GNU MPFR: back to the future

Paul Zimmermann

inria
(inventors for the digital world)

23 September 2011

MaGiX@LiX 2011 conference

Paul Zimmermann GNU MPFR: back to the future

What is GNU MPFR?

An arbitrary precision floating-point library

Paul Zimmermann GNU MPFR: back to the future

What is GNU MPFR?

An arbitrary precision floating-point library

written in C

Paul Zimmermann GNU MPFR: back to the future

What is GNU MPFR?

An arbitrary precision floating-point library
written in C

providing correct rounding

Paul Zimmermann GNU MPFR: back to the future

What is GNU MPFR?

An arbitrary precision floating-point library
written in C
providing correct rounding

which aims to be efficient too

Paul Zimmermann GNU MPFR: back to the future

What is GNU MPFR?

An arbitrary precision floating-point library
written in C

providing correct rounding

which aims to be efficient too

used by several software tools: Mathemagix, TRIP, Macaulay2,
fpLLL,

Paul Zimmermann GNU MPFR: back to the future

What is GNU MPFR?

An arbitrary precision floating-point library
written in C

providing correct rounding

which aims to be efficient too

used by several software tools: Mathemagix, TRIP, Macaulay2,
foLLL, MPC, MPFI, CGAL, Gappa,

Paul Zimmermann GNU MPFR: back to the future

What is GNU MPFR?

An arbitrary precision floating-point library
written in C

providing correct rounding

which aims to be efficient too

used by several software tools: Mathemagix, TRIP, Macaulay2,
foLLL, MPC, MPFI, CGAL, Gappa, Sage, Magma, Maple, GCC,

Paul Zimmermann GNU MPFR: back to the future

Using MPFR in Mathemagix

1] type_mode? := true;

2] a:Double == 3.14159265359
3.14159265359: Double

3] exp a

23.1406926328: Double

Paul Zimmermann GNU MPFR: back to the future

Using MPFR in Mathemagix

1] type_mode? := true;

2] a:Double == 3.14159265359
3.14159265359: Double

3] exp a

23.1406926328: Double

4] use "numerix"

5] bit_precision := 53;

6] b:Floating == 3.14159265359
3.1415926535900001: Floating
7] exp b

23.140692632784056: Floating

Paul Zimmermann GNU MPFR: back to the future

Using MPFR in Mathemagix

1] type_mode? := true;

2] a:Double == 3.14159265359
3.14159265359: Double

3] exp a

23.1406926328: Double

4] use "numerix"

5] bit_precision := 53;

6] b:Floating == 3.14159265359
3.1415926535900001: Floating
7] exp b

23.140692632784056: Floating

8] bit_precision := 97;

9] c:Floating := exp (exp (exp 3.0))
2.050986436051648895044869200806e229520860:
Alias (Floating)

Paul Zimmermann GNU MPFR: back to the future

MPFR in Sage

sage: D
U

RealField (42, rnd='RNDD’);
RealField (42, rnd='RNDU’)

sage: D(pi), U(pi)
(3.14159265358, 3.14159265360)

sage: D(pi) .exact_rational ()
3454217652357/1099511627776

sage: x = ReallntervalField(42) (pi);
x.lower (), x.upper/()
(3.14159265358, 3.14159265360)

Paul Zimmermann GNU MPFR: back to the future

Plan of the talk

@ history of GNU MPFR

@ some design choices

@ some recent developments
e GNU MPFR in 2022

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

1998: discussion with Joris van der Hoeven, Jean-Michel
Muller, and Guillaume Hanrot in a café in Paris, and by mail
with Torbjérn Granlund

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

1998: discussion with Joris van der Hoeven, Jean-Michel
Muller, and Guillaume Hanrot in a café in Paris, and by mail
with Torbjérn Granlund

November 1998: Proposal for a Portable and Reliable Multiple
Precision Floating-Point Library (5 pages)

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

1998: discussion with Joris van der Hoeven, Jean-Michel
Muller, and Guillaume Hanrot in a café in Paris, and by mail
with Torbjérn Granlund

November 1998: Proposal for a Portable and Reliable Multiple
Precision Floating-Point Library (5 pages)

4 February 2000: first public version is released (MPFR 0.4)

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

1998: discussion with Joris van der Hoeven, Jean-Michel
Muller, and Guillaume Hanrot in a café in Paris, and by mail
with Torbjérn Granlund

November 1998: Proposal for a Portable and Reliable Multiple
Precision Floating-Point Library (5 pages)

4 February 2000: first public version is released (MPFR 0.4)
June 2000: copyright assigned to the FSF

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

1998: discussion with Joris van der Hoeven, Jean-Michel
Muller, and Guillaume Hanrot in a café in Paris, and by mail
with Torbjérn Granlund

November 1998: Proposal for a Portable and Reliable Multiple
Precision Floating-Point Library (5 pages)

4 February 2000: first public version is released (MPFR 0.4)
June 2000: copyright assigned to the FSF

24 August 2000: version 1.0 is released

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

1998: discussion with Joris van der Hoeven, Jean-Michel
Muller, and Guillaume Hanrot in a café in Paris, and by mail
with Torbjérn Granlund

November 1998: Proposal for a Portable and Reliable Multiple
Precision Floating-Point Library (5 pages)

4 February 2000: first public version is released (MPFR 0.4)
June 2000: copyright assigned to the FSF
24 August 2000: version 1.0 is released

15 April 2002: version 2.0.1 is released

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

1998: discussion with Joris van der Hoeven, Jean-Michel
Muller, and Guillaume Hanrot in a café in Paris, and by mail
with Torbjérn Granlund

November 1998: Proposal for a Portable and Reliable Multiple
Precision Floating-Point Library (5 pages)

4 February 2000: first public version is released (MPFR 0.4)
June 2000: copyright assigned to the FSF

24 August 2000: version 1.0 is released

15 April 2002: version 2.0.1 is released

October 2005: winner of the Many Digits Friendly Competition

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

1998: discussion with Joris van der Hoeven, Jean-Michel
Muller, and Guillaume Hanrot in a café in Paris, and by mail
with Torbjérn Granlund

November 1998: Proposal for a Portable and Reliable Multiple
Precision Floating-Point Library (5 pages)

4 February 2000: first public version is released (MPFR 0.4)
June 2000: copyright assigned to the FSF

24 August 2000: version 1.0 is released

15 April 2002: version 2.0.1 is released

October 2005: winner of the Many Digits Friendly Competition

October 2007: CEA-EDF-INRIA School on Certified Numerical
Computation

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

2007: Mathemagix and Sage use MPFR

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

2007: Mathemagix and Sage use MPFR
March 2008: GCC 4.3.0 uses MPFR in its middle-end

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

2007: Mathemagix and Sage use MPFR
March 2008: GCC 4.3.0 uses MPFR in its middle-end

26 January 2009: version 2.4.0 is released (andouillette sauce
moutarde) and becomes a GNU package

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

2007: Mathemagix and Sage use MPFR
March 2008: GCC 4.3.0 uses MPFR in its middle-end

26 January 2009: version 2.4.0 is released (andouillette sauce
moutarde) and becomes a GNU package

25-26 June 2009: CNC’2 Summer School on MPFR and MPC

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

2007: Mathemagix and Sage use MPFR
March 2008: GCC 4.3.0 uses MPFR in its middle-end

26 January 2009: version 2.4.0 is released (andouillette sauce
moutarde) and becomes a GNU package

25-26 June 2009: CNC’2 Summer School on MPFR and MPC

10 June 2010: version 3.0.0 is released (boudin aux pommes)

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

2007: Mathemagix and Sage use MPFR
March 2008: GCC 4.3.0 uses MPFR in its middle-end

26 January 2009: version 2.4.0 is released (andouillette sauce
moutarde) and becomes a GNU package

25-26 June 2009: CNC’2 Summer School on MPFR and MPC
10 June 2010: version 3.0.0 is released (boudin aux pommes)

13-14 January 2011: MPFR-MPC developers meeting

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

2007: Mathemagix and Sage use MPFR
March 2008: GCC 4.3.0 uses MPFR in its middle-end

26 January 2009: version 2.4.0 is released (andouillette sauce
moutarde) and becomes a GNU package

25-26 June 2009: CNC’2 Summer School on MPFR and MPC
10 June 2010: version 3.0.0 is released (boudin aux pommes)
13-14 January 2011: MPFR-MPC developers meeting

28 August 2011: Presentation at the GNU Hackers Meeting in
Paris

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

2007: Mathemagix and Sage use MPFR
March 2008: GCC 4.3.0 uses MPFR in its middle-end

26 January 2009: version 2.4.0 is released (andouillette sauce
moutarde) and becomes a GNU package

25-26 June 2009: CNC’2 Summer School on MPFR and MPC
10 June 2010: version 3.0.0 is released (boudin aux pommes)
13-14 January 2011: MPFR-MPC developers meeting

28 August 2011: Presentation at the GNU Hackers Meeting in
Paris

September 2011: version 3.1.0 is released (canard a 'orange)

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

2007: Mathemagix and Sage use MPFR
March 2008: GCC 4.3.0 uses MPFR in its middle-end

26 January 2009: version 2.4.0 is released (andouillette sauce
moutarde) and becomes a GNU package

25-26 June 2009: CNC’2 Summer School on MPFR and MPC
10 June 2010: version 3.0.0 is released (boudin aux pommes)
13-14 January 2011: MPFR-MPC developers meeting

28 August 2011: Presentation at the GNU Hackers Meeting in
Paris

September 2011: version 3.1.0 is released (canard a 'orange)

Early 2012: 2nd MPFR-MPC developers meeting?

The mpfr_t type

Each MPFR variable has:
@ a precision p > 2 in bits (1ong)
@ asignse {—1,1} (int)
@ an exponent e (1long)
@ a pointer to the significand m (mp_limb_t x)

The corresponding value is
s-m-2°
where m is an integer multiple of 27P with 1/2 < m < 1

On a 64-bit computer, a 53-bit variable takes 40 bytes (32 bytes
for mpfr_t, 8 bytes for the significand)

Paul Zimmermann GNU MPFR: back to the future

Some design choices

@ use of the mpn layer from GMP
@ local vs global fields

@ base 2 or 2"?

@ padding or not?

Paul Zimmermann GNU MPFR: back to the future

Use of the mpn layer from GMP

& dependency on GMP
@ portability and efficiency of GMP
@ no assembly code in MPFR, only C code

© some basic routines are missing or inefficient in GMP
(short product and division, floating-point exponentiation,
middle product, kth root)

One limb = one GMP base word (usually corresponds to a
computer word)

Paul Zimmermann GNU MPFR: back to the future

Local vs global fields

@ Each MPFR variable has its own precision p: enables to
mix variables with different precisions (Newton’s iteration).
We decided to allow any precision in bits, not only
multiples of the number w of bits per limb (w = 32 or
w = 64 usually).

@ The memory allocated for the significand is exactly [p/w]|
limbs. No field for allocated space, but requires to
reallocate if the precision changes.

@ The exceptions are global (contrary to what was planned
originally).

Paul Zimmermann GNU MPFR: back to the future

Consider a 17-bit significand by . .. b1by on a 10-bit computer.
There are several ways to store it:

Base 2, right-aligned (most significant bits left):
100006 ... big| by ... bg |- 26+2

Paul Zimmermann GNU MPFR: back to the future

Consider a 17-bit significand by . .. b1by on a 10-bit computer.
There are several ways to store it:

Base 2, right-aligned (most significant bits left):

[000b16 ... bio|bo ... by |- 2+

Base 2, left-aligned:

| big ... b7 | bs... by000|- 2¢

Paul Zimmermann GNU MPFR: back to the future

Consider a 17-bit significand by . .. b1by on a 10-bit computer.
There are several ways to store it:

Base 2, right-aligned (most significant bits left):
100006 ... big| by ... bg |- 26+2

Base 2, left-aligned:

| big ... b7 | bs... by000|- 2¢

Base 210:

10000006 ... bz | biy ... bp | biby0... 0] 210¢
or|Obis ... bg | by ... by00 |- 210¢"

Paul Zimmermann GNU MPFR: back to the future

Base 2, left aligned: addition a+ b

a=[1011010111]/0110111000]- 2
b=[1101101010[1010101000 - 2°

Paul Zimmermann GNU MPFR: back to the future

Base 2, left aligned: addition a+ b

a=[1011010111]/0110111000]- 2
b=[1101101010[1010101000 - 2°

We have to shift the smaller operand, which might need
another limb:

a=[1011010111 [0110111000
b= {0000110110 [1010101010 | 1000000000 |

In some cases mpn_add might return a carry, which will require
another shift

Paul Zimmermann GNU MPFR: back to the future

Base 2%: addition a+ b

a= 0000001011]0101110110] 1110000000 |- 2°
b= 1101101010]/1010101000] - 2°

No need to shift:

0000001011 | 0101110110 | 1110000000
1101101010 | 1010101000

No post-shift needed (except in rare cases, but only limb shift).

Paul Zimmermann GNU MPFR: back to the future

Base 2, left aligned: multiplication a x b

a=/1011010111]0110111000]- 24
b= 1101101010]/1010101000] - 2°

We perform a 2 x 2 product, and round:

[1001101101]0101100000] 1001101100 0011000000

Post-shift needed when product is 01...

Paul Zimmermann GNU MPFR: back to the future

Base 2": multiplication a x b

a= 0000001011]0101110110]1110000000] - 2°
b={0110110101]0101010100 - 2°

We need to perform a 3 x 2 product, and round:

10000000100]1101101010]1100000100] 1101100001 | 1000000000 |

Paul Zimmermann GNU MPFR: back to the future

@ base 2: smaller memory usage, number of limbs only
depends on precision, multiplication cheaper

@ base 2": no bit shifts

Base 2, right- vs left-aligned: the latter is better for GMP
division, and when we truncate an input

Paul Zimmermann GNU MPFR: back to the future

A clever idea?

Instead of flushing to zero least significant padding bits:
a=\ 1011010111 |0110111000\- 24

why not use them to store extra bits?
a=/1011010111[0110111101] 24

Paul Zimmermann GNU MPFR: back to the future

A clever idea?

Instead of flushing to zero least significant padding bits:
a=\ 1011010111 |0110111000\- 24

why not use them to store extra bits?
a=/1011010111[0110111101] 24

Not a so good idea:
@ could not emulate IEEE-754 arithmetic (p = 53)
@ would be non-portable between w = 16, w = 32, w = 64,

Paul Zimmermann GNU MPFR: back to the future

Constant folding in GCC

$ cat bugl0709.c
#include <stdio.h>
#include <math.h>
main ()
{
printf ("sin(0.2522464)=%.17f\n", sin(0.2522464));

Paul Zimmermann GNU MPFR: back to the future

Constant folding in GCC

$ cat bugl0709.c
#include <stdio.h>
#include <math.h>
main ()

{
printf ("sin(0.2522464)=%.17f\n", sin(0.2522464));

}

$ gcc bugl0709.c; ./a.out
sin(0.2522464)=0.24957989804940911

Paul Zimmermann GNU MPFR: back to the future

Constant folding in GCC

$ cat bugl0709.c
#include <stdio.h>
#include <math.h>
main ()

{
printf ("sin(0.2522464)=%.17f\n", sin(0.2522464));

}

$ gcc bugl0709.c; ./a.out
sin(0.2522464)=0.24957989804940911

$ gcc —fno-builtin bugl0709.c

/tmp/ccL6YmL8.0: In function ‘main’:
bugl0709.c: undefined reference to
collect2: 1d returned 1 exit status

\ 14

sin

Paul Zimmermann GNU MPFR: back to the future

Constant folding in GCC

$ cat bugl0709.c
#include <stdio.h>
#include <math.h>
main ()

{
printf ("sin(0.2522464)=%.17f\n", sin(0.2522464));

}

$ gcc bugl0709.c; ./a.out
sin(0.2522464)=0.24957989804940911

$ gcc —fno-builtin bugl0709.c

/tmp/ccL6YmL8.0: In function ‘main’:
bugl0709.c: undefined reference to
collect2: 1d returned 1 exit status

\ 14

sin

$ gcc —fno-builtin bugl0709.c -1lm; ./a.out
sin (0.2522464)=0.24957989804940914

Paul Zimmermann GNU MPFR: back to the future

Some recent developments (canard a I'orange

release)

automatic TLS (thread local storage) support
new division by zero exception and flag

improved division and squaring using Mulders’ algorithm

Paul Zimmermann GNU MPFR: back to the future

Some recent developments

We recently improved (with David Harvey) the short division in
GNU MPFR.

Example: division of two 1000-digits floating-point numbers on
a 2.66GHz Intel Xeon X7460.

GMP MPF 5.0.1: 0.0040ms
MPFR 3.0.0: 0.0058ms

MPFR 3.1.0-dev: 0.0040ms (without mulmid patch)

Paul Zimmermann GNU MPFR: back to the future

Short product (green) and division (red)

Ay M | M LAY

Short division timings

- ' di ‘ T T T T T T T
mpn_div.q ——
ShortDiv -------
FoldDiv2(2) --------
04 FoldDiv2(3) y
FoldDiv2(4) ———~—
0.35 |
0.3 |
0.25 |
0.2 | |
0.15 |
01 |
0.05 |
0 ! ! | |) ‘ ‘ ‘

0 100 200 300 400 500 600 700 800 900 1000

Paul Zimmermann

Compiler bugs found by MPFR

www.loria.fr/~zimmerma/software/compilerbugs.html

@ abug in 32-bit sparc gcc 2.95.2, when a double is passed
as last argument of a C function, which produced Bus
errors. Reported in revision 1949 of MPFR.

@ a bug in GCC on m68040-unknown-netbsdi.4.1, where
DBL_MIN gives (1 —2752) . 271022 (rey, 2218)

@ bug in LONG_MIN /1 under FreeBSD (this is a bug of the
C library of FreeBSD 5.20 on Alpha with GCC 3.3.3),
reported in revision 2982 of MPFR

@ bug of the Solaris memset function, revealed when testing
MPFR 2.4.1 on some Solaris machines with GCC 4.4.0

@ bug with the Sun C compiler with the -xO3 optimization
level on sparc/Solaris, reported on August 3, 2011 [affects
Sun C 5.9 SunOS _sparc Patch 124867-16 2010/08/11]

@ a bug with GCC 4.3.2 (and 4.4.1) found while testing
MPFR 3.1.0-rc1 on gcch4.fsffrance.org (UltraSparc lle
under Debian) with —enable-thread-safe

Paul Zimmermann GNU MPFR: back to the future

www.loria.fr/~zimmerma/software/compilerbugs.html

GNU MPFR in 2022

Efficient and machine-independent file input/output (in
progress)

Paul Zimmermann GNU MPFR: back to the future

http://grouper.ieee.org/groups/1788/

GNU MPFR in 2022

Efficient and machine-independent file input/output (in
progress)

Companion programs: isolation and refinement of real and
complex roots of a polynomial, arbitrary-precision quadrature,

Paul Zimmermann GNU MPFR: back to the future

http://grouper.ieee.org/groups/1788/

GNU MPFR in 2022

Efficient and machine-independent file input/output (in
progress)

Companion programs: isolation and refinement of real and

complex roots of a polynomial, arbitrary-precision quadrature,

Faster internal computations with faithful rounding mode

Paul Zimmermann GNU MPFR: back to the future

http://grouper.ieee.org/groups/1788/

GNU MPFR in 2022

Efficient and machine-independent file input/output (in
progress)

Companion programs: isolation and refinement of real and
complex roots of a polynomial, arbitrary-precision quadrature,

Faster internal computations with faithful rounding mode

Ball arithmetic (van der Hoeven 2011): an engineer will
implement a midrad arithmetic [m — r, m + r] where m has
arbitrary precision, r has small precision. Cf the P1788 IEEE
group about a new standard for interval arithmetic
(http://grouper.ieee.org/groups/1788/).

Paul Zimmermann GNU MPFR: back to the future

http://grouper.ieee.org/groups/1788/

GNU MPFR in 2022

Efficient and machine-independent file input/output (in
progress)

Companion programs: isolation and refinement of real and
complex roots of a polynomial, arbitrary-precision quadrature,

Faster internal computations with faithful rounding mode

Ball arithmetic (van der Hoeven 2011): an engineer will
implement a midrad arithmetic [m — r, m + r] where m has
arbitrary precision, r has small precision. Cf the P1788 IEEE
group about a new standard for interval arithmetic
(http://grouper.ieee.org/groups/1788/).

Better deal with intermediate underflow or overflow,
e.g. VX2 + y?

http://grouper.ieee.org/groups/1788/

Improve robustness and efficiency of the library

Paul Zimmermann MPFR: back to the future

Improve robustness and efficiency of the library

Generic algorithms for D-finite functions (cf work of
Mezzarobba and Chevillard)

Paul Zimmermann GNU MPFR: back to the future

Improve robustness and efficiency of the library

Generic algorithms for D-finite functions (cf work of
Mezzarobba and Chevillard)

Improve code coverage to 100% (currently 95.3% for src)

Paul Zimmermann GNU MPFR: back to the future

Improve robustness and efficiency of the library

Generic algorithms for D-finite functions (cf work of
Mezzarobba and Chevillard)

Improve code coverage to 100% (currently 95.3% for src)

Formally prove (some of) the algorithms implemented in MPFR

Paul Zimmermann GNU MPFR: back to the future

