Worst Cases for $\sin (B I G)$

Paul Zimmermann
(joint work with G. Hanrot, V. Lefèvre, D. Stehlé)

Open Problems (last year talk ...)

- Compute WC for decimal formats: not a big deal!

Open Problems (last year talk ...)

- Compute WC for decimal formats: not a big deal!
- trig(BIG) is still expensive: $\sin (M A X D B L)$ requires an argument reduction on $1024+128=1152$ bits!
\Longrightarrow error bound $\left(\frac{1}{2}+\epsilon\right)$ ulp
\Longrightarrow call arbitrary precision library?

Open Problems (last year talk ...)

- Compute WC for decimal formats: not a big deal!
- trig(BIG) is still expensive: $\sin (\mathrm{MAXDBL})$ requires an argument reduction on $1024+128=1152$ bits!
\Longrightarrow error bound $\left(\frac{1}{2}+\epsilon\right)$ ulp
\Longrightarrow call arbitrary precision library?
- Two-variable functions like $x^{y}, \operatorname{atan}(y / x)$ are still out-of-reach for exhaustive worst-case search: 2^{128} cases!
$\Longrightarrow 1$ st step is still $C R$
\Longrightarrow add rounding test in 2nd step (raise exception?)
\Longrightarrow or call arbitrary precision library...

The Problem (1/2)

Consider $x_{i}=1 / 2+i \cdot \operatorname{ulp}(1 / 2)$:
$\sin x_{0} \approx 0.47942553860420300$
$\sin x_{1} \approx 0.47942553860420310$
$\sin x_{2} \approx 0.47942553860420320$

The Problem (1/2)

Consider $x_{i}=1 / 2+i \cdot \operatorname{ulp}(1 / 2)$:
$\sin x_{0} \approx 0.47942553860420300$
$\sin x_{1} \approx 0.47942553860420310$
$\sin x_{2} \approx 0.47942553860420320$

$$
f\left(x_{i}\right) \approx a+i \cdot b+\cdots
$$

where $a=\sin x_{0} \approx 0.47942553860420300$, and $b=2^{-53} \cdot \cos x_{0} \approx 0.97431236622022320 \cdot 10^{-16}$.

A graphical view

Modulo the period Π :

The Problem (2/2)

Consider $x_{i}=2^{1023}+i \cdot \operatorname{ulp}\left(2^{1023}\right)$:

The Problem (2/2)

Consider $x_{i}=2^{1023}+i \cdot \operatorname{ulp}\left(2^{1023}\right)$: $\sin x_{0} \approx 0.56312777985088401$

The Problem (2/2)

Consider $x_{i}=2^{1023}+i \cdot \operatorname{ulp}\left(2^{1023}\right)$:
$\sin x_{0} \approx 0.56312777985088401$
$\sin x_{1} \approx-0.97617177188664794$

The Problem (2/2)

Consider $x_{i}=2^{1023}+i \cdot \operatorname{ulp}\left(2^{1023}\right)$:
$\sin x_{0} \approx 0.56312777985088401$
$\sin x_{1} \approx-0.97617177188664794$
$\sin x_{2} \approx 0.15999647656281522$

The Problem (2/2)

Consider $x_{i}=2^{1023}+i \cdot \operatorname{ulp}\left(2^{1023}\right)$:
$\sin x_{0} \approx 0.56312777985088401$
$\sin x_{1} \approx-0.97617177188664794$
$\sin x_{2} \approx 0.15999647656281522$

$$
f\left(x_{i}\right) \approx a+i \cdot b+\cdots
$$

where $a=\sin x_{0} \approx 0.56312777985088401$, and $b=2^{971} \cdot \cos x_{0} \approx-0.16493022265064564 \cdot 10^{293}$.

A graphical view

Modulo the period Π :

The main result

Theorem 1 Given a periodic \mathcal{C}^{∞} function f, a precision p, an exponent e and a bad case bound $\varepsilon=2^{-p+O(1)}$, all p-bit numbers in $\left[2^{e-1}, 2^{e}\right]$ such that

$$
\left|2^{p} \cdot \operatorname{mantissa}(f(x)) \operatorname{cmod} 1\right| \leq \varepsilon
$$

can be found in heuristic time $O\left(2^{(7-2 \sqrt{10}) p}\right)$, after a precomputation on $e+O(p)$ bits.

Remark 1: $7-2 \sqrt{10} \approx 0.675$.
Remark 2: the complexity does not depend on e !

Lefèvre and Muller's method

References: Lefèvre PhD (2000), Lefèvre/Muller Arith'15 paper Worst
Cases for Correct Rounding of the Elementary Functions in Double Precision
Approximate $f\left(x_{0}+t \cdot \operatorname{ulp}\left(x_{0}\right)\right)$ by a linear polynomial

$$
p(t):=a+b \cdot t
$$

on small intervals (a, b real numbers, $|t|<T$ integer)
On each interval, find the values of t such that

$$
p(t) \operatorname{cmod} \operatorname{ulp}\left(x_{0}\right)
$$

is small with a variant of the extended gcd algorithm.
Largest possible value of T is $2^{p / 3}$ for precision p : complexity $2^{2 p / 3}$.
Expensive but feasible in double precision.

IEEE 754 Revision Committee, Apple Cupertino, 2nd November 2006 - p. 9/23

The SLZ algorithm (1/2)

References: Stehlé, Lefèvre, Z., Worst Cases and Lattice Reduction,
Arith'16 (2003) and Searching Worst Cases of a One-Variable Function Using Lattice Reduction, IEEE TC (2005).

Approximate $f\left(x_{0}+t \cdot \operatorname{ulp}\left(x_{0}\right)\right)$ by a degree- d polynomial

$$
p(t)=a_{0}+a_{1} t+\cdots+a_{d} t^{d}
$$

on small intervals (a_{i} real numbers, $|t|<T$ integer)
On each interval, find the values of t such that

$$
p(t) \operatorname{cmod} \operatorname{ulp}\left(a_{0}\right)
$$

is small using a variant of Coppersmith's algorithm to find the small roots of a modular equation, which uses lattice reduction.

IEEE 754 Revision Committee, Apple Cupertino, 2nd November 2006 - p. 11/23

The SLZ algorithm (2/2)

Largest possible value of T is $2^{3 p / 7}$ for precision p : complexity $2^{4 p / 7}$.
Comparable to Lefèvre's method in double precision, slightly faster in double-extended precision (complete check for 2^{x}).

In practice: $d=2$ or $d=3$.
Complete check of $\exp (x)$ for decimal64 (with V. Lefèvre and D. Stehlé). Worst case for $|x| \geq 3 \cdot 10^{-11}$:
$\exp (\underbrace{9.407822313572878}_{16} \cdot 10^{-2})=\underbrace{1.098645682066338}_{16} \cdot \underbrace{50000000000000000278}_{16}$

The search for bad cases can be written:

$$
\begin{equation*}
\left|\lambda \cdot f\left(x_{0}+\mu t\right) \operatorname{cmod} 1\right| \leq \varepsilon \tag{1}
\end{equation*}
$$

with x_{0} a p-bit number, $t \in[0, T]$ integer.

The search for bad cases can be written:

$$
\begin{equation*}
\left|\lambda \cdot f\left(x_{0}+\mu t\right) \operatorname{cmod} 1\right| \leq \varepsilon \tag{2}
\end{equation*}
$$

with x_{0} a p-bit number, $t \in[0, T]$ integer.
Classical setting: $1 / 2 \leq x, f(x)<1$

$$
\lambda=2^{p}, \mu=2^{-p}
$$

The search for bad cases can be written:

$$
\begin{equation*}
\left|\lambda \cdot f\left(x_{0}+\mu t\right) \operatorname{cmod} 1\right| \leq \varepsilon \tag{3}
\end{equation*}
$$

with x_{0} a p-bit number, $t \in[0, T]$ integer.
Classical setting: $1 / 2 \leq x, f(x)<1$

$$
\lambda=2^{p}, \mu=2^{-p}
$$

$\sin (\mathrm{BIG})$ setting: $2^{e-1} \leq x<2^{e}$

$$
\lambda=2^{p}, \mu=2^{e-p}
$$

The problem is that μ is large.

First Solution

$$
\left|\lambda \cdot f\left(x_{0}+\mu t\right) \operatorname{cmod} 1\right| \leq \varepsilon
$$

Reduce the argument!
Write $x_{0} \equiv x_{0}^{\prime} \bmod \Pi, \mu \equiv \mu^{\prime} \bmod \Pi$ with $0<x_{0}^{\prime}, \mu^{\prime}<\Pi$

$$
\left|\lambda \cdot f\left(x_{0}^{\prime}+\mu^{\prime} t\right) \operatorname{cmod} 1\right| \leq \varepsilon
$$

We are back to Eq. (3), with x_{0}^{\prime} and μ^{\prime} real now.
The big exponent of x_{0} does not play any role any more!
But μ^{\prime} is still not small ...

A graphical view

IEEE 754 Revision Committee, Apple Cupertino, 2nd November 2006 - p. 15/23

The main idea

$$
\left|\lambda \cdot f\left(x_{0}+\mu t\right) \operatorname{cmod} 1\right| \leq \varepsilon
$$

with real numbers $0<x_{0}, \mu<\Pi$.
Find an integer q such that $\tau:=q \mu \operatorname{cmod} \Pi$ is small.
We are back to the classical case, with $0 \leq t \leq T / q$.

A graphical view

The algorithm

0 . Argument reduce x_{0} and μ

1. Find q such that $\tau:=q \mu \operatorname{cmod} \Pi$ is small
2. For $0 \leq i<q$ where $x_{i}=x_{0}+i \mu$ do

Run Lefèvre's algorithm or SLZ on $x_{i}+t \tau, t<T / q$.

A graphical view

Classical search:

New algorithm:

How to fi nd q ?

Take a convergent $\frac{p}{q}$ from $\frac{\mu}{\Pi}\left(\mu=\operatorname{ulp}\left(x_{0}\right)\right)$.

$$
\left|\frac{p}{q}-\frac{\mu}{\Pi}\right| \leq \frac{1}{q^{2}}
$$

thus $|q \mu \operatorname{cmod} \Pi| \leq \Pi / q$.

How to fi nd q ?

Take a convergent $\frac{p}{q}$ from $\frac{\mu}{\Pi}\left(\mu=\operatorname{ulp}\left(x_{0}\right)\right)$.

$$
\left|\frac{p}{q}-\frac{\mu}{\Pi}\right| \leq \frac{1}{q^{2}}
$$

thus $|q \mu \operatorname{cmod} \Pi| \leq \Pi / q$.
Example for $\mu=2^{971}, \Pi=2 \pi$:
$q=15106909301, \tau:=q \mu \operatorname{cmod}(2 \pi) \approx 0.441 \cdot 10^{-12}$

Numerical Results

Implemented the algorithm in BACSEL, using FPLLL, MPFR and GMP.

Numerical Results

Implemented the algorithm in BACSEL, using FPLLL, MPFR and GMP. Considered $\sin x$ on $\left[2^{1023}, 2^{1024}\right.$) (largest binary64 exponent).

Numerical Results

Implemented the algorithm in BACSEL, using FPLLL, MPFR and GMP. Considered $\sin x$ on $\left[2^{1023}, 2^{1024}\right.$) (largest binary64 exponent).

Used $q=15106909301$, with degree $d=3$.

Numerical Results

Implemented the algorithm in BACSEL, using FPLLL, MPFR and GMP. Considered $\sin x$ on $\left[2^{1023}, 2^{1024}\right.$) (largest binary64 exponent).

Used $q=15106909301$, with degree $d=3$.
Each arithmetic progression $x_{i}+t \cdot \tau$ has ≤ 298116 elements.

Numerical Results

Implemented the algorithm in BACSEL，using FPLLL，MPFR and GMP．
Considered $\sin x$ on $\left[2^{1023}, 2^{1024}\right.$ ）（largest binary64 exponent）．
Used $q=15106909301$ ，with degree $d=3$ ．
Each arithmetic progression $x_{i}+t \cdot \tau$ has ≤ 298116 elements．

```
sin}(4621478864517314\cdot2 271 )
-0.0 \underbrace\underbrace⿱一𫝀口
```


Numerical Results

Implemented the algorithm in BACSEL, using FPLLL, MPFR and GMP.
Considered $\sin x$ on $\left[2^{1023}, 2^{1024}\right.$) (largest binary64 exponent).
Used $q=15106909301$, with degree $d=3$.
Each arithmetic progression $x_{i}+t \cdot \tau$ has ≤ 298116 elements.
$\sin \left(4621478864517314 \cdot 2^{971}\right)=$
$-0.0 \underbrace{10010110001110101110010000111100111100010000000100000}_{53} 1^{43} 0001 \ldots$
$\sin \left(5501214608935005 \cdot 2^{971}\right)=$
$0.00 \underbrace{10011000110011100101110100111100011011010010001111111}_{53} 0^{45} 1011 \ldots$

Time Estimates

Machine used: 2.4 Ghz Opteron under Linux.

Time Estimates

Machine used: 2.4 Ghz Opteron under Linux.
Naive implementation: after a single argument reduction, about 6 seconds to check one million values, 850 years to check the whole binade.

Time Estimates

Machine used: 2.4 Ghz Opteron under Linux.
Naive implementation: after a single argument reduction, about 6 seconds to check one million values, 850 years to check the whole binade.

Our algorithm: 0.008s to check one arithmetic progression (298116 values), about 4 years to check the whole binade.

Conclusion and Open Questions

A very first step to find bad cases of $\sin (B I G)$.

Conclusion and Open Questions

A very first step to find bad cases of $\sin (B I G)$.
The algorithm and/or the implementation can probably be improved.

Conclusion and Open Questions

A very first step to find bad cases of $\sin (B I G)$.
The algorithm and/or the implementation can probably be improved.
sin, cos, tan for the whole binary64 format are now within reach (at most 4000 cpu years each)

Conclusion and Open Questions

A very first step to find bad cases of $\sin (B I G)$.
The algorithm and/or the implementation can probably be improved.
sin, cos, tan for the whole binary64 format are now within reach (at most 4000 cpu years each)

Moore's law:

$$
w=\int_{0}^{T} 2^{2 t / 3} d t
$$

$w=1000$ gives $T \approx 13.3$ years

Conclusion and Open Questions

A very first step to find bad cases of $\sin (B I G)$.
The algorithm and/or the implementation can probably be improved.
sin, cos, tan for the whole binary64 format are now within reach (at most 4000 cpu years each)

Moore's law:

$$
w=\int_{0}^{T} 2^{2 t / 3} d t
$$

$w=1000$ gives $T \approx 13.3$ years
If we start now, we'll be ready well before 754R'...

