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From: Galbraith Steven
Date: Fri, Apr 17, 2009 at 4:26 PM
To: Paul Zimmermann, Pierrick Gaudry

Hi Paul and Pierrick,

Sorry to bother you.

The usual algorithm to compute the Legendre (or Jacobi) symb ol
is closely related to Euclid’s algorithm. There are variant s of
Euclid for n-bit integers which run in O( M(n) \log(n)) bit op erations.
Hence it is natural to expect a O( M(n) \log(n)) algorithm for
Legendre symbols.

I don’t see this statement anywhere in the literature. Is thi s:

(a) in the literature somewhere
(b) so obvious no-one ever wrote it down
(c) false due to some subtle reason.

Thanks for your help.

Regards
Steven
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(b) so obvious no-one ever wrote it down

This is what we first thought.
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(b) so obvious no-one ever wrote it down

This is what we first thought.

However we soon realized it was not so easy...
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(a) in the literature somewhere

Two MSB algorithms:

“Algorithmic Number Theory” from Bach and Shallit,
solution of Exercise 5.52 (Gauss, Bachmann) [sketch];

a simpler algorithm mentioned by Schönhage in his “TP
book”, but without details.

As far as we know, no subquadratic implementation exists,
except that of Schönhage in the TP language.
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Sage 4.3 (sagemath.org ) on a 1.6Ghz Core 2 Duo:

sage: a=3ˆ209590
sage: b=5ˆ143067
sage: a.ndigits(), b.ndigits()
(100000, 100000)
sage: %timeit a.gcd(b)
10 loops, best of 3: 76.1 ms per loop
sage: %timeit a.jacobi(b)
10 loops, best of 3: 2.01 s per loop
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(c) false due to some subtle reason

We’ll try to show this is wrong in this talk!
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The Jacobi symbol

(
b
a

)

or (b|a) is defined for integers a, b, with a odd positive.

(b|a) = (b mod a|a)

(b|a) = (−1)(a−1)(b−1)/4(a|b) for b odd positive

(bc|a) = (b|a)(c|a)

(2|a) = (−1)(a
2−1)/8

(−1|a) = (−1)(a−1)/2

(b|a) = 0 if (a, b) 6= 1
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In this talk we will propose a LSB algorithm, that can be easily
implemented in O(M(n) log n) from a LSB gcd implementation.

We assume a is odd positive, b is even positive.
If b is negative, use (b|a) = (−1)(a−1)/2(−b|a).
If b is odd, use (b|a) = (b + a|a).
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Plan of the talk

The Binary (Generalized) Division

A Cubic LSB Algorithm

A Quadratic LSB Algorithm

A Subquadratic LSB Algorithm

Implementation and Timings
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The Binary Division
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The Binary Division (and GCD)

A binary recursive gcd algorithm, Stehlé and Z., ANTS VI,
2004.

Classical (MSB) division forces 0’s in the MSBs:

935 1110100111
714 1011001010
221 0011011101

51 0000110011
17 0000010001

0 0000000000
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Binary Division (and GCD)

Binary (LSB) division forces 0’s in the LSBs:

935 1110100111
714 1011001010

1292 10100001100
1360 10101010000
1632 11001100000
2176 100010000000

0 000000000000
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Theory

a, b ∈ Z with ν2(b) > ν2(a)
j = ν2(b) − ν2(a)
There is a unique |q| < 2j such that ν2(b) < ν2(r) and:

r = a + q2−jb

q is the binary quotient of a by b
r is the binary remainder of a by b

Rationale: if a, b have both n bits, b′ = 2−jb has n − j bits, and
qb′ has about n bits, thus r has about the same bit-size as a,
but at least j + 1 more zeros in the LSB.
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Practice

j = ν2(b) − ν2(a) > 0

q ≡ −a/(b/2j) mod 2j+1 (centered)
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Advantages of the Binary Division

⊕ simpler to compute (division mod 2j+1 instead of MSB
division);

⊕ no “repair step” in the subquadratic GCD (see however
Möller, Math. Comp., 2008);

⊕ an average reduction of two LSB bits per iteration;

⊖ an average increase of 0.05 MSB bit per iteration
(analyzed precisely by Daireaux, Maume-Deschamps and
Vallée, DMTCS, 2005).

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol



A Cubic LSB Algorithm
A Quadratic LSB Algorithm

A Subquadratic LSB Algorithm

Using the Binary Division for the Jacobi Symbol

It seems easy to adapt, using b′ = b/2j odd:

(b|a) = (−1)j(a2−1)/8(b′|a)

(b′|a) = (−1)(a−1)(b′−1)/4(a|b′)

(a|b′) = (a + qb′|b′) = (r |b′)

(r |b′) = (−1)j(b′2−1)/8(r/2j |b′)

Paul Zimmermann (joint work with Richard P. Brent) An O(M(n) log n) algorithm for the Jacobi symbol



A Cubic LSB Algorithm
A Quadratic LSB Algorithm

A Subquadratic LSB Algorithm

Using the Binary Division for the Jacobi Symbol

It seems easy to adapt, using b′ = b/2j odd:

(b|a) = (−1)j(a2−1)/8(b′|a)

(b′|a) = (−1)(a−1)(b′−1)/4(a|b′)

(a|b′) = (a + qb′|b′) = (r |b′)

(r |b′) = (−1)j(b′2−1)/8(r/2j |b′)

However r can be negative!
Example: 935, 738, 1304,−240, 1184,−832, 768,−1024, 0.

Incompatible with fast binary GCD, which works with
r mod 22k+1.
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A Cubic LSB Algorithm
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Binary Division with Positive Quotient

Instead of taking q = a/(b/2j) in [−2j , 2j ], take it in [0, 2j+1].

Since q > 0, if a, b > 0, all terms are non-negative.

Stopping GCD criterion: a/2ν2(a) = b/2ν2(b).

Example: 935, 714 = 357 · 2, 1292 = 323 · 22, 1360 = 85 · 24,
1632 = 51 · 25, 2176 = 17 · 27, 4352 = 17 · 28.
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A Cubic LSB Algorithm

Algorithm CubicBinaryJacobi.
Input: a, b ∈ N with ν(a) = 0 < ν(b)
Output: Jacobi symbol (b|a)

1: s ← 0
2: j ← ν(b)
3: while 2ja 6= b do
4: b′ ← b/2j

5: (q, r) ← BinaryDividePos(a, b)

6: s ← (s + j(a2−1)
8 + (a−1)(b′−1)

4 + j(b′2−1)
8 ) mod 2

7: (a, b) ← (b′, r/2j)
8: j ← ν(b)

9: if a = 1 then return (−1)s else return 0
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Cost of the Cubic Algorithm

Let n be the bit-size of the inputs a, b.

Each iteration costs O(n) (unless j is large, but this is unlikely,
and in this case (a, b) decrease even more).

The number of iterations is O(n2) (see below).

Thus the total cost is O(n3).
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Lemma

The quantity a + 2b is non-increasing in CubicBinaryJacobi.

Proof.

At each iteration, a + 2b becomes:

2a
2j + (1 +

2q
2j )

b
2j .

If j ≥ 2, a + 2b is multiplied by a factor at most 9/16: good
iteration.
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Lemma

The quantity a + 2b is non-increasing in CubicBinaryJacobi.

Proof.

At each iteration, a + 2b becomes:

2a
2j + (1 +

2q
2j )

b
2j .

If j ≥ 2, a + 2b is multiplied by a factor at most 9/16: good
iteration.
If j = 1 and q = 1, a + 2b decreases, but with a factor that can
be arbitrarily close to 1: bad iteration.
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Lemma

The quantity a + 2b is non-increasing in CubicBinaryJacobi.

Proof.

At each iteration, a + 2b becomes:

2a
2j + (1 +

2q
2j )

b
2j .

If j ≥ 2, a + 2b is multiplied by a factor at most 9/16: good
iteration.
If j = 1 and q = 1, a + 2b decreases, but with a factor that can
be arbitrarily close to 1: bad iteration.
If j = 1 and q = 3, a + 2b remains unchanged: ugly iteration.
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Good iteration: a = 9, b = 4 gives j = 2, q = 7, b′ = 1, r/2j = 4,
a + 2b = 17 becomes 9.
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Good iteration: a = 9, b = 4 gives j = 2, q = 7, b′ = 1, r/2j = 4,
a + 2b = 17 becomes 9.

Bad iteration: a = 9, b = 6 gives b′ = 3, r/2j = 6, a + 2b = 21
becomes 15.
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Good iteration: a = 9, b = 4 gives j = 2, q = 7, b′ = 1, r/2j = 4,
a + 2b = 17 becomes 9.

Bad iteration: a = 9, b = 6 gives b′ = 3, r/2j = 6, a + 2b = 21
becomes 15.

Ugly iteration: a = 9, b = 10 gives b′ = 5, r/2j = 12,
a + 2b = 29 remains 29.
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Lemma

If µ = ν(a − b/2), there are exactly ⌊µ/2⌋ ugly iterations
starting from (a, b), followed by a good iteration if µ is even,
otherwise by a bad iteration.

Example 1: a − b/2 = 64 = 26

(85, 42) →
︸︷︷︸

ugly

(21, 74) →
︸︷︷︸

ugly

(37, 66) →
︸︷︷︸

ugly

(33, 68) →
︸︷︷︸

good

(34, 38) · · ·

Example 2: a − b/2 = 128 = 27

(149, 42) →
︸︷︷︸

ugly

(21, 106) →
︸︷︷︸

ugly

(53, 90) →
︸︷︷︸

ugly

(45, 94) →
︸︷︷︸

bad

(47, 46) · · ·
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A Quadratic LSB Algorithm

Main idea: from the 2-valuation of a − b/2, compute the
number m > 0 of consecutive ugly iterations, and apply them all
at once: harmless iteration.

The Jacobi symbol can also be easily updated for m
consecutive ugly iterations.

Now we have only good (G), bad (B), or harmless (H) iterations,
where HH is forbidden.
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Algorithm QuadraticBinaryJacobi
1: s ← 0, j ← ν(b), b′ ← b/2j

2: while a 6= b′ do
3: s ← (s + j(a2 − 1)/8) mod 2
4: (q, r) ← BinaryDividePos(a, b)
5: if (j , q) = (1, 3) then ⊲ harmless iteration
6: d ← a − b′

7: m ← ν(d) div 2
8: c ← (d − (−1)md/4m)/5
9: s ← (s + m(a − 1)/2) mod 2

10: (a, b) ← (a − 4c, b + 2c)
11: else ⊲ good or bad iteration
12: s ← (s + (a − 1)(b′ − 1)/4) mod 2
13: (a, b) ← (b′, r/2j)

14: s ← (s + j(a2 − 1)/8) mod 2, j ← ν(b), b′ ← b/2j

15: if a = 1 then return (−1)s else return 0
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Analysis of the Quadratic Algorithm

Lemma

Algorithm QuadraticBinaryJacobi needs O(n) iterations.

Proof.

Consider a block of three iterations (G, B, or H):

G multiplies a + 2b by at most 9/16 < 5/8;

HH is forbidden, thus we have either HB = UmB or BB;

UB multiplies a + 2b by at most 5/8, and Um−1 leaves it
unchanged;

BB multiplies a + 2b by at most 1/2 < 5/8.

Thus each three iterations multiply a + 2b by at most 5/8, thus
the number of iterations if cn + O(1), where
c = 3/ log2(8/5) ≈ 4.4243.
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A Subquadratic Algorithm

The subquadratic algorithm (HalfBinaryJacobi) is based on the
quadratic one:

using the same structure as classical half-gcd algorithms;

using binary division with positive quotient;

one call of HalfBinaryJacobi transforms (a, b) into (c, d),
returns the corresponding 2 × 2 matrix R and an integer s
such that:

(b|a) = (−1)s(d |c).

in some steps we have to “truncate” the inputs less than in
a classical half-gcd, to guarantee the Jacobi symbol is
correct;

we have to “split” some harmless iterations to guarantee
the algorithm invariant.
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Algorithm HalfBinaryJacobi.
Input: a ∈ N, b ∈ N ∪ {0} with 0 = ν(a) < ν(b), and k ∈ N

Output: two integers s, j and a 2 × 2 matrix R
1: if ν(b) > k then return 0, 0, [1, 0; 0, 1]
2: k1 ← ⌊k/2⌋, a1 ← a mod 22k1+2, b1 ← b mod 22k1+2

3: s1, j1, R ← HalfBinaryJacobi(a1, b1, k1)
4: a′ ← 2−2j1 (R1,1a + R1,2b), b′ ← 2−2j1 (R2,1a + R2,2b)
5: j0 ← ν(b′), if j0 + j1 > k then return s1, j1, R
6: s0 ← j0(a′2 − 1)/8 mod 2
7: q, r ← BinaryDividePos(a′, b′), b′′ ← b′/2j0

8: if (j0, q) = (1, 3) then ⊲ harmless iteration
9: d ← a′ − b′′, m ← min(ν(d) div 2, k − j1)
10: c ← (d − (−1)md/4m)/5, s0 ← s0 + m(a′ − 1)/2 mod 2
11: (a2, b2) ← (a′ − 4c, 2(b′′ + c))
12: Q ← [(4m + 4(−1)m), 2(4m − (−1)m); 2(4m − (−1)m), (4m+1 + (−1)m)]/5
13: else ⊲ good or bad iteration
14: s0 ← s0 + (a′ − 1)(b′′ − 1)/4 mod 2
15: (a2, b2) ← (b′′, r/2j0 ), Q ← [0, 2j0 ; 2j0 , q], m ← j0
16: s0 ← s0 + j0(a2

2 − 1)/8 mod 2, k2 ← k − (m + j1)
17: s2, j2, S ← HalfBinaryJacobi(a2 mod 22k2+2, b2 mod 22k2+2, k2)
18: Return (s0 + s1 + s2) mod 2, j1 + j2 + m, S × Q × R
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Implementation and Timings
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Experimental Results: Small Numbers

For a, b < 226, the maximum number of iterations of the cubic
algorithm is 64, with a = 15548029 and b = 66067306.
Heuristic: 50% good iterations, 25% bad, 25% ugly.

Conjecture. The number of iterations of CubicBinaryJacobi for
n-bit inputs is O(n).

For a, b < 220, the maximum number of iterations of the
quadratic algorithm is 37 for a = 933531, b = 869894.
Heuristic: 8/15 good, 4/15 bad, 3/15 harmless.

The binary division with positive quotient has an average
increase of 0.65 bit per iteration (0.05 for the centered quotient),
thus an average reduction of 1.35 bit per iteration (1.95).
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Experimental Results: Large Numbers

Timings on a 2.83Ghz Core 2 with GMP 4.3.1, with inputs of
one million 64-bit words.

GMP’s fast gcd takes 45.8s.

An implementation of the (fast) binary gcd takes 48.3s and
32,800,000 iterations.

Our implementation FastBinaryJacobi takes 83.1s and
47,500,000 iterations.

1.95
1.35

= 1.4444 ≈
47, 500, 000
32, 800, 000

= 1.4482

Our implementation is faster than GMP’s O(n2) code up from
535 words (about 10,000 decimal digits).
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Concluding Remarks

first complete (description + code) subquadratic Jacobi
algorithm

first LSB algorithm for that problem

does not need to compute the (MSB) quotient sequence

we can use the centered quotient with the “cubic”
algorithm. Moreover we can choose
q ± 2j+1 ∈ [−2j+1, 2j+1] such that bq/2j has sign opposite
to a. We then gain on average 2.19 bits per iteration,
against 1.95 for the centered quotient, 1.35 for the positive
quotient, and 1.42 for Stein’s “binary gcd”.
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Preprint and GMP code available from:
http://www.loria.fr/ ˜ zimmerma/papers/#jacobi

Thanks to:

Steven Galbraith for asking the original question;

Damien Stehlé for suggesting using the LSB algorithm;

Arnold Schönhage for his comments and pointers to earlier
work.
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