
Reliable computing with GNU MPFR

Paul Zimmermann

14 September 2010
International Conference on Mathematical Software

Kobe, Japan

Paul Zimmermann Reliable computing with GNU MPFR

Overview of 3rd International Workshop on Symbolic-Numeric
Computation (SNC 2009), Kyoto, August 2009:

Algorithms that combine ideas from symbolic and
numeric computation have been of increasing interest
over the past decade. The growing demand for speed,
accuracy and reliability in mathematical computing
has accelerated the process of blurring the distinction
between two areas of research that were previously
quite separate. [...]

Proceedings of ICMS 2010:

However, floating-point arithmetic carries a reputation
of being unreliable and not trustworthy

Paul Zimmermann Reliable computing with GNU MPFR

Overview of 3rd International Workshop on Symbolic-Numeric
Computation (SNC 2009), Kyoto, August 2009:

Algorithms that combine ideas from symbolic and
numeric computation have been of increasing interest
over the past decade. The growing demand for speed,
accuracy and reliability in mathematical computing
has accelerated the process of blurring the distinction
between two areas of research that were previously
quite separate. [...]

Proceedings of ICMS 2010:

However, floating-point arithmetic carries a reputation
of being unreliable and not trustworthy (Rump, p. 105)

Paul Zimmermann Reliable computing with GNU MPFR

Sign of sin(2100)?

Maple 13:

> evalf(sin(2ˆ100));
0.4491999480

> evalf(sin(2ˆ100), 20);
-0.58645356896925826300

Paul Zimmermann Reliable computing with GNU MPFR

Sign of c = exp(π
√

163) − 262537412640768744?

Sage 4.5.3:

sage: c=exp(pi * sqrt(163))-262537412640768744
sage: numerical_approx(c, digits=15)
448.000000000000
sage: numerical_approx(c, digits=30)
-5.96855898038484156131744384766e-13

Paul Zimmermann Reliable computing with GNU MPFR

Mathematica 6.0:
In[1]:= c = Exp[Pi * Sqrt[163]]-262537412640768744;

In[2]:= N[c]

Out[2]= -480.

In[3]:= N[c, 20]

-13
Out[3]= -7.4992740280181431112 10

Paul Zimmermann Reliable computing with GNU MPFR

FFTW

On http://www.fftw.org/accuracy/comments.html :

Our benchmark shows that certain FFT routines are
more accurate than others. In other cases, a routine is
accurate on one machine but not on another. [...]

FFTW uses trigonometric recurrences to compute the twiddle
factors e2ikπ/2n

, which are evaluated in double-extended
precision (64 bits) or double precision (53 bits).

Paul Zimmermann Reliable computing with GNU MPFR

http://www.fftw.org/accuracy/comments.html

Why this chaos?

Developers/users want:

first speed (easy to measure)

then reliability (how to define it?)

then reproducibility among different hardwares, compilers,
operating systems

Paul Zimmermann Reliable computing with GNU MPFR

Why this chaos?

Developers/users want:

first speed (easy to measure)

then reliability (how to define it?)

then reproducibility among different hardwares, compilers,
operating systems

People usually prefer a to a

Paul Zimmermann Reliable computing with GNU MPFR

Why this chaos?

Developers/users want:

first speed (easy to measure)

then reliability (how to define it?)

then reproducibility among different hardwares, compilers,
operating systems

People usually prefer a to a

Still prefer to ?

Paul Zimmermann Reliable computing with GNU MPFR

Lessons from last millenium...

25 years ago, hardware vendors sat together and agreed on
the IEEE 754 standard.

Paul Zimmermann Reliable computing with GNU MPFR

Lessons from last millenium...

25 years ago, hardware vendors sat together and agreed on
the IEEE 754 standard.

Before it was a chaos. The same program gave different results
on different hardware, maybe even from the same vendor!

Paul Zimmermann Reliable computing with GNU MPFR

Lessons from last millenium...

25 years ago, hardware vendors sat together and agreed on
the IEEE 754 standard.

Before it was a chaos. The same program gave different results
on different hardware, maybe even from the same vendor!

IEEE 754 standardizes the double-precision format and the
corresponding operations.

Paul Zimmermann Reliable computing with GNU MPFR

Lessons from last millenium...

25 years ago, hardware vendors sat together and agreed on
the IEEE 754 standard.

Before it was a chaos. The same program gave different results
on different hardware, maybe even from the same vendor!

IEEE 754 standardizes the double-precision format and the
corresponding operations.

25 years later, a given program (usually) gives only one
possible result, independent of the hardware, compiler,
operating system.

Paul Zimmermann Reliable computing with GNU MPFR

Lessons from last millenium...

25 years ago, hardware vendors sat together and agreed on
the IEEE 754 standard.

Before it was a chaos. The same program gave different results
on different hardware, maybe even from the same vendor!

IEEE 754 standardizes the double-precision format and the
corresponding operations.

25 years later, a given program (usually) gives only one
possible result, independent of the hardware, compiler,
operating system.

Computer algebra systems: we are still in the chaos!

Paul Zimmermann Reliable computing with GNU MPFR

How to exit the chaos?

Ideally: follow IEEE 754-2008 extended and extendable
precisions (Section 3.7)

Paul Zimmermann Reliable computing with GNU MPFR

How to exit the chaos?

Ideally: follow IEEE 754-2008 extended and extendable
precisions (Section 3.7)

At least: provide a rigorous error bound for each computation
(either in the documentation, or returned with the result)

sage: numerical_integral?
...
OUTPUT:
numerical_integral returns a tuple whose
first component is the answer and whose
second component is an error estimate.
...
sage: numerical_integral(sin(xˆ2),0,1)
(0.31026830172338105, 3.4446701238464278e-15)

Paul Zimmermann Reliable computing with GNU MPFR

GNU MPFR

Project started in 1999 with a few people (G. Hanrot,
F. Rouillier, P. Z.) after discussions with J. van der Hoeven and
J.-M. Muller.

Supported by INRIA and LORIA (Nancy, Lyon). Current main
developers are V. Lefèvre and P. Z.

Arbitrary-precision extension of IEEE 754-1985 (implements
Section 3.7 of IEEE 754-2008).

Guarantees correct rounding for all functions (including Erf,
Zeta, Ai, ..., and base-conversion functions)

Paul Zimmermann Reliable computing with GNU MPFR

Why did we develop GNU MPFR?

Need of an arbitrary precision tool where:

reliability is first goal

correct rounding as in IEEE 754: only one correct result for
each atomic computation

reproducibility comes as extra bonus

speed still very important, but comes after reliability

Paul Zimmermann Reliable computing with GNU MPFR

-20 20 40 60 80 100 120

-20

20

40

60

80

100

120

speed

accuracy

MPFR

A

B

Paul Zimmermann Reliable computing with GNU MPFR

How did we develop GNU MPFR?

Based on GMP’s MPN class (array of unsigned long).

GMP provides efficiency (assembly), portability and
reproducibility (integer types only).

MPFR does not use hardware floating-point registers (except
for conversions).

Paul Zimmermann Reliable computing with GNU MPFR

Atomic vs complex operations

IEEE 754 only requests correct rounding for atomic operations.

Problem A. 2D-plot of | cos((x + iy)4)| = 1 for −3 ≤ x , y ≤ 3

Problem B. 20 decimal places of ρ(10) where

xρ′(x) + ρ(x − 1) = 0 with ρ(x) = 1 for 0 ≤ x ≤ 1

Problem C. 20 decimal places of the singular values of the
Hilbert matrix of order 50, defined by Mi,j = 1/(i + j)

IEEE-754 alone (as MPFR) is unable to solve those problems!

Hints: interval arithmetic, RealRAM, ...

Paul Zimmermann Reliable computing with GNU MPFR

Applications of GNU MPFR in LNCS 6327

Floating-point numbers (RealField) of Sage (Eröcal, Stein,
pages 12–27). Remember also Witty’s tutorial on Sage.

Paul Zimmermann Reliable computing with GNU MPFR

Applications of GNU MPFR in LNCS 6327

Floating-point numbers (RealField) of Sage (Eröcal, Stein,
pages 12–27). Remember also Witty’s tutorial on Sage.

Evaluating dag expressions (Mörig, Friday 14:40-15:20, pages
109-120):

Interestingly, creating a tree is faster with MPFR [...]

Paul Zimmermann Reliable computing with GNU MPFR

Applications of GNU MPFR in LNCS 6327

Floating-point numbers (RealField) of Sage (Eröcal, Stein,
pages 12–27). Remember also Witty’s tutorial on Sage.

Evaluating dag expressions (Mörig, Friday 14:40-15:20, pages
109-120):

Interestingly, creating a tree is faster with MPFR [...]

Exact numeric computation (Yu, Yap, Du, Pion, Brönnimann,
Friday 15:20-16:00, pages 121-141):

The timing in Figure 8 show that Core 2 is about 25
times faster, thanks purely to MPFR.

Paul Zimmermann Reliable computing with GNU MPFR

Mathemagix (Lecerf, session Reliable Computation B, Friday
14:00, pages 329-332):

numerix [...] is essentially a wrapper of GMP and
MPFR [...]
linalg is a C++ templated version of the LAPACK

library, that allows the user for instance to benefit of
the LAPACK algorithms on the arbitrarily large
floating-point numbers of MPFR

Paul Zimmermann Reliable computing with GNU MPFR

Other selected applications of GNU MPFR

constant folding in GCC and Gfortran

companion libraries MPFI and MPC

MPFR in Sage (also in Magma, and Mathemagix/numerix)

real solutions of polynomial systems within Maple

reference correctly-rounded implementation

study of waves produced by a disc (Chiba and Ushijima)

finding new worst approximable pairs (Briggs)

simulate the Longxin/Longsoon processor (Joloboff)

videos of the Mandelbrot/Julia sets (de Rauglaudre)

...

Paul Zimmermann Reliable computing with GNU MPFR

Constant folding in GCC (and Gfortran)

#include <stdio.h>
#include <math.h>
int main() { printf ("y=%.16e\n", sin(0.2522464)); }

Paul Zimmermann Reliable computing with GNU MPFR

Constant folding in GCC (and Gfortran)

#include <stdio.h>
#include <math.h>
int main() { printf ("y=%.16e\n", sin(0.2522464)); }

$ gcc f.c; ./a.out
y=2.4957989804940911e-01

Paul Zimmermann Reliable computing with GNU MPFR

Constant folding in GCC (and Gfortran)

#include <stdio.h>
#include <math.h>
int main() { printf ("y=%.16e\n", sin(0.2522464)); }

$ gcc f.c; ./a.out
y=2.4957989804940911e-01

$ gcc -fno-builtin f.c
/tmp/ccZTbrpq.o: In function ‘main’:
f.c:(.text+0xd): undefined reference to ‘sin’
collect2: ld returned 1 exit status

Paul Zimmermann Reliable computing with GNU MPFR

Constant folding in GCC (and Gfortran)

#include <stdio.h>
#include <math.h>
int main() { printf ("y=%.16e\n", sin(0.2522464)); }

$ gcc f.c; ./a.out
y=2.4957989804940911e-01

$ gcc -fno-builtin f.c
/tmp/ccZTbrpq.o: In function ‘main’:
f.c:(.text+0xd): undefined reference to ‘sin’
collect2: ld returned 1 exit status

$ gcc -fno-builtin f.c -lm; ./a.out
y=2.4957989804940914e-01

Paul Zimmermann Reliable computing with GNU MPFR

MPFI

Multiple-precision floating-point interval library on top of GNU
MPFR.

Originally designed by N. Revol and F. Rouillier.

Each interval is represented by two MPFR numbers (inf-sup
representation):

ℓ ≤ x ≤ h

Implementing MPFI on top of MPFR is trivial for monotonic
functions.

Non-trivial for non-monotonic functions: does
cos([103992, 103993]) contain 1?

MPFI is included within Sage (RealIntervalField).

Paul Zimmermann Reliable computing with GNU MPFR

MPC

Complex multiple-precision floating-point library on top of
MPFR.

Developed by A. Enge, Ph. Théveny and P. Zimmermann.

Implements all functions from the C99 standard.

Required by GCC up from version 4.5 (constant folding).

Cartesian representation: z = x + iy .

Both x and y are correctly rounded.

Paul Zimmermann Reliable computing with GNU MPFR

MPFR in Sage

sage: D = RealField(42, rnd=’RNDD’);
U = RealField(42, rnd=’RNDU’)

sage: D(pi), U(pi)
(3.14159265358, 3.14159265360)
sage: D(pi).exact_rational()
3454217652357/1099511627776
sage: x = RealIntervalField(42)(pi);

x.lower(), x.upper()
(3.14159265358, 3.14159265360)

Paul Zimmermann Reliable computing with GNU MPFR

Sign of sin(2100)?

#include <stdio.h>
#include <mpfr.h>
int main() {

mpfr_t x;
mpfr_init2 (x, 10);
mpfr_set_ui (x, 1, MPFR_RNDN);
mpfr_mul_2exp (x, x, 100, MPFR_RNDN);
mpfr_sin (x, x, MPFR_RNDZ);
mpfr_printf ("sin(2ˆ100)=%RZf\n", x);
mpfr_clear (x); }

$./test_sin
sin(2ˆ100)=-0.872070

Paul Zimmermann Reliable computing with GNU MPFR

Or simply using Sage

With Sage 4.5.3 and MPFI:

sage: R=RealIntervalField(2)
sage: R(sin(2ˆ100)).str(style=’brackets’)
’[-1.0 .. -0.75]’

Paul Zimmermann Reliable computing with GNU MPFR

Future plans

improve efficiency of existing functions (e.g., mpfr root)

improve test coverage to 100% (97.1% for 3.0.0)

better deal with different input and output precisions

implement random distribution functions (suggested by
Charles Karney)

implement more mathematical functions (LIA-2, GSL,
gnumeric, ...)

(very hard) obtain a formal proof of say mpfr sub

Paul Zimmermann Reliable computing with GNU MPFR

Can I contribute my preferred function to GNU MPFR?

Yes you can! See http://www.mpfr.org/contrib.html :

define precisely the function you want to implement

write down a detailed algorithm

perform its error analysis (mathematical and rounding)

implement it within MPFR

write a test program and a documentation

compare the efficiency of your code with other tools

Paul Zimmermann Reliable computing with GNU MPFR

http://www.mpfr.org/contrib.html

Mandelbrot/Julia set (credit de Rauglaudre)

Paul Zimmermann Reliable computing with GNU MPFR

