
Short Division of Long Integers

David Harvey and Paul Zimmermann

New York University and Inria

25 July 2011

David Harvey and Paul Zimmermann Short Division of Long Integers

Modern Computer
Arithmetic
Richard Brent and Paul Zimmermann

Modern Computer Arithmetic focuses on arbitrary-precision algorithms for efficiently

performing arithmetic operations such as addition, multiplication and division, and their

connections to topics such as modular arithmetic, greatest common divisors, the Fast

Fourier Transform (FFT), and the computation of elementary and special functions. Brent

and Zimmermann present algorithms that are ready to implement in your favourite

language, while keeping a high-level description and avoiding too low-level or

machine-dependent details.

The book is intended for anyone interested in the design and implementation of

efficient high-precision algorithms for computer arithmetic, and more generally efficient

multiple-precision numerical algorithms. It may also be used in a graduate course

in mathematics or computer science, for which exercises are included. These vary

considerably in difficulty, from easy to small research projects, and expand on topics

discussed in the text. Solutions are available from the authors..

Richard Brent is a Professor of Mathematics and Computer Science at the Australian

National University, Canberra.

Paul Zimmermann is a Researcher at the Institut National de Recherche en Informatique

et en Automatique (INRIA).

Cambridge Monographs on Applied and Computational Mathematics

Brent and
Zim

m
erm

ann
M

odern Com
puter Arithm

etic

Cambridge Monographs on Applied and Computational Mathematics

BRENT: Modern Computer Arithmetic PPC CMYBLK

M(n/4)

M(n/4)

M(n/4)

M(n/2)

David Harvey and Paul Zimmermann Short Division of Long Integers

The problem to be solved

Divide efficiently

a p-bit floating-point number

by another p-bit f-p number

in the 100-10000 digit range

David Harvey and Paul Zimmermann Short Division of Long Integers

From www.mpfr.org/mpfr-3.0.0/timings.html (ms) :

Maple Mathematica Sage GMP MPF MPFR
digits 12.00 6.0.1 4.5.2 5.0.1 3.0.0
100
mult 0.0020 0.0006 0.00053 0.00011 0.00012
div 0.0029 0.0017 0.00076 0.00031 0.00032
sqrt 0.032 0.0018 0.00132 0.00055 0.00049
1000
mult 0.0200 0.007 0.0039 0.0036 0.0028
div 0.0200 0.015 0.0071 0.0040 0.0058
sqrt 0.160 0.011 0.0064 0.0049 0.0047

10000
mult 0.80 0.28 0.11 0.107 0.095
div 0.80 0.56 0.28 0.198 0.261
sqrt 3.70 0.36 0.224 0.179 0.176

David Harvey and Paul Zimmermann Short Division of Long Integers

www.mpfr.org/mpfr-3.0.0/timings.html

What is GMP (GNU MP) ?

the most popular library for arbitrary-precision arithmetic
distributed under a free license (LGPL) from gmplib.org

main developer is Torbjörn Granlund
contains several layers : mpn (arrays of words), mpz
(integers), mpq (rationals), mpf (floating-point numbers)
mpn is the low-level layer, with optimized assembly code for
common hardware, and provides optimized
implementations of state-of-the-art algorithms

David Harvey and Paul Zimmermann Short Division of Long Integers

gmplib.org

Can we do better than GMP ?

An anonymous reviewer said :

What are the paper’s weaknesses ?
The resulting performance, in the
referee’s opinion, is only marginally
better a standard exact-quotient
algorithm in GMP. One can expect about
10% improvement. It seems to be a weak
result for the sophisticated recursive
algorithm with the big error analysis
effort.

David Harvey and Paul Zimmermann Short Division of Long Integers

What is GNU MPFR ?

a widely used library for arbitrary-precision floating-point
arithmetic
distributed under a free license (LGPL) from mpfr.org

main developers are Guillaume Hanrot, Vincent Lefèvre,
Patrick Pélissier, Philippe Théveny and Paul Zimmermann
contrary to GMP mpf, implements correct rounding and
mathematical functions (exp, log, sin, ...)
implements Sections 3.7 (Extended and extendable
precisions) and 9.2 (Recommended correctly rounded
functions) of IEEE 754-2008
aims to be (at least) as efficient than other
arbitrary-precision floating-point without correct rounding

David Harvey and Paul Zimmermann Short Division of Long Integers

mpfr.org

The problem to be solved (binary fp division)

Assume we want to divide a > 0 of p bits by b > 0 of p bits,
with a quotient c of p bits.

First write a = ma · 2ea and b = mb · 2eb such that :
mb has exactly p bits
2p−1 ≤ ma/mb < 2p (ma has 2p − 1 or 2p bits)

The problem reduces to finding the p-bit correct rounding of
ma/mb with the given rounding mode.

We do not assume that the divisor b is invariant, thus we do not
allow precomputations involving b.

David Harvey and Paul Zimmermann Short Division of Long Integers

Division routine mpfr div in MPFR 3.0.x

The MPFR division routine relies on the (GMP) low-level
division with remainder mpn divrem.

mpn divrem computes q and r such that

ma = qmb + r with 0 ≤ r < mb.

Since 2p−1 ≤ ma/mb < 2p, q has exactly p bits.

The correct rounding of the quotient is q or q + 1 depending on
the rounding mode.

For rounding to nearest, if r < mb/2, the correct rounding is q ;
if r > mb/2, the correct rounding is q + 1.

David Harvey and Paul Zimmermann Short Division of Long Integers

What’s new with GMP 5 ?

In GMP 5, the floating-point division (mpf div) calls
mpn div q, which only computes the (exact) quotient, and is
faster (on average) than mpn divrem or its equivalent
mpn tdiv qr.

This is based on an approximate Barrett’s algorithm, presented
at ICMS 2006.

In most cases computing one more word of the quotient is
enough to decide the correct rounding :

pad the dividend with two zero low words
pad the divisor with one zero low word
one will obtain one extra quotient low word

David Harvey and Paul Zimmermann Short Division of Long Integers

Our goal

Design an approximate division routine for arrays of n words

An array of n words [an−1, ...,a1,a0] represents the integer

an−1β
n−1 + · · ·+ a1β + a0

with β = 264

We want a rigorous error analysis and a O(n) error

David Harvey and Paul Zimmermann Short Division of Long Integers

Plan of the talk

Mulders’ short product
Mulders’ short division
Barrett’s algorithm
`-fold Barrett’s algorithm (cf Hasenplaugh, Gaubatz, Gopal,
Arith’18)

David Harvey and Paul Zimmermann Short Division of Long Integers

Mulders’ short product for polynomials (2000)

Short product : compute the upper half of U · V , U and V
having n terms (degree n − 1)

With Karatsuba’s
multiplication,
can save 20%
over a full product.

David Harvey and Paul Zimmermann Short Division of Long Integers

Our variant of Mulders’s algorithm for integers

Algorithm ShortMul.
Input: U =

∑n−1
i=0 uiβ

i , V =
∑n−1

i=0 viβ
i , integer n

Output: an integer approximation W of UVβ−n

1: if n < n0 then
2: W ← ShortMulNaive(U,V ,n)
3: else
4: choose a parameter k , n/2 + 1 ≤ k < n, `← n − k
5: write U = U1β

` + U0, V = V1β
` + V0

6: write U = U ′1β
k + U ′0, V = V ′1β

k + V ′0
7: W11 ← Mul(U1,V1, k) . 2k words
8: W10 ← ShortMul(U ′1,V0, `) . ` most significant words
9: W01 ← ShortMul(U0,V ′1, `) . ` most significant words

10: W ← bW11β
2`−nc+ W10 + W01

David Harvey and Paul Zimmermann Short Division of Long Integers

Lemma
The output of Algorithm ShortMul satisfies

UVβ−n − (n − 1) < W ≤ UVβ−n.

(In other words, the error is less than n ulps.)

David Harvey and Paul Zimmermann Short Division of Long Integers

Mulders’ short division (2000)

U is unknown
V is known
W = UV is known

1. estimate Uhigh from Vhigh and Whigh, subtract UhighVhigh from W
2. compute U ′highVlow and subtract from W
3. estimate Ulow from V ′high and the remainder W

David Harvey and Paul Zimmermann Short Division of Long Integers

Our variant of Mulders’ short division for integers

Algorithm ShortDiv.
Input: W =

∑2n−1
i=0 wiβ

i , V =
∑n−1

i=0 viβ
i , with V ≥ βn/2

Output: an integer approximation U of Q = bW/Vc
1: if n < n1 then
2: U ← Div(W ,V) . Returns bW/Vc
3: else
4: choose a parameter k , n/2 < k ≤ n, `← n − k
5: write W = W1β

2` + W0, V = V1β
` + V0, V = V ′1β

k + V ′0
6: (U1,R1)← DivRem(W1,V1)
7: write U1 = U ′1β

k−` + S with 0 ≤ S < βk−`

8: T ← ShortMul(U ′1,V0, `)
9: W01 ← R1β

` + (W0 div β`)− Tβk

10: while W01 < 0 do (U1,W01)← (U1 − 1,W01 + V)
11: U0 ← ShortDiv(W01 div βk−`,V ′1, `)
12: return U1β

` + U0

David Harvey and Paul Zimmermann Short Division of Long Integers

Lemma
The output U of Algorithm ShortDiv satisfies, with Q = bW/Vc :

Q ≤ U ≤ Q + 2(n − 1).

(In other words, the error is less than 2n ulps.)

David Harvey and Paul Zimmermann Short Division of Long Integers

The optimal cutoff k in ShortMul and ShortDiv heavily depends
on n. There is no simple formula. Instead, we determine the
best k(n) by tuning, for say n < 1000 words (about 20000
digits).

For ShortMul the best k varies between 0.5n and 0.64n, for
ShortDiv it varies between 0.54n and 0.88n (for a particular
computer and a given version of GMP).

David Harvey and Paul Zimmermann Short Division of Long Integers

Barrett’s Algorithm (1987)

Goal : given W and V , compute quotient Q and remainder R :

W = QV + R

1 compute an approximation I of 1/V
2 compute an approximation Q = WI of the quotient
3 (optional) compute the remainder R = W −QV and adjust

if necessary

When V is not invariant, computing 1/V is quite expensive :
`-fold reduction from Hasenplaugh, Gaubatz, Gopal
(Arith’18, 2007) (LSB variant)
for ` = 2, HGG is exactly Karp-Markstein division (1997)

David Harvey and Paul Zimmermann Short Division of Long Integers

2-fold division (Karp-Markstein)

1 compute an approximation I of 1/V to n/2 words
2 deduce the upper n/2 words Q1 = ShortMul(W , I,n/2)
3 subtract Q1V from W , giving W ′

4 deduce the lower n/2 words Q0 = ShortMul(W ′, I,n/2)

In step 3, Q1V is a (n/2)× n multiplication, giving a 3n/2
product.

However, we know the upper n/2 words match with W , and we
are not interested in the lower n/2 words.

This is exactly a middle product (Hanrot, Quercia,
Zimmermann, 2004) :

V

Q1
middle

product
upper

lower

@
@

@
@

@

@
@

@
@

@

David Harvey and Paul Zimmermann Short Division of Long Integers

The 3-fold division algorithm

David Harvey and Paul Zimmermann Short Division of Long Integers

The integer middle product (Harvey 2009)

Input : X of m words and Y of n words, with m ≥ n

X =
m−1∑
i=0

xiβ
i , Y =

n−1∑
j=0

yjβ
j

Output :MPm,n(X ,Y) =
∑

0≤i<m,0≤j<n
n−1≤i+j≤m−1

xiyjβ
i+j−n+1

Lemma

|(XY − βn−1MPm,n(X ,Y)) mod βm| < (n − 1)βn

Classical case : m = 2n − 1 with n2 word-products.

Quadratic-time algorithms : n2.

Karatsuba-like middle product : O(n1.58...).

FFT-variant : O(M(n)).
David Harvey and Paul Zimmermann Short Division of Long Integers

`-fold Barrett division
Algorithm FoldDiv(`), ` ≥ 2.
Input: W =

∑2n−1
i=0 wiβ

i , V =
∑n−1

i=0 viβ
i , with V ≥ βn/2, W < βnV

Output: an integer approximation U of Q = bW/Vc
1: if n < n2 then
2: return U ← Div(W ,V)

3: k ← dn/`e
4: write V = V1β

n−(k+1) + V0 . V1 has k + 1 words
5: I ← b(β2(k+1) − 1)/V1c
6: r ← n, Wr ←W , U ← 0
7: while r > k + 1 do . invariant : 0 ≤Wr < βr V
8: Qr ← ShortMul(Wr div βn+r−(k+1), I, k + 1)
9: Qr ← min(Qr , β

k+1 − 1)
10: Tr ← MPr+1,k+1(V div βn−r ,Qr)
11: Wr−k ← (Wr − Trβ

n−1) mods βn+r−k

12: U ← U + Qrβ
r−(k+1)

13: if Wr−k < 0 then Wr−k ←Wr−k + βr−k V , U ← U − βr−k

14: r ← r − k
15: Qr ← ShortMul(Wr div βn+r−(k+1), I, k + 1)
16: U ← U + (Qr div βk+1−r)

David Harvey and Paul Zimmermann Short Division of Long Integers

Theorem

Assuming n + 8 < β/2 and ` ≤
√

n/2, Algorithm FoldDiv(`)
returns an approximation U of Q = bW/Vc, with error less than
2n.

David Harvey and Paul Zimmermann Short Division of Long Integers

Experimental results

Hardware : gcc16.fsffrance.org, 2.2Ghz AMD Opteron
8354

GMP : changeset 131005cc271b from 5.0 branch (≈ 5.0.1)

mulmid patch from David Harvey (threshold 36 words)

n 100 200 500 1000
mpn mul n 7.52 22.4 80.8 225
ShortMul 0.76 0.81 0.89 0.85
mpn invert 1.21 1.32 1.59 1.57
mpn mulmid n 1.12 1.20 1.45 1.59
mpn tdiv qr 1.74 1.86 2.35 2.46
mpn div q 1.22 1.34 1.79 1.87
ShortDiv 1.34 1.32 1.62 1.75
FoldDiv(2) 1.37 1.36 1.62 1.74
FoldDiv(3) 1.34 1.35 1.61 1.73
FoldDiv(4) 1.35 1.32 1.63 1.76

David Harvey and Paul Zimmermann Short Division of Long Integers

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100 200 300 400 500 600 700 800 900 1000

mpn_div_q
ShortDiv

FoldDiv2(2)
FoldDiv2(3)
FoldDiv2(4)

David Harvey and Paul Zimmermann Short Division of Long Integers

Algorithm ShortMul is implemented in GNU MPFR since
version 2.2.0 (2005)

Extended to the MPFR squaring operation in 2010

Algorithm ShortDiv is available in GNU MPFR since revision
7191

Algorithm FoldDiv is not (yet) implemented since it requires a
middle-product routine, which is not (yet) provided by GMP

David Harvey and Paul Zimmermann Short Division of Long Integers

Conclusion

Our contributions :
two variants of Mulders’ short product and short division for
integers, with detailed description and rigorous error
analysis
a detailed description and rigorous error analysis of the
`-fold division for integers
we get a 10% speedup, and more speedup can be
obtained for FoldDiv, by using a Toom-3 middle product, a
faster (approximate) inverse based on the same ideas, ...

Benchmarks are a good way to improve software tools !

Still to do : design an approximate inverse using the `-fold
algorithm

Adapt the FoldDiv algorithm for an approximate inverse and
update the error analysis

David Harvey and Paul Zimmermann Short Division of Long Integers

ECC 2011
15th workshop on Elliptic Curve

Cryptography
September 19-21, 2011
INRIA, Nancy, France

ECC Summer School 2011
September 12-16, 2011

http://ecc2011.loria.fr/

http://ecc2011.loria.fr/

