
Double Matrix Algorithm (Task 2.3)

Double Matrix Algorithm (Task 2.3) 1/11



Participants

Paul Zimmermann (task leader)
Cécile Pierrot
Charles Bouillaguet
Ambroise Fleury ?
Post-doc to be hired (LIP6) ?

Double Matrix Algorithm (Task 2.3) 2/11



References

Cf git repo, biblio/dble_matrix

Slides from Thorsten Kleinjung at WCNT 2011.
“Mersenne factory” paper, 2014.
Slides from Emmanuel and Pierrick, 2015.
Antoine Joux ?

Double Matrix Algorithm (Task 2.3) 3/11



Mersenne factory, 2014

Abstract: “Most factorizations used a new double-product
approach that led to additional savings in the matrix step.”

Page 14: “Details about the new filtering strategy will be provided
once we have more experience with it.”

Double Matrix Algorithm (Task 2.3) 4/11



The Idea

Let M be the matrix at the end of “purge” (singleton removal +
“clique” algorithm).

Each row of M consists of a relation, and each column correspond
to an ideal.
The “merge” step (Structured Gaussian Elimination) combines
rows to eliminate columns:

PM = M ′

The linear algebra step computes (left) matrix-vector products vM ′.
Instead, we can compute w = vP and then wM.
If the cumulated cost of vP and wM is less than that of vM ′, we
win!

Double Matrix Algorithm (Task 2.3) 5/11



Some figures

RSA-250: M has 1.8G rows and columns with average weight 24.
M ′ has 405M rows, with average weight 252.
When doing “replay”, with the classical strategy, we do row
combinations directly on M, with initial average weight of 24.
With the double matrix strategy, we do row combinations on P,
which is initially the identity, with average weight 1.

Double Matrix Algorithm (Task 2.3) 6/11



Possible Subtasks

• rewrite “replay” to perform the row combinations on P,
initialized to the identity matrix, to get an idea of the final average
weight of P.
• rewrite “merge” to work on both M ′ (initialized to M) and P
(initialized to 1). We need to construct M ′ to know which ideals
we can eliminate.

Double Matrix Algorithm (Task 2.3) 7/11



Example

sage: M
[0 1 0 0 0 1 0 0]
[1 0 1 1 0 1 1 1]
[1 0 1 0 1 0 0 0]
[1 0 0 1 0 1 0 1]
[1 1 0 1 1 1 0 0]
[0 0 0 1 0 1 0 1]
[0 1 0 1 1 0 0 1]
[1 0 1 0 1 1 1 1]

If we want to cancel column 6 (starting from 0) we add row 1 to
row 7.

Double Matrix Algorithm (Task 2.3) 8/11



If we want to cancel column 6 (starting from 0) we add row 1 to
row 7:

sage: P1=matrix(GF(2),8,8,1); P1[7,1]=1
sage: P1, P1*M
[1 0 0 0 0 0 0 0] [0 1 0 0 0 1 0 0]
[0 1 0 0 0 0 0 0] [1 0 1 1 0 1 1 1]
[0 0 1 0 0 0 0 0] [1 0 1 0 1 0 0 0]
[0 0 0 1 0 0 0 0] [1 0 0 1 0 1 0 1]
[0 0 0 0 1 0 0 0] [1 1 0 1 1 1 0 0]
[0 0 0 0 0 1 0 0] [0 0 0 1 0 1 0 1]
[0 0 0 0 0 0 1 0] [0 1 0 1 1 0 0 1]
[0 1 0 0 0 0 0 1], [0 0 0 1 1 0 0 0]

Row 1 and column 6 are now inactive. Now to cancel column 7 we
add row 5 to rows 3 and 6.

Double Matrix Algorithm (Task 2.3) 9/11



To cancel column 7 we add row 5 to rows 3 and 6:

sage: P2=matrix(GF(2),8,8,1); P2[3,5]=P2[6,5]=1
sage: P2*P1, P2*P1*M
[1 0 0 0 0 0 0 0] [0 1 0 0 0 1 0 0]
[0 1 0 0 0 0 0 0] [1 0 1 1 0 1 1 1]
[0 0 1 0 0 0 0 0] [1 0 1 0 1 0 0 0]
[0 0 0 1 0 1 0 0] [1 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0] [1 1 0 1 1 1 0 0]
[0 0 0 0 0 1 0 0] [0 0 0 1 0 1 0 1]
[0 0 0 0 0 1 1 0] [0 1 0 0 1 1 0 0]
[0 1 0 0 0 0 0 1], [0 0 0 1 1 0 0 0]

Rows 1,5 and columns 6,7 are now inactive.

Double Matrix Algorithm (Task 2.3) 10/11



At each step we need the current matrix M ′ to identify which
ideals we can merge, and the current P to compute the cost of
each merge:

scan columns of M ′ to identify those j of weight k ≤ K ;
for each such column j of weight k, compute the cost of the
merge in P;
perform the merges with smallest cost by updating both P
and M ′.

Double Matrix Algorithm (Task 2.3) 11/11


