
Paul Zimmermann ANR Catrel, Palaiseau, 14 January 2015

Tiny MPQS

References

The Multiple Polynomial Quadratic Sieve, Robert D. Silverman,
Math. of Comp., vol. 48, num. 177, 1987 (attributes the idea to
Montgomery)

The Quadratic Sieve Factoring Algorithm, Eric Landquist, MATH
488: Cryptographic Algorithms, December 14, 2001

Implementing the Hypercube Quadratic Sieve with Two Large
Primes, Brian Carrier and Samuel S. Wagstaff, Jr., 2003

Factoring Small to Medium Size Integers: An Experimental
Comparison, Jérôme Milan, hal.inria.fr/inria-00188645v3,
2010

hal.inria.fr/inria-00188645v3

Motivation

In CADO-NFS cofactorization, we currently use only P − 1, P + 1
and ECM

Goal: compare to MPQS (also used by Franke-Kleinjung GNFS)

Target size: up to 128 bits

Quadratic Sieve

First explicit version by Carl Pomerance (1981)

0. Set up a factor base F = {−1} ∪ {p prime, p ≤ P}

1. Let b = bn1/2e

2. Factor S(x) := (x + b)2 − n for x in [−M,M]

3. If m > #F complete factorizations over F are found, find a
subset that gives a square product and write:

S(x1)S(x2) · · · S(xm) = (x1x2 · · · xm)
2 mod n

4. If X =
√

S(x1)S(x2) · · · S(xm) and Y = x1x2 · · · xm, then
gcd(X −Y , n) gives a non-trivial factor of n with probability ≥ 1/2

Example: n = 280−17 = 20885856281× 57882511655239

b = bn1/2e = 240 = 1099511627776

P = 216: F contains (at most) 6542 primes

For |x | ≤ 108916, we get 2508 relations over 2507 primes, for
example:

(−108916+ b)2 − n = −1 · 7 · 67 · 1492 · 787 · 3767 · 7759

Which primes can appear?

If (x + b)2 − n = · · · × p × · · · , then n is a square (quadratic
residue) modulo p, thus (

n
p

)
= 1

For n = 280 − 17, we have 3329 odd primes p with
(

n
p

)
= 1 up to

216, plus 2 plus −1, thus 3331 factor base elements

(x + b)2 − n for −108916 ≤ x ≤ 108916:

-1e5 -5e4 5e4 1e5

-2e17

-1e17

1e17

2e17

MPQS: Multiple Polynomial Quadratic Sieve

Main idea: for a positive integer, use

S(x) = (ax + b)2 − n

The integer b is chosen so that 0 ≤ b < a and b2 − n is divisible
by a, say b2 − n = ac. Then:

S(x) = a2x2 + 2abx + ac = aQ(x) for Q(x) := ax2 + 2bx + c

If in addition a is a square, then it suffices to split Q(x) over the
factor base

MPQS: how to choose a?

We choose a to be a square to only consider Q(x) = ax2 + 2bx + c

Basic MPQS: take a = p2 where p is a prime. Since b2 − n = ac,
n is a square modulo a, thus we need

(n
a
)
= 1.

Then take b as one of the square roots of n modulo a.

If we sieve x ∈ [−M,M], then [(ax + b)2 − n]/a goes from about
−n/a for x = 0 to about aM2 − n/a for x = ±M.

The optimal value is a ≈
√
2n/M, with values up to M

√
n/2. In

contrast for QS with (x + b)2 − n, we have values up to 2M
√

n:√
8 improvement.

Sieve initialization

For each factor base prime p, precompute the (two) roots r of
x2 − n mod p

Remember we want to sieve Q(x) = (ax + b)2 − n over [−M,M]

(p, r) divides (ax + b)2 − n whenever ax + b = r mod p

We thus need to compute xp = (r − b)/a mod p for each new
polynomial ax2 + 2bx + c and each factor base prime p!

The computation of 1/a mod p is expensive

SIQS (Self Initializing) or HMPQS (Hypercube): taking√
a = p1p2 · · · ps gives 2s square roots.

Fast MPQS without SIQS/HMPQS (1/2)

Use Caramel technology!

We want to compute 1/a mod p1, 1/a mod p2, ..., 1/a mod ps

Using Montgomery’s batch inversion, we know how to compute
1/p1 mod a, 1/p2 mod a, ..., 1/ps mod a

Kruppa’s dual batch inversion: if tj = 1/pj mod a, then
tjpj + uja = 1 for some uj , thus uj = 1/a mod pj

Fast MPQS without SIQS/HMPQS (2/2)
1. Compute q1 = p1, q2 = p1p2 mod a, ... qs = p1 · · · ps mod a
[s − 1 modular products]

2. Compute rs = 1/qs mod a [one modular inverse]

3. Get tj = rjqj−1 mod a and rj−1 = rjqj mod a for
j = s, s − 1, ...1 [2s − 2 modular products]

4. Get uj = (1− tjpj)/a [s exact divisions]

Total cost: 3 modular products and one exact division per factor
base prime for the batch inversion, and 2 modular products to
compute (r − b)uj and (−r − b)uj .

Remark: if a = z2, we can perform all computations modulo z ,
and if uj = 1/z mod pj , then u2

j = 1/a mod pj

For n = 280 − 17, about 4% of the total time is spent in the batch
inversion, and about 9% in the computation of (rj − b)u2

j mod pj

MPQS parameters for 80 bits
M = 212, #F = 150, a ≈

√
2n/M ≈ 379625062

-4000 -3000 -2000 -1000 1000 2000 3000 4000

-3e15

-2e15

-1e15

1e15

2e15

3e15

The multiplier

Let n = 280 − 17.

n = 3 mod 4, thus is not a square modulo 2. n is a square modulo
5, 7, 17, 19, ... In other words, α(x2 − n, 2000) = 1.10.

If we factor kn instead of n, norms Q(x) are multiplied by
√

k, but
the α value might compensate.

k = 11, α = −0.55, log
√

k = 1.20, total 0.65

k = 15, α = −0.74, log
√

k = 1.35, total 0.61

Timings
All timings on Catrel cluster (Intel Xeon E5-2650, 2.4GHz).

TIFA: version 0.1.0 (devel:20100610).

CADO-NFS: revision 73e583f, average of 100 RSA-like numbers.

ECM: default CADO-NFS strategy with enough curves (not
optimal for RSA-like numbers)

bits tiny MPQS ECM TIFA SIQS
64 1.3ms 0.12ms 636ms
80 3.0ms 2.4ms 3.2ms
96 7.5ms 10.7ms 4.7ms
112 22ms 46ms 15ms
128 73ms 2350ms 37ms

Still work in progress!

Saving a factor 2 (not tested yet)

If b2 − n = ac, then with Q(x) = ax2 + 2bx + c:

(ax + b)2 − n = a2x2 + 2abx + ac = aQ(x)

Classical case: a = p2.

If c is even, we can use a = 2p2, then Q(x) is always divisible by 2.

When n = 1 mod 4, b2 − n = 0 mod 4, thus c is even.

Rational multiplier (not tested yet)
Choose a small odd integer ` > 1

Factor base: roots of `x2 = n mod p.

Choose a such that n/` is a square modulo a

Choose b such that `b2 − n = ac

Then `(ax + b)2 − n = aQ(x) with Q(x) := `ax2 + 2`bx + c

The minimum value of Q(x) is still −n/a for x ≈ 0, the maximum
is now ≈ `aM2 − n/a for x = ±M

We want `aM2 ≈ 2n/a thus a ≈
√
2n/`/M

The maximum is now
√
`n/2M, increased by

√
` wrt ` = 1

Multiplier k/`: roots of `x2 = kn mod p, norms increased by
√

k`.

