
GNU MPFR: back to the future

Paul Zimmermann

inria
(inventors for the digital world)

23 September 2011

MaGiX@LiX 2011 conference

Paul Zimmermann GNU MPFR: back to the future

What is GNU MPFR?

An arbitrary precision floating-point library

written in C

providing correct rounding

which aims to be efficient too

used by several software tools: Mathemagix, TRIP, Macaulay2,
fpLLL, MPC, MPFI, CGAL, Gappa, Sage, Magma, Maple, GCC,
...

Paul Zimmermann GNU MPFR: back to the future

What is GNU MPFR?

An arbitrary precision floating-point library

written in C

providing correct rounding

which aims to be efficient too

used by several software tools: Mathemagix, TRIP, Macaulay2,
fpLLL, MPC, MPFI, CGAL, Gappa, Sage, Magma, Maple, GCC,
...

Paul Zimmermann GNU MPFR: back to the future

What is GNU MPFR?

An arbitrary precision floating-point library

written in C

providing correct rounding

which aims to be efficient too

used by several software tools: Mathemagix, TRIP, Macaulay2,
fpLLL, MPC, MPFI, CGAL, Gappa, Sage, Magma, Maple, GCC,
...

Paul Zimmermann GNU MPFR: back to the future

What is GNU MPFR?

An arbitrary precision floating-point library

written in C

providing correct rounding

which aims to be efficient too

used by several software tools: Mathemagix, TRIP, Macaulay2,
fpLLL, MPC, MPFI, CGAL, Gappa, Sage, Magma, Maple, GCC,
...

Paul Zimmermann GNU MPFR: back to the future

What is GNU MPFR?

An arbitrary precision floating-point library

written in C

providing correct rounding

which aims to be efficient too

used by several software tools: Mathemagix, TRIP, Macaulay2,
fpLLL,

MPC, MPFI, CGAL, Gappa, Sage, Magma, Maple, GCC,
...

Paul Zimmermann GNU MPFR: back to the future

What is GNU MPFR?

An arbitrary precision floating-point library

written in C

providing correct rounding

which aims to be efficient too

used by several software tools: Mathemagix, TRIP, Macaulay2,
fpLLL, MPC, MPFI, CGAL, Gappa,

Sage, Magma, Maple, GCC,
...

Paul Zimmermann GNU MPFR: back to the future

What is GNU MPFR?

An arbitrary precision floating-point library

written in C

providing correct rounding

which aims to be efficient too

used by several software tools: Mathemagix, TRIP, Macaulay2,
fpLLL, MPC, MPFI, CGAL, Gappa, Sage, Magma, Maple, GCC,
...

Paul Zimmermann GNU MPFR: back to the future

Using MPFR in Mathemagix

1] type_mode? := true;
2] a:Double == 3.14159265359
3.14159265359: Double
3] exp a
23.1406926328: Double

4] use "numerix"
5] bit_precision := 53;
6] b:Floating == 3.14159265359
3.1415926535900001: Floating
7] exp b
23.140692632784056: Floating

8] bit_precision := 97;
9] c:Floating := exp (exp (exp 3.0))
2.050986436051648895044869200806e229520860:
Alias (Floating)

Paul Zimmermann GNU MPFR: back to the future

Using MPFR in Mathemagix

1] type_mode? := true;
2] a:Double == 3.14159265359
3.14159265359: Double
3] exp a
23.1406926328: Double

4] use "numerix"
5] bit_precision := 53;
6] b:Floating == 3.14159265359
3.1415926535900001: Floating
7] exp b
23.140692632784056: Floating

8] bit_precision := 97;
9] c:Floating := exp (exp (exp 3.0))
2.050986436051648895044869200806e229520860:
Alias (Floating)

Paul Zimmermann GNU MPFR: back to the future

Using MPFR in Mathemagix

1] type_mode? := true;
2] a:Double == 3.14159265359
3.14159265359: Double
3] exp a
23.1406926328: Double

4] use "numerix"
5] bit_precision := 53;
6] b:Floating == 3.14159265359
3.1415926535900001: Floating
7] exp b
23.140692632784056: Floating

8] bit_precision := 97;
9] c:Floating := exp (exp (exp 3.0))
2.050986436051648895044869200806e229520860:
Alias (Floating)

Paul Zimmermann GNU MPFR: back to the future

MPFR in Sage

sage: D = RealField(42, rnd=’RNDD’);
U = RealField(42, rnd=’RNDU’)

sage: D(pi), U(pi)
(3.14159265358, 3.14159265360)

sage: D(pi).exact_rational()
3454217652357/1099511627776

sage: x = RealIntervalField(42)(pi);
x.lower(), x.upper()

(3.14159265358, 3.14159265360)

Paul Zimmermann GNU MPFR: back to the future

Plan of the talk

history of GNU MPFR
some design choices
some recent developments
GNU MPFR in 2022

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

1998: discussion with Joris van der Hoeven, Jean-Michel
Muller, and Guillaume Hanrot in a café in Paris, and by mail
with Torbjörn Granlund

November 1998: Proposal for a Portable and Reliable Multiple
Precision Floating-Point Library (5 pages)

4 February 2000: first public version is released (MPFR 0.4)

June 2000: copyright assigned to the FSF

24 August 2000: version 1.0 is released

15 April 2002: version 2.0.1 is released

October 2005: winner of the Many Digits Friendly Competition

October 2007: CEA-EDF-INRIA School on Certified Numerical
Computation

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

1998: discussion with Joris van der Hoeven, Jean-Michel
Muller, and Guillaume Hanrot in a café in Paris, and by mail
with Torbjörn Granlund

November 1998: Proposal for a Portable and Reliable Multiple
Precision Floating-Point Library (5 pages)

4 February 2000: first public version is released (MPFR 0.4)

June 2000: copyright assigned to the FSF

24 August 2000: version 1.0 is released

15 April 2002: version 2.0.1 is released

October 2005: winner of the Many Digits Friendly Competition

October 2007: CEA-EDF-INRIA School on Certified Numerical
Computation

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

1998: discussion with Joris van der Hoeven, Jean-Michel
Muller, and Guillaume Hanrot in a café in Paris, and by mail
with Torbjörn Granlund

November 1998: Proposal for a Portable and Reliable Multiple
Precision Floating-Point Library (5 pages)

4 February 2000: first public version is released (MPFR 0.4)

June 2000: copyright assigned to the FSF

24 August 2000: version 1.0 is released

15 April 2002: version 2.0.1 is released

October 2005: winner of the Many Digits Friendly Competition

October 2007: CEA-EDF-INRIA School on Certified Numerical
Computation

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

1998: discussion with Joris van der Hoeven, Jean-Michel
Muller, and Guillaume Hanrot in a café in Paris, and by mail
with Torbjörn Granlund

November 1998: Proposal for a Portable and Reliable Multiple
Precision Floating-Point Library (5 pages)

4 February 2000: first public version is released (MPFR 0.4)

June 2000: copyright assigned to the FSF

24 August 2000: version 1.0 is released

15 April 2002: version 2.0.1 is released

October 2005: winner of the Many Digits Friendly Competition

October 2007: CEA-EDF-INRIA School on Certified Numerical
Computation

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

1998: discussion with Joris van der Hoeven, Jean-Michel
Muller, and Guillaume Hanrot in a café in Paris, and by mail
with Torbjörn Granlund

November 1998: Proposal for a Portable and Reliable Multiple
Precision Floating-Point Library (5 pages)

4 February 2000: first public version is released (MPFR 0.4)

June 2000: copyright assigned to the FSF

24 August 2000: version 1.0 is released

15 April 2002: version 2.0.1 is released

October 2005: winner of the Many Digits Friendly Competition

October 2007: CEA-EDF-INRIA School on Certified Numerical
Computation

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

1998: discussion with Joris van der Hoeven, Jean-Michel
Muller, and Guillaume Hanrot in a café in Paris, and by mail
with Torbjörn Granlund

November 1998: Proposal for a Portable and Reliable Multiple
Precision Floating-Point Library (5 pages)

4 February 2000: first public version is released (MPFR 0.4)

June 2000: copyright assigned to the FSF

24 August 2000: version 1.0 is released

15 April 2002: version 2.0.1 is released

October 2005: winner of the Many Digits Friendly Competition

October 2007: CEA-EDF-INRIA School on Certified Numerical
Computation

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

1998: discussion with Joris van der Hoeven, Jean-Michel
Muller, and Guillaume Hanrot in a café in Paris, and by mail
with Torbjörn Granlund

November 1998: Proposal for a Portable and Reliable Multiple
Precision Floating-Point Library (5 pages)

4 February 2000: first public version is released (MPFR 0.4)

June 2000: copyright assigned to the FSF

24 August 2000: version 1.0 is released

15 April 2002: version 2.0.1 is released

October 2005: winner of the Many Digits Friendly Competition

October 2007: CEA-EDF-INRIA School on Certified Numerical
Computation

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

1998: discussion with Joris van der Hoeven, Jean-Michel
Muller, and Guillaume Hanrot in a café in Paris, and by mail
with Torbjörn Granlund

November 1998: Proposal for a Portable and Reliable Multiple
Precision Floating-Point Library (5 pages)

4 February 2000: first public version is released (MPFR 0.4)

June 2000: copyright assigned to the FSF

24 August 2000: version 1.0 is released

15 April 2002: version 2.0.1 is released

October 2005: winner of the Many Digits Friendly Competition

October 2007: CEA-EDF-INRIA School on Certified Numerical
Computation

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

2007: Mathemagix and Sage use MPFR

March 2008: GCC 4.3.0 uses MPFR in its middle-end

26 January 2009: version 2.4.0 is released (andouillette sauce
moutarde) and becomes a GNU package

25-26 June 2009: CNC’2 Summer School on MPFR and MPC

10 June 2010: version 3.0.0 is released (boudin aux pommes)

13-14 January 2011: MPFR-MPC developers meeting

28 August 2011: Presentation at the GNU Hackers Meeting in
Paris

September 2011: version 3.1.0 is released (canard à l’orange)

Early 2012: 2nd MPFR-MPC developers meeting?

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

2007: Mathemagix and Sage use MPFR

March 2008: GCC 4.3.0 uses MPFR in its middle-end

26 January 2009: version 2.4.0 is released (andouillette sauce
moutarde) and becomes a GNU package

25-26 June 2009: CNC’2 Summer School on MPFR and MPC

10 June 2010: version 3.0.0 is released (boudin aux pommes)

13-14 January 2011: MPFR-MPC developers meeting

28 August 2011: Presentation at the GNU Hackers Meeting in
Paris

September 2011: version 3.1.0 is released (canard à l’orange)

Early 2012: 2nd MPFR-MPC developers meeting?

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

2007: Mathemagix and Sage use MPFR

March 2008: GCC 4.3.0 uses MPFR in its middle-end

26 January 2009: version 2.4.0 is released (andouillette sauce
moutarde) and becomes a GNU package

25-26 June 2009: CNC’2 Summer School on MPFR and MPC

10 June 2010: version 3.0.0 is released (boudin aux pommes)

13-14 January 2011: MPFR-MPC developers meeting

28 August 2011: Presentation at the GNU Hackers Meeting in
Paris

September 2011: version 3.1.0 is released (canard à l’orange)

Early 2012: 2nd MPFR-MPC developers meeting?

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

2007: Mathemagix and Sage use MPFR

March 2008: GCC 4.3.0 uses MPFR in its middle-end

26 January 2009: version 2.4.0 is released (andouillette sauce
moutarde) and becomes a GNU package

25-26 June 2009: CNC’2 Summer School on MPFR and MPC

10 June 2010: version 3.0.0 is released (boudin aux pommes)

13-14 January 2011: MPFR-MPC developers meeting

28 August 2011: Presentation at the GNU Hackers Meeting in
Paris

September 2011: version 3.1.0 is released (canard à l’orange)

Early 2012: 2nd MPFR-MPC developers meeting?

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

2007: Mathemagix and Sage use MPFR

March 2008: GCC 4.3.0 uses MPFR in its middle-end

26 January 2009: version 2.4.0 is released (andouillette sauce
moutarde) and becomes a GNU package

25-26 June 2009: CNC’2 Summer School on MPFR and MPC

10 June 2010: version 3.0.0 is released (boudin aux pommes)

13-14 January 2011: MPFR-MPC developers meeting

28 August 2011: Presentation at the GNU Hackers Meeting in
Paris

September 2011: version 3.1.0 is released (canard à l’orange)

Early 2012: 2nd MPFR-MPC developers meeting?

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

2007: Mathemagix and Sage use MPFR

March 2008: GCC 4.3.0 uses MPFR in its middle-end

26 January 2009: version 2.4.0 is released (andouillette sauce
moutarde) and becomes a GNU package

25-26 June 2009: CNC’2 Summer School on MPFR and MPC

10 June 2010: version 3.0.0 is released (boudin aux pommes)

13-14 January 2011: MPFR-MPC developers meeting

28 August 2011: Presentation at the GNU Hackers Meeting in
Paris

September 2011: version 3.1.0 is released (canard à l’orange)

Early 2012: 2nd MPFR-MPC developers meeting?

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

2007: Mathemagix and Sage use MPFR

March 2008: GCC 4.3.0 uses MPFR in its middle-end

26 January 2009: version 2.4.0 is released (andouillette sauce
moutarde) and becomes a GNU package

25-26 June 2009: CNC’2 Summer School on MPFR and MPC

10 June 2010: version 3.0.0 is released (boudin aux pommes)

13-14 January 2011: MPFR-MPC developers meeting

28 August 2011: Presentation at the GNU Hackers Meeting in
Paris

September 2011: version 3.1.0 is released (canard à l’orange)

Early 2012: 2nd MPFR-MPC developers meeting?

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

2007: Mathemagix and Sage use MPFR

March 2008: GCC 4.3.0 uses MPFR in its middle-end

26 January 2009: version 2.4.0 is released (andouillette sauce
moutarde) and becomes a GNU package

25-26 June 2009: CNC’2 Summer School on MPFR and MPC

10 June 2010: version 3.0.0 is released (boudin aux pommes)

13-14 January 2011: MPFR-MPC developers meeting

28 August 2011: Presentation at the GNU Hackers Meeting in
Paris

September 2011: version 3.1.0 is released (canard à l’orange)

Early 2012: 2nd MPFR-MPC developers meeting?

Paul Zimmermann GNU MPFR: back to the future

History of GNU MPFR

2007: Mathemagix and Sage use MPFR

March 2008: GCC 4.3.0 uses MPFR in its middle-end

26 January 2009: version 2.4.0 is released (andouillette sauce
moutarde) and becomes a GNU package

25-26 June 2009: CNC’2 Summer School on MPFR and MPC

10 June 2010: version 3.0.0 is released (boudin aux pommes)

13-14 January 2011: MPFR-MPC developers meeting

28 August 2011: Presentation at the GNU Hackers Meeting in
Paris

September 2011: version 3.1.0 is released (canard à l’orange)

Early 2012: 2nd MPFR-MPC developers meeting?
Paul Zimmermann GNU MPFR: back to the future

The mpfr t type

Each MPFR variable has:
a precision p ≥ 2 in bits (long)
a sign s ∈ {−1, 1} (int)
an exponent e (long)
a pointer to the significand m (mp limb t*)

The corresponding value is

s ·m · 2e

where m is an integer multiple of 2−p with 1/2 ≤ m < 1

On a 64-bit computer, a 53-bit variable takes 40 bytes (32 bytes
for mpfr t, 8 bytes for the significand)

Paul Zimmermann GNU MPFR: back to the future

Some design choices

use of the mpn layer from GMP
local vs global fields
base 2 or 2w?
padding or not?

Paul Zimmermann GNU MPFR: back to the future

Use of the mpn layer from GMP

	 dependency on GMP
⊕ portability and efficiency of GMP
⊕ no assembly code in MPFR, only C code
	 some basic routines are missing or inefficient in GMP

(short product and division, floating-point exponentiation,
middle product, k th root)

One limb = one GMP base word (usually corresponds to a
computer word)

Paul Zimmermann GNU MPFR: back to the future

Local vs global fields

Each MPFR variable has its own precision p: enables to
mix variables with different precisions (Newton’s iteration).
We decided to allow any precision in bits, not only
multiples of the number w of bits per limb (w = 32 or
w = 64 usually).
The memory allocated for the significand is exactly dp/we
limbs. No field for allocated space, but requires to
reallocate if the precision changes.
The exceptions are global (contrary to what was planned
originally).

Paul Zimmermann GNU MPFR: back to the future

Base 2 or 2w?

Consider a 17-bit significand b16 . . . b1b0 on a 10-bit computer.
There are several ways to store it:

Base 2, right-aligned (most significant bits left):

000b16 . . . b10 b9 . . . b0 · 2e+3

Base 2, left-aligned:

b16 . . . b7 b6 . . . b0000 · 2e

Base 210:

00000b16 . . . b12 b11 . . . b2 b1b00 . . . 0 · 210e′

or 0b16 . . . b8 b7 . . . b000 · 210e′′

Paul Zimmermann GNU MPFR: back to the future

Base 2 or 2w?

Consider a 17-bit significand b16 . . . b1b0 on a 10-bit computer.
There are several ways to store it:

Base 2, right-aligned (most significant bits left):

000b16 . . . b10 b9 . . . b0 · 2e+3

Base 2, left-aligned:

b16 . . . b7 b6 . . . b0000 · 2e

Base 210:

00000b16 . . . b12 b11 . . . b2 b1b00 . . . 0 · 210e′

or 0b16 . . . b8 b7 . . . b000 · 210e′′

Paul Zimmermann GNU MPFR: back to the future

Base 2 or 2w?

Consider a 17-bit significand b16 . . . b1b0 on a 10-bit computer.
There are several ways to store it:

Base 2, right-aligned (most significant bits left):

000b16 . . . b10 b9 . . . b0 · 2e+3

Base 2, left-aligned:

b16 . . . b7 b6 . . . b0000 · 2e

Base 210:

00000b16 . . . b12 b11 . . . b2 b1b00 . . . 0 · 210e′

or 0b16 . . . b8 b7 . . . b000 · 210e′′

Paul Zimmermann GNU MPFR: back to the future

Base 2, left aligned: addition a + b

a = 1011010111 0110111000 · 24

b = 1101101010 1010101000 · 20

We have to shift the smaller operand, which might need
another limb:

a = 1011010111 0110111000
b = 0000110110 1010101010 1000000000

In some cases mpn add might return a carry, which will require
another shift

Paul Zimmermann GNU MPFR: back to the future

Base 2, left aligned: addition a + b

a = 1011010111 0110111000 · 24

b = 1101101010 1010101000 · 20

We have to shift the smaller operand, which might need
another limb:

a = 1011010111 0110111000
b = 0000110110 1010101010 1000000000

In some cases mpn add might return a carry, which will require
another shift

Paul Zimmermann GNU MPFR: back to the future

Base 2w : addition a + b

a= 0000001011 0101110110 1110000000 · 20

b= 1101101010 1010101000 · 20

No need to shift:

0000001011 0101110110 1110000000
1101101010 1010101000

No post-shift needed (except in rare cases, but only limb shift).

Paul Zimmermann GNU MPFR: back to the future

Base 2, left aligned: multiplication a× b

a= 1011010111 0110111000 · 24

b= 1101101010 1010101000 · 20

We perform a 2× 2 product, and round:

1001101101 0101100000 1001101100 0011000000

Post-shift needed when product is 01...

Paul Zimmermann GNU MPFR: back to the future

Base 2w : multiplication a× b

a= 0000001011 0101110110 1110000000 · 20

b= 0110110101 0101010100 · 20

We need to perform a 3× 2 product, and round:

0000000100 1101101010 1100000100 1101100001 1000000000

Paul Zimmermann GNU MPFR: back to the future

base 2: smaller memory usage, number of limbs only
depends on precision, multiplication cheaper
base 2w : no bit shifts

Base 2, right- vs left-aligned: the latter is better for GMP
division, and when we truncate an input

Paul Zimmermann GNU MPFR: back to the future

A clever idea?

Instead of flushing to zero least significant padding bits:

a= 1011010111 0110111000 · 24

why not use them to store extra bits?

a= 1011010111 0110111101 · 24

Not a so good idea:
could not emulate IEEE-754 arithmetic (p = 53)
would be non-portable between w = 16, w = 32, w = 64,
...

Paul Zimmermann GNU MPFR: back to the future

A clever idea?

Instead of flushing to zero least significant padding bits:

a= 1011010111 0110111000 · 24

why not use them to store extra bits?

a= 1011010111 0110111101 · 24

Not a so good idea:
could not emulate IEEE-754 arithmetic (p = 53)
would be non-portable between w = 16, w = 32, w = 64,
...

Paul Zimmermann GNU MPFR: back to the future

Constant folding in GCC

$ cat bug10709.c
#include <stdio.h>
#include <math.h>
main()
{

printf ("sin(0.2522464)=%.17f\n", sin(0.2522464));
}

$ gcc bug10709.c; ./a.out
sin(0.2522464)=0.24957989804940911

$ gcc -fno-builtin bug10709.c
/tmp/ccL6YmL8.o: In function ‘main’:
bug10709.c: undefined reference to ‘sin’
collect2: ld returned 1 exit status

$ gcc -fno-builtin bug10709.c -lm; ./a.out
sin(0.2522464)=0.24957989804940914

Paul Zimmermann GNU MPFR: back to the future

Constant folding in GCC

$ cat bug10709.c
#include <stdio.h>
#include <math.h>
main()
{

printf ("sin(0.2522464)=%.17f\n", sin(0.2522464));
}

$ gcc bug10709.c; ./a.out
sin(0.2522464)=0.24957989804940911

$ gcc -fno-builtin bug10709.c
/tmp/ccL6YmL8.o: In function ‘main’:
bug10709.c: undefined reference to ‘sin’
collect2: ld returned 1 exit status

$ gcc -fno-builtin bug10709.c -lm; ./a.out
sin(0.2522464)=0.24957989804940914

Paul Zimmermann GNU MPFR: back to the future

Constant folding in GCC

$ cat bug10709.c
#include <stdio.h>
#include <math.h>
main()
{

printf ("sin(0.2522464)=%.17f\n", sin(0.2522464));
}

$ gcc bug10709.c; ./a.out
sin(0.2522464)=0.24957989804940911

$ gcc -fno-builtin bug10709.c
/tmp/ccL6YmL8.o: In function ‘main’:
bug10709.c: undefined reference to ‘sin’
collect2: ld returned 1 exit status

$ gcc -fno-builtin bug10709.c -lm; ./a.out
sin(0.2522464)=0.24957989804940914

Paul Zimmermann GNU MPFR: back to the future

Constant folding in GCC

$ cat bug10709.c
#include <stdio.h>
#include <math.h>
main()
{

printf ("sin(0.2522464)=%.17f\n", sin(0.2522464));
}

$ gcc bug10709.c; ./a.out
sin(0.2522464)=0.24957989804940911

$ gcc -fno-builtin bug10709.c
/tmp/ccL6YmL8.o: In function ‘main’:
bug10709.c: undefined reference to ‘sin’
collect2: ld returned 1 exit status

$ gcc -fno-builtin bug10709.c -lm; ./a.out
sin(0.2522464)=0.24957989804940914

Paul Zimmermann GNU MPFR: back to the future

Some recent developments (canard à l’orange
release)

automatic TLS (thread local storage) support

new division by zero exception and flag

improved division and squaring using Mulders’ algorithm

Paul Zimmermann GNU MPFR: back to the future

Some recent developments

We recently improved (with David Harvey) the short division in
GNU MPFR.

Example: division of two 1000-digits floating-point numbers on
a 2.66GHz Intel Xeon X7460.

GMP MPF 5.0.1: 0.0040ms

MPFR 3.0.0: 0.0058ms

MPFR 3.1.0-dev: 0.0040ms (without mulmid patch)

Paul Zimmermann GNU MPFR: back to the future

Short product (green) and division (red)

0.5

0.6

0.7

0.8

0.9

200 400 600 800 1000

Paul Zimmermann GNU MPFR: back to the future

Short division timings

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100 200 300 400 500 600 700 800 900 1000

mpn_div_q
ShortDiv

FoldDiv2(2)
FoldDiv2(3)
FoldDiv2(4)

Paul Zimmermann GNU MPFR: back to the future

Compiler bugs found by MPFR

www.loria.fr/˜zimmerma/software/compilerbugs.html

a bug in 32-bit sparc gcc 2.95.2, when a double is passed
as last argument of a C function, which produced Bus
errors. Reported in revision 1949 of MPFR.
a bug in GCC on m68040-unknown-netbsd1.4.1, where
DBL MIN gives (1− 2−52) · 2−1022 (rev. 2218)
bug in LONG MIN / 1 under FreeBSD (this is a bug of the
C library of FreeBSD 5.20 on Alpha with GCC 3.3.3),
reported in revision 2982 of MPFR
bug of the Solaris memset function, revealed when testing
MPFR 2.4.1 on some Solaris machines with GCC 4.4.0
bug with the Sun C compiler with the -xO3 optimization
level on sparc/Solaris, reported on August 3, 2011 [affects
Sun C 5.9 SunOS sparc Patch 124867-16 2010/08/11]
a bug with GCC 4.3.2 (and 4.4.1) found while testing
MPFR 3.1.0-rc1 on gcc54.fsffrance.org (UltraSparc IIe
under Debian) with –enable-thread-safe

Paul Zimmermann GNU MPFR: back to the future

www.loria.fr/~zimmerma/software/compilerbugs.html

GNU MPFR in 2022

Efficient and machine-independent file input/output (in
progress)

Companion programs: isolation and refinement of real and
complex roots of a polynomial, arbitrary-precision quadrature,
...

Faster internal computations with faithful rounding mode

Ball arithmetic (van der Hoeven 2011): an engineer will
implement a midrad arithmetic [m − r , m + r] where m has
arbitrary precision, r has small precision. Cf the P1788 IEEE
group about a new standard for interval arithmetic
(http://grouper.ieee.org/groups/1788/).

Better deal with intermediate underflow or overflow,
e.g.

√
x2 + y2

Paul Zimmermann GNU MPFR: back to the future

http://grouper.ieee.org/groups/1788/

GNU MPFR in 2022

Efficient and machine-independent file input/output (in
progress)

Companion programs: isolation and refinement of real and
complex roots of a polynomial, arbitrary-precision quadrature,
...

Faster internal computations with faithful rounding mode

Ball arithmetic (van der Hoeven 2011): an engineer will
implement a midrad arithmetic [m − r , m + r] where m has
arbitrary precision, r has small precision. Cf the P1788 IEEE
group about a new standard for interval arithmetic
(http://grouper.ieee.org/groups/1788/).

Better deal with intermediate underflow or overflow,
e.g.

√
x2 + y2

Paul Zimmermann GNU MPFR: back to the future

http://grouper.ieee.org/groups/1788/

GNU MPFR in 2022

Efficient and machine-independent file input/output (in
progress)

Companion programs: isolation and refinement of real and
complex roots of a polynomial, arbitrary-precision quadrature,
...

Faster internal computations with faithful rounding mode

Ball arithmetic (van der Hoeven 2011): an engineer will
implement a midrad arithmetic [m − r , m + r] where m has
arbitrary precision, r has small precision. Cf the P1788 IEEE
group about a new standard for interval arithmetic
(http://grouper.ieee.org/groups/1788/).

Better deal with intermediate underflow or overflow,
e.g.

√
x2 + y2

Paul Zimmermann GNU MPFR: back to the future

http://grouper.ieee.org/groups/1788/

GNU MPFR in 2022

Efficient and machine-independent file input/output (in
progress)

Companion programs: isolation and refinement of real and
complex roots of a polynomial, arbitrary-precision quadrature,
...

Faster internal computations with faithful rounding mode

Ball arithmetic (van der Hoeven 2011): an engineer will
implement a midrad arithmetic [m − r , m + r] where m has
arbitrary precision, r has small precision. Cf the P1788 IEEE
group about a new standard for interval arithmetic
(http://grouper.ieee.org/groups/1788/).

Better deal with intermediate underflow or overflow,
e.g.

√
x2 + y2

Paul Zimmermann GNU MPFR: back to the future

http://grouper.ieee.org/groups/1788/

GNU MPFR in 2022

Efficient and machine-independent file input/output (in
progress)

Companion programs: isolation and refinement of real and
complex roots of a polynomial, arbitrary-precision quadrature,
...

Faster internal computations with faithful rounding mode

Ball arithmetic (van der Hoeven 2011): an engineer will
implement a midrad arithmetic [m − r , m + r] where m has
arbitrary precision, r has small precision. Cf the P1788 IEEE
group about a new standard for interval arithmetic
(http://grouper.ieee.org/groups/1788/).

Better deal with intermediate underflow or overflow,
e.g.

√
x2 + y2

Paul Zimmermann GNU MPFR: back to the future

http://grouper.ieee.org/groups/1788/

Improve robustness and efficiency of the library

Generic algorithms for D-finite functions (cf work of
Mezzarobba and Chevillard)

Improve code coverage to 100% (currently 95.3% for src)

Formally prove (some of) the algorithms implemented in MPFR

Paul Zimmermann GNU MPFR: back to the future

Improve robustness and efficiency of the library

Generic algorithms for D-finite functions (cf work of
Mezzarobba and Chevillard)

Improve code coverage to 100% (currently 95.3% for src)

Formally prove (some of) the algorithms implemented in MPFR

Paul Zimmermann GNU MPFR: back to the future

Improve robustness and efficiency of the library

Generic algorithms for D-finite functions (cf work of
Mezzarobba and Chevillard)

Improve code coverage to 100% (currently 95.3% for src)

Formally prove (some of) the algorithms implemented in MPFR

Paul Zimmermann GNU MPFR: back to the future

Improve robustness and efficiency of the library

Generic algorithms for D-finite functions (cf work of
Mezzarobba and Chevillard)

Improve code coverage to 100% (currently 95.3% for src)

Formally prove (some of) the algorithms implemented in MPFR

Paul Zimmermann GNU MPFR: back to the future

