion, and about 9% in the computation of $\left(r_{j}-b\right) u_{j}^{2} \bmod p_{j}$

MPQS parameters for 80 bits

$$
M=2^{12}, \# F=150, a \approx \sqrt{2 n} / M \approx 379625062
$$

The multiplier

Let $n=2^{80}-17$.
$n=3 \bmod 4$, thus is not a square modulo 2. n is a square modulo $5,7,17,19, \ldots$ In other words, $\alpha\left(x^{2}-n, 2000\right)=1.10$.

If we factor $k n$ instead of n, norms $Q(x)$ are multiplied by \sqrt{k}, but the α value might compensate.
$k=11, \alpha=-0.55, \log \sqrt{k}=1.20$, total 0.65
$k=15, \alpha=-0.74, \log \sqrt{k}=1.35$, total 0.61

Timings

All timings on Catrel cluster (Intel Xeon E5-2650, 2.4GHz).
TIFA: version 0.1.0 (devel:20100610).
CADO-NFS: revision 73e583f, average of 100 RSA-like numbers.
ECM: default CADO-NFS strategy with enough curves (not optimal for RSA-like numbers)

bits	tiny MPQS	ECM	TIFA SIQS
64	1.3 ms	$\mathbf{0 . 1 2 m s}$	636 ms
80	3.0 ms	$\mathbf{2 . 4 m s}$	3.2 ms
96	7.5 ms	10.7 ms	$\mathbf{4 . 7} \mathbf{m s}$
112	22 ms	46 ms	$\mathbf{1 5 m s}$
128	73 ms	2350 ms	$\mathbf{3 7 m s}$

Still work in progress!

Saving a factor 2 (not tested yet)

If $b^{2}-n=a c$, then with $Q(x)=a x^{2}+2 b x+c$:

$$
(a x+b)^{2}-n=a^{2} x^{2}+2 a b x+a c=a Q(x)
$$

Classical case: $a=p^{2}$.
If c is even, we can use $a=2 p^{2}$, then $Q(x)$ is always divisible by 2 .
When $n=1 \bmod 4, b^{2}-n=0 \bmod 4$, thus c is even.

Rational multiplier (not tested yet)

Choose a small odd integer $\ell>1$
Factor base: roots of $\ell x^{2}=n \bmod p$.
Choose a such that n / ℓ is a square modulo a
Choose b such that $\ell b^{2}-n=a c$
Then $\ell(a x+b)^{2}-n=a Q(x)$ with $Q(x):=\ell a x^{2}+2 \ell b x+c$
The minimum value of $Q(x)$ is still $-n / a$ for $x \approx 0$, the maximum is now $\approx \ell a M^{2}-n / a$ for $x= \pm M$

We want $\ell a M^{2} \approx 2 n / a$ thus $a \approx \sqrt{2 n / \ell} / M$
The maximum is now $\sqrt{\ell n / 2} M$, increased by $\sqrt{\ell}$ wrt $\ell=1$
Multiplier k / ℓ : roots of $\ell x^{2}=k n \bmod p$, norms increased by $\sqrt{k \ell}$.

