
Arith 24 conference, London, July 24, 2017

Optimized Binary64 and Binary128
Arithmetic with GNU MPFR
(common work with Vincent Lefèvre)
Paul Zimmermann

Introducing the GNU MPFR library

• a software implementation of binary IEEE-754 (decimal
implementation provided by decNumber from Mike Cowlishaw)

• variable/arbitrary precision (up to the limits of your computer)

• each variable has its own precision: mpfr_init (a, 35)

• global user-defined exponent range (might be huge):
mpfr_set_emin (-123456789)

• mixed-precision operations: a← b − c where a has 35 bits, b
has 42 bits, c has 17 bits

• correctly rounded mathematical functions (exp, log, sin, cos, ...)
as in Section 9 of IEEE 754-2008

2

History

I 2000: first public version;
I 2008: MPFR is used by GCC 4.3.0 for constant folding:

double x = sin (3.14);

I 2009: MPFR becomes GNU MPFR;
I 2016: 4th developer meeting in Toulouse.
I mpfr.org/pub.html mentions 2 books, 27 PhD theses, 59

papers citing MPFR

3

mpfr.org/pub.html

SageMath version 7.6, Release Date: 2017-03-25

Type ``notebook()'' for the browser-based notebook interface.

Type ``help()'' for help.

sage: x=1/7; a=10^-8; b=2^24

sage: RealIntervalField(24)(x+a*sin(b*x))

[0.142857119 .. 0.142857150]

4

Advertisement

Now in english!
5

This work

• concentrates on small precision (1 to 2 machine-words)

• all operands have same precision

• basic operations: add, sub, mul, div, sqrt

• get the fastest possible software implementation

• while keeping the same user interface

6

Correct Rounding

Definition: we compute the floating-point value closest to the
exact result, with the given precision and rounding modes
(following IEEE-754).

RNDN: to nearest (ties to even);

RNDZ: toward zero, RNDA: away from zero;

RNDD: toward −∞, RNDU: toward +∞.

Only one possible conforming result: the correct rounding.

7

Notations

MPFR uses GMP’s mpn layer for the internal representation of
significands.

limb: a GMP word (in general 32 or 64 bits)

We will assume here a limb has 64 bits.

In a 64-bit limb, we call “bit 1” the most significant bit, and “bit
64” the least significant one.

8

Representation of MPFR numbers (mpfr_t)
I precision p ≥ 1 (in bits);
I sign (−1 or +1);
I exponent (between Emin and Emax), also used to represent

special numbers (NaN, ±∞, ±0);
I significand (array of dp/64e limbs), defined only for regular

numbers (neither NaN, nor ±∞ and ±0, which are singular
values).

The most significant bits are shown on the left.
Regular numbers are normalized: the most significant bit of the
most significant limb should be 1.
Example, x = 17 with a precision of 10 bits and limbs of 6 bits is
represented as follows:

10︸︷︷︸
precision

+1︸︷︷︸
sign

5︸︷︷︸
exponent

100010︸ ︷︷ ︸
limb 1

000000︸ ︷︷ ︸
limb 0

9

Round bit and sticky bit

v = xxx ...yyy︸ ︷︷ ︸
m of p bits

r︸︷︷︸
round bit

sss...︸︷︷︸
sticky bit

The round bit r is the value of bit p + 1 (where bit p is the least
significant bit of the significand).

The sticky bit s is zero iff sss... is zero.

The round bit and sticky bit enable us to determine correct
rounding for all rounding modes:

r s toward zero to nearest away from zero
0 0 m m m
0 1 m m m + 1
1 0 m m + (m mod 2) m + 1
1 1 m m + 1 m + 1

10

The function mpfr_add

The function mpfr_add(a, b, c) works as follows (a← b + c):
I first check for singular values (NaN,±Inf ,±0);
I if b and c have different signs, call the subtraction code;
I if a, b, c have same precision, call mpfr_add1sp;
I otherwise call the generic mpfr_add1 code described in:

Vincent Lefèvre, The Generic Multiple-Precision
Floating-Point Addition With Exact Rounding (as in the
MPFR Library), 6th Conference on Real Numbers and
Computers 2004 - RNC 6, Nov 2004, Dagstuhl, Germany,
pp.135-145, 2004.

11

The (new) function mpfr_add1sp

I if p < 64, call mpfr_add1sp1;
I if p = 64, call mpfr_add1sp1n;
I if 64 < p < 128, call mpfr_add1sp2;
I otherwise execute the generic code for operands of same

precision.

Note: p = 128 uses the generic code, prefer p = 127 if possible.

12

The function mpfr_add1sp1
Case 1, eb = ec :

b = 110100

c = 111000
a0 = (bp[0] >> 1) + (cp[0] >> 1);

bx ++;

rb = a0 & (MPFR_LIMB_ONE << (sh - 1));

ap[0] = a0 ^ rb;

sb = 0;

Since b and c are normalized, the most significant bits from bp[0]
and cp[0] are 1.

Thus the addition of bp[0] and cp[0] always produces a carry, and
the exponent of a is eb + 1 (here bx + 1).

13

b = 110100

c = 111000
a0 = (bp[0] >> 1) + (cp[0] >> 1);

bx ++;

rb = a0 & (MPFR_LIMB_ONE << (sh - 1));

ap[0] = a0 ^ rb;

sb = 0;

The sum might have p + 1 significant bits, but since p < 64
(p < 6 in the example), it always fits into 64 bits.

sh is the number 64− p of unused bits, here 6− p = 2.

The round bit is bit p + 1 from the sum, the sticky bit is always
zero.

We might have an overflow, but no underflow.
14

The function mpfr_sub

The function mpfr_sub(a, b, c) works as follows (a← b − c):
I first check for singular values (NaN,±Inf ,±0);
I if b and c have different signs, call the addition code;
I if b and c have same precision, call mpfr_sub1sp;
I otherwise call the generic code mpfr_sub1.

15

The function mpfr_sub1sp

I if p < 64, call mpfr_sub1sp1;
I if p = 64, call mpfr_sub1sp1n;
I if 64 < p < 128, call mpfr_sub1sp2;
I otherwise execute the generic code for the subtraction of

operands of same precision.

Note: as for addition, prefer p = 127 to p = 128 if possible.

16

The function mpfr_sub1sp1

• if exponents differ, swap b and c if necessary, so that eb ≥ ec ;
• case 1: eb = ec ;
• case 2: eb > ec .

17

Case 1, eb = ec :
b = 110100

c = 111000
compute bp[0]− cp[0] and store the result in ap[0], which then
equals bp[0]− cp[0] mod 264;

if ap[0] = 0, the result is 0;

if ap[0] > bp[0], a borrow occurred, we thus have |c| > |b|:
change ap[0] into −ap[0] and change the sign of a;

otherwise no borrow occurred, thus |c| < |b|;

compute the number k of leading zeros of ap[0], shift ap[0] by k
bits to the left and decrease the exponent by k;

in this case the round bit and sticky bit are always 0.

We might have an underflow, but no overflow: |a| ≤ max(|b|, |c|).
18

The function mpfr_mul(a,b,c)

a← ◦(b · c)

I if pa = pb = pc < 64, call mpfr_mul_1;
I if pa = pb = pc = 64, call mpfr_mul_1n;
I if 64 < pa = pb = pc < 128, call mpfr_mul_2;
I otherwise use the generic code.

19

The function mpfr_mul_1

a← ◦(b · c)

a, b, c: at most one limb (minus 1 bit):

h · 264 + `← bp[0] · cp[0] (umul_ppmm)
Since 263 ≤ bp[0], cp[0] < 264, we have 262 ≤ h.
If h < 263, shift h, ` of one bit to the left, and decrease the
exponent.
The round bit is bit p + 1 of h (p < 64).
The sticky bit is formed by the remaining bits from h (none if
p = 63) and those of `.
Both underflow and overflow might happen.
Beware: MPFR considers underflow after rounding (with an
infinite exponent range).

20

Underflow before vs after rounding

Assume bc = 0. 111...111︸ ︷︷ ︸
p bits

101 · 2Emin−1.

With underflow before rounding, there is an underflow since the
exponent of bc is Emin − 1.

With underflow after rounding, and rounding to nearest,
◦(bc) = 0.100...000 · 2Emin , and there is no underflow since the
exponent of ◦(bc) is Emin.

21

The function mpfr_div(a,b,c)

a← ◦(b/c)

I if pa = pb = pc < 64, call mpfr_div_1;
I if pa = pb = pc = 64, call mpfr_div_1n;
I if 64 < pa = pb = pc < 128, call mpfr_div_2;
I otherwise use the generic code.

22

The function mpfr_div_1

a← ◦(b/c)

We have pa = pb = pc < 64:

1. bp[0] ≥ cp[0]: one extra quotient bit;
2. bp[0] < cp[0]: no extra quotient bit.

23

Algorithm DivApprox1

Input: integers u, v with 0 ≤ u < v and β/2 ≤ v < β.
Output: integer q approximating uβ/v .

1: compute an approximate inverse i of v , verifying

i ≤ b(β2 − 1)/vc − β ≤ i + 1

2: q = biu/βc+ u

Note: here we have β = 264.

The computation of the approximate inverse is done by a variant of
the GMP macro invert_limb (Möller and Granlund, Improved
division by invariant integers, IEEE TC, 2011).

24

Theorem
The approximate quotient computed by Algorithm DivApprox1
satisfies

q ≤ buβv c ≤ q + 2.

Consequence: we can determine the correct rounding of u/v ,
except if the last sh-1 bits from q are 000..000, 111..111 or
111..110.

In this (rare) case, to improve the worst case latency, we start from
the approximation q.

25

The function mpfr_sqrt(r,u)

r ← ◦(
√
u)

I if pr = pu < 64, call mpfr_sqrt1;
I if pr = pu = 64, call mpfr_sqrt1n;
I if 64 < pr = pu < 128, call mpfr_sqrt2;
I otherwise use the generic code.

26

Algorithm RecSqrtApprox1

Input: integer d with 262 ≤ d < 264.
Output: integer v3 approximating s = b296/

√
dc.

1: d10 = b2−54dc+ 1
2: v0 = b

√
230/d10c (table lookup)

3: d37 = b2−27dc+ 1
4: e0 = 257 − v2

0d37
5: v1 = 211v0 + b2−47v0e0c
6: e1 = 279 − v2

1d37
7: v2 = 210v1 + b2−70v1e1c
8: e2 = 2126 − v2

2d
9: v3 = 233v2 + b2−94v2e2c

Remark: if a table lookup is faster than a multiplication, we might
tabulate v2

0 at step 4.

27

Theorem
The value v3 returned by RecSqrtApprox1 differs by at most 8
from the inverse square root:

v3 ≤ s := b296/
√
dc ≤ v3 + 8.

28

Algorithm SqrtApprox1
Input: integer n with 262 ≤ n < 264.
Output: integer r0 approximating

√
264n.

1: compute an integer x approximating 263/
√
n with

x ≤ 263/
√
n

2: y = b
√
nc (reusing the approximation x)

3: z = n − y2

4: t = b2−32xzc
5: r0 = y · 232 + t

Theorem
If the approximation x at step 1 is the value v2 of Algorithm
RecSqrtApprox1, then Algorithm SqrtApprox1 returns r0 such that

r0 ≤ b
√
264nc ≤ r0 + 7.

29

The function mpfr_sqrt1
Input: 263 ≤ u < 264 representing a number of p < 64 bits (most
significant bit set to 1).
• if the associated exponent is odd, shift u by one bit to the right;

• now 262 ≤ u < 264. Call __gmpfr_sqrt_limb_approx, which
implements SqrtApprox1, and computes r0 such that

r0 ≤ b
√
264uc ≤ r0 + 7;

• if the sh-1 least significant bits of r0 are not 000..000, 111..111
(-1), 111..110 (-2), ..., 111..011 (-5), 111..010 (-6), 111..001 (-7),
then we can determine the correct rounding;
• otherwise we compute r = r0 + i with 0 ≤ i ≤ 7 such that

r = b
√
264uc

which is equivalent to:
0 ≤ 264u − r2 ≤ 2r .

30

MPFR 3.1.5 compared to MPFR 4.0-dev

araignee.loria.fr, Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz,
with GMP 6.1.2 and GCC 6.3.0.
GMP and MPFR are configured with �disable-shared.

MPFR 3.1.5
bits 53 113

mpfr_add 52 53
mpfr_sub 49 52
mpfr_mul 49 63
mpfr_sqr 74 79
mpfr_div 134 146
mpfr_sqrt 171 268

MPFR 4.0-dev
bits 53 113

mpfr_add 25 29
mpfr_sub 28 33
mpfr_mul 23 33
mpfr_sqr 21 29
mpfr_div 56 (64) 77 (102)
mpfr_sqrt 55 (56) 84 (133)

Timings are in cycles.

31

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 20 40 60 80 100 120 140 160 180 200

add315
add11553

32

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 20 40 60 80 100 120 140 160 180 200

sub315
sub11553

33

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 20 40 60 80 100 120 140 160 180 200

mul315
mul11553

34

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180 200

div315
div11553

35

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140 160 180 200

sqrt315
sqrt11553

36

Conclusion

Speedup by a factor 2 or more until 127 bits for ÷,√ , until 191
bits for +,−,×.

Will be available in MPFR 4, already available in the development
version!

New algorithms for division and square root, with small and tight
error bounds.

Also in paper (and MPFR 4): new RNDF rounding mode (faithful)

Detailed and public code and proofs, ready for a formal proof. Any
volunteers to find a bug?

37

