20 Years of ECM

Paul Zimmermann, RIN RIA

㕣 LEHIGH
Bruce Dodson,

History of ECM (1/2)

bruary 1985: invented by H. W. Lenstra, Jr.
Id of 1985 (Brent, Montgomery):
stage 2
Brent-Suyama's extension
fast polynomial evaluation
86: ECM routinely finds factors of 20 digits, Montgomery finds a 36-digit ctor of L_{464}
ent: "we can forsee that p around 10^{50} may be accessible in a few years ne"

History of ECM (2/2)

87 (Montgomery) unified description of ECM, $\mathrm{P}+1, \mathrm{P}-1$ 88 (Brent) 21-digit and 22-digit factors of F_{11}

92 (Montgomery) "FFT extension"
95: Brent finds a 40 -digit factor of F_{10} (291-digit input)
98: Curry finds a 53 -digit factor of $2^{677}-1$ with MPRIME 05: Dodson finds a 66 -digit factor of $3^{466}+1$

Notations

(d) : cost of multiplying two d-bit integers, or two degree- d polynomials

Elliptic Curve

field of characteristic $\neq 2,3$
ontgomery form:

$$
E_{a, b}=\left\{(x: y) \in K^{2}, b y^{2}=x^{3}+a x^{2}+x\right\} \cup\left\{O_{E}\right\}
$$

omogeneous form:

$$
b y^{2} z=x^{3}+a x^{2} z+x z^{2}
$$

here $(x: y: z)$ represents $(x / z: y / z)$.

The ECM algorithm

put: a number n, integer bounds $B_{1} \leqslant B_{2}$
stput: a factor of n, or FAIL
1oose a random elliptic curve $E_{a, b} \bmod n$ and $P_{0}=\left(x_{0}: y_{0}: z_{0}\right)$ on it tage 1] Compute $Q:=\prod_{\pi \leqslant B_{1}} \pi^{\left\lfloor\left(\log B_{1}\right) /(\log \pi)\right\rfloor} P_{0}$ on $E_{a, b}$
tage 2] for each prime $\pi, B_{1}<\pi \leqslant B_{2}$:
compute $\left(x_{\pi}: y_{\pi}: z_{\pi}\right)=\pi Q$ on $E_{a, b}$
$g \leftarrow \operatorname{gcd}\left(n, z_{\pi}\right)$
if $g \neq 1$, output g and exit
tput FAIL.

Suyama's parametrization

100se $\sigma>5$
$=\sigma^{2}-5, \quad v=4 \sigma$
$=u^{3}, \quad z_{0}=v^{3}$
$=(v-u)^{3}(3 u+v) /\left(4 u^{3} v\right)-2$
e then have

$$
b y^{2} z=x^{3}+a x^{2} z+x z^{2}
$$

th $b=u / z_{0}$ and $y_{0}=\left(\sigma^{2}-1\right)\left(\sigma^{2}-25\right)\left(\sigma^{4}-25\right)$
and y useless: identify $P=(x: y: z)$ and $-P=(x:-y: z)$
idely used (Brent, Montgomery, Woltman)

Why does ECM work?

asse's theorem:

$$
|g-(p+1)|<2 \sqrt{p}
$$

"random" integer in $[p+1-2 \sqrt{p}, p+1+2 \sqrt{p}]$
yama's parametrization: 12 divides g
ontgomery's form: 4 divides g
is found if g is $\left(B_{1}, B_{2}\right)$ smooth, in stage 1 if B_{1}-smooth

Complexity of ECM

$$
O\left(L(p)^{\sqrt{2}+o(1)} M(\log n)\right)
$$

nere $L(p)=e^{\sqrt{\log p \log \log p}}$
ontgomery (1992): stage 2 saves a factor of $\log p$
$(p)^{\sqrt{2}+o(1)}$: mathematical and algorithmic improvements
$I(\log n):$ arithmetic improvements

Stage 1

sic operations: curve addition and duplication.
$, Q, P-Q) \rightarrow P+Q$ in 6 multiplications $\bmod n:$

$$
\begin{array}{ll}
u \leftarrow\left(x_{P}+z_{P}\right)\left(x_{Q}-z_{Q}\right) & v \leftarrow\left(x_{P}-z_{P}\right)\left(x_{Q}+z_{Q}\right) \\
w \leftarrow(u+v)^{2} & t \leftarrow(u-v)^{2} \\
x_{P+Q} \leftarrow z_{P-Q} \cdot w & z_{P+Q} \leftarrow x_{P-Q} \cdot t .
\end{array}
$$

$\rightarrow 2 P$ in 5 multiplications $\bmod n$:

$$
\begin{array}{ll}
u \leftarrow\left(x_{P}+z_{P}\right)^{2} & v \leftarrow\left(x_{P}-z_{P}\right)^{2} \quad t \leftarrow d(u-v)+v \\
x_{2 P} \leftarrow u v & z_{2 P} \leftarrow(u-v) t .
\end{array}
$$

Stage Two

age 1 computes Q on E
age 2 succeeds when $\pi Q=O_{E} \bmod p$ for $B_{1} \leqslant \pi \leqslant B_{2}$

$$
\pi=\sigma+\tau, \quad \sigma \in S, \tau \in T
$$

$\sigma Q=\left(x_{\sigma}: y_{\sigma}\right), \tau Q=\left(x_{\tau}: y_{\tau}\right)$
en $x_{\sigma}=x_{\tau} \bmod P:$ simply compute $\operatorname{gcd}\left(x_{\sigma}-x_{\tau}, n\right)$
andard continuation: S and T are arithmetic progressions.

$$
\begin{gathered}
S=\left\{i d, 0 \leqslant i d<B_{2}\right\} \\
T=\{j, 0<j<d, \operatorname{gcd}(j, d)=1\}
\end{gathered}
$$

Example: $B_{2}=960$, 162 primes

$=60$:

$=\{0,60,120,180,240,300,360,420,480,540,600,660,720,780,840,900\}$

$$
T=\{1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,59\}
$$

$j Q=(x: y),-j Q=(x:-y)$, thus the prime $67=60+7$ will also
hit when computing $\operatorname{gcd}\left(x_{120}-x_{53}, n\right)$
ep only $j=1 \bmod 6$, or $j<d / 2$ (Montgomery)
$=90$.

$$
\begin{aligned}
S= & \{0,90,180,270,360,450,540,630,720,810,900\} \\
& T=\{1,7,13,19,31,37,43,49,61,67,73,79\}
\end{aligned}
$$

Fast Polynomial Arithmetic

$$
\begin{gathered}
h=\prod_{\sigma \in S} \prod_{\tau \in T}\left(x_{\sigma}-x_{\tau}\right) \bmod n \\
F(X)=\prod_{\tau \in T}\left(X-x_{\tau}\right), \quad G(X)=\prod_{\sigma \in S}\left(X-x_{\sigma}\right)
\end{gathered}
$$

(X) and $G(X)$ can be computed in $O(M(d) \log d)$ operations (product e) if $\operatorname{deg}(F), \operatorname{deg}(G) \leqslant d$.

$$
h= \pm \prod_{\tau \in T} G\left(x_{\tau}\right) \bmod n
$$

ultipoint polynomial evaluation: $O(M(d) \log d)$. Best constant with a caled remainder tree" (Bostan, Lecerf, Schost, Bernstein)

Scaled Remainder Tree

Convert $n=3586334585$ in hexadecimal

$$
x_{1}=n / 16^{8} \approx 0.8350085897836834
$$

$=\left\lfloor 16^{4} x_{1}\right\rfloor / 16^{4} \approx 0.83500859 \quad x_{3}=16^{4} x_{1} \bmod 1 \approx 0.12294006$

$$
\begin{array}{llll}
0.8350 & 0.7622 & 0.1229 & 0.4727
\end{array}
$$

$\begin{array}{llllllll}0.84 & 0.36 & 0.76 & 0.20 & 0.12 & 0.97 & 0.47 & 0.56\end{array}$
$\begin{array}{llllllll}D & 5 & C & 3 & 1 & F & 7 & 9\end{array}$

Other Improvements

ore technical details in the proceedings (pages 525-542):
efficient arithmetic $\bmod n$
evaluation of Lucas chains (Montgomery)
Kronecker-Schönhage's trick
stage 2 blocks
Brent-Suyama's extension
Montgomery's $d_{1} d_{2}$ improvement

GMP-ECM

toy-project started in 1999, to try how efficient GMP was
several people used it, some of them for their research major improvements in version 5 (Kruppa) and 6 (Newman) now quite stable, used in Magma, distributed within Debian unified stage 2 for ECM, $\mathrm{P}-1, \mathrm{P}+1$

Dodson's 66-digit record

und on April 6, 2005, with GMP-ECM 6.0.1:

$$
3^{466}+1=2 \times 5 \times 3733008450772109
$$

$$
\times 324034447132833172294865909 \times \underbrace{180 \cdots 513}_{180 \text { digits }}
$$

$$
=1.1 \cdot 10^{8}, B_{2} \approx 6.8 \cdot 10^{11}, \sigma=1875377824
$$

11s on 2.4Ghz Opteron (749 + 262).
Group Order : $2^{2} \times 3 \times 11243 \times 336181 \times 844957 \times 1866679 \times 6062029$

$$
\times 7600843 \times 8046121 \times 8154571 \times 13153633 \times 249436823
$$

Effi ciency of large B_{2}

stogram of $\log \left(g_{1} / B_{1}\right)$ for 594 Cunningham factors found since 2000 $\mathrm{g} 100 \approx 4.6$)

Current records

CM: 66 digits (Dodson, 2005)
1: 58 digits (Zimmermann, 2005)
-1: 48 digits (Kruppa, 2003)

Can you do better?

P+1 record

te: Sat, 29 Mar 2003 23:53:51 +0100
om: Alexander Kruppa alexander.kruppa@stud.tu-muenchen.de
found this factor of L 1849 with gmp-ecm 5.0 P+1 today:
$8=884764954216571039925598516362554326397028807829$
$8+1=251921413098332443359631178333063121801057972080952771$
is beats the previous record, a p39 found by Paul Leyland, by almost digits (leading digits 88.. vs 13..).
e cofactor has 330 digits and is probably prime.
st regards,

Record Group Order Factor

dson, December 2005, 47-digit factor of $5^{430}+1$:

$$
\begin{aligned}
& \quad g=2^{2} \times 3 \times 13 \times 347 \times 659 \times 163481 \times 260753 \\
& \times 9520793 \times 25074457 \times 81325590104999 \\
& =260 M, g \approx 300000 \cdot B_{1}
\end{aligned}
$$

Save/Resume Interface

./ecm -save toto -pm1 -mpzmod -x0 25000000 < c71
P-ECM 6.1 [powered by GMP 4.2] [P-1]
put number is $131 . .487$ (71 digits)
ing $B 1=5000000$, $B 2=352526802$, polynomial $x^{\wedge} 24, x 0=2$
ep 1 took 3116ms
ep 2 took 2316 ms
cat toto
THOD=P-1; B1=5000000; N=131...487; X=0x125...19f; CHECKSUM=2287710189; OGRAM=GMP-ECM 6.1; X0=0x2; WHO=zimmerma@macaron.loria.fr; TIME=...;
./ecm -resume toto 1e7
P-ECM 6.1 [powered by GMP 4.2] [ECM]
suming P-1 residue saved by zimmerma@macaron.loria.fr with GMP-ECM 6.1
put number is 131...487 (71 digits)
ing $B 1=5000000-10000000$, $B 2=880276332$, polynomial x^24
ep 1 took 3076ms
ep 2 took 4304ms
********* Factor found in step 2: 1448595612076564044790098185437
obable prime cofactor $908 . .651$ has 40 digits

Library Interface

is provides a direct way to call ECM from a C program:
\#include "ecm.h"
res = ecm_factor (mpz_t f, mpz_t n, double B1, NULL);
ed in Magma since version V2.12 (July 2005).

New P-1 record

und by Takahiro Nohara (amateur mathematician, Tokyo Electron, enoble) on June 29, 2006 on a standard PC.
out is 277 -digit cofactor from $960^{119}-1, B_{1}=3 \cdot 10^{7}, B_{2}=3 \cdot 10^{10}$:
P-ECM 6.0 [powered by GMP 4.1.4] [P-1]
put number is 453...679 (277 digits)
ing $B 1=30000000$, $B 2=30000000000$, polynomial $x \wedge 60$, $x 0=3595167554$
ep 1 took 270553 ms
ep 2 took 255414ms
******** Factor found in step 2: 672... 541
und probable prime factor of 66 digits:
2038771836751227845696565342450315062141551559473564642434674541
mposite cofactor 674... 419 has 211 digits

Stage 1 speedup

the duplication formula:

$$
z_{2 P}=\left(4 x_{P} z_{P}\right)\left[\left(x_{P}-z_{P}\right)^{2}+d\left(4 x_{P} z_{P}\right)\right]
$$

e has to multiply by $d=(a+2) / 4$ where the initial curve in Montgomery m is:

$$
b y^{2}=x^{3}+a x^{2}+x
$$

rnstein suggest to use $a=4 d+2$ and $b=16 d+18$ with starting point

$$
=2: y=1)
$$

d is a small integer, the product by d costs $O(n)$ instead of $O(M(n))$. point doubling then costs only 4 full multiplies, instead of 5 .

Gaudry's assembly code for REDC

audry wrote assembly code for fused multiply and Montgomery reduction.
hlon, Pentium 4, Opteron.
ze 1 to 20 words.
to 25% speedup in stage 1 (here 14% on Pentium M):
P-ECM 6.1 [powered by GMP 4.2] [ECM]
put number is 952...581 (155 digits)
ing $B 1=1000000$, $B 2=1045563762$, polynomial Dickson(6), sigma=1225316034
ep 1 took 74584ms
ep 2 took 31294ms

P-ECM 6.1.1 [powered by GMP 4.2] [ECM]
put number is 952...581 (155 digits)
ing B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=52552621
ep 1 took 64152ms
ep 2 took 30821ms

GMP-ECM 6.1.1

leased on July 19, 2006.
a few bug fixes wrt version 6.1
includes Gaudry's assembly code:
configure -with-asm-redc
wnload at ecm.gforge.inria.fr

Summary (1/2)

CM can benefit from state-of-the-art algorithms:
arithmetic modulo n
polynomial arithmetic
ese algorithms might be useful for other problems
veral tricks improve the success expectation

Summary (2/2)

e main bottleneck remains stage 1 .
onsider $B_{1}=10^{6}$ with $B_{2}=9.7 \cdot 10^{8}$: we need 957 curves to find a -digit number.
sume stage 1 improves by a factor 2 , i.e. we can perform in the same time $1=2 \cdot 10^{6}$. Then 593 curves are enough, which gives a global gain of \%.
sume now that stage 2 improves by a factor 2 . Then we can use $2=2.9 \cdot 10^{9}$ instead, and need only 744 curves, which gives a global in of 22% only!

Credits

ar sponsors: INRIA Lorraine/LORIA and Lehigh University nstra, Pollard, Williams for inventing ECM, P-1, P+1
ent, Montgomery for improving them
anlund, the main author of GMP
e GMP-ECM co-authors: Gaudry, Fougeron, Fousse, Kruppa, Newman ers who did or will find nice factors!

ECM records since 1991

ent's formula ($D=$ digits, $Y=$ year):

$$
\sqrt{D}=\frac{Y-1932.3}{9.3}
$$

100 digits at ANTS XVII?

Is ECM useful?

te: Tue, 19 Apr 2005 15:12:29 +0200 (CEST) om: hwl@math.leidenuniv.nl (H.W. Lenstra)
ar Paul - Thanks for your message and for letting me low about the 66 digit ecm record! I always love hearing out those records. When ecm was just invented, someone tom I do not name predicted it would never (NEVER) find factor of more than 30 digits! All the best - Hendrik

