Double Matrix Algorithm (Task 2.3)

Participants

- Paul Zimmermann (task leader)
- Cécile Pierrot
- Charles Bouillaguet
- Ambroise Fleury ?
- Post-doc to be hired (LIP6) ?

References

Cf git repo, biblio/dble_matrix
Slides from Thorsten Kleinjung at WCNT 2011.
"Mersenne factory" paper, 2014.
Slides from Emmanuel and Pierrick, 2015.
Antoine Joux ?

Mersenne factory, 2014

Abstract: "Most factorizations used a new double-product approach that led to additional savings in the matrix step."

Page 14: "Details about the new filtering strategy will be provided once we have more experience with it."

The Idea

Let M be the matrix at the end of "purge" (singleton removal + "clique" algorithm).

Each row of M consists of a relation, and each column correspond to an ideal.

The "merge" step (Structured Gaussian Elimination) combines rows to eliminate columns:

$$
P M=M^{\prime}
$$

The linear algebra step computes (left) matrix-vector products $v M^{\prime}$. Instead, we can compute $w=v P$ and then $w M$. If the cumulated cost of $v P$ and $w M$ is less than that of $v M^{\prime}$, we win!

Some figures

RSA-250: M has 1.8G rows and columns with average weight 24 . M^{\prime} has 405M rows, with average weight 252.
When doing "replay", with the classical strategy, we do row combinations directly on M, with initial average weight of 24 . With the double matrix strategy, we do row combinations on P, which is initially the identity, with average weight 1.

Possible Subtasks

- rewrite "replay" to perform the row combinations on P, initialized to the identity matrix, to get an idea of the final average weight of P.
- rewrite "merge" to work on both M^{\prime} (initialized to M) and P (initialized to 1). We need to construct M^{\prime} to know which ideals we can eliminate.

Example

sage: M
$\left[\begin{array}{llllllll}{[0} & 1 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\right]\left[\begin{array}{llllll}1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1\end{array}\right]$

If we want to cancel column 6 (starting from 0) we add row 1 to row 7 .

If we want to cancel column 6 (starting from 0) we add row 1 to row 7:
sage: $\mathrm{P} 1=$ matrix $(\mathrm{GF}(2), 8,8,1) ; \mathrm{P} 1[7,1]=1$
sage: P1, P1*M
$[1$
1 0

Row 1 and column 6 are now inactive. Now to cancel column 7 we add row 5 to rows 3 and 6 .

To cancel column 7 we add row 5 to rows 3 and 6 :
sage: $\mathrm{P} 2=$ matrix $(\mathrm{GF}(2), 8,8,1)$; $\mathrm{P} 2[3,5]=\mathrm{P} 2[6,5]=1$ sage: $\mathrm{P} 2 * \mathrm{P} 1, \mathrm{P} 2 * \mathrm{P} 1 * \mathrm{M}$
$\left.\begin{array}{llllllll}{[1} & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\right]$

Rows 1,5 and columns 6,7 are now inactive.

At each step we need the current matrix M^{\prime} to identify which ideals we can merge, and the current P to compute the cost of each merge:

- scan columns of M^{\prime} to identify those j of weight $k \leq K$;
- for each such column j of weight k, compute the cost of the merge in P;
- perform the merges with smallest cost by updating both P and M^{\prime}.

