
CORE-MATH
Correctly Rounded Mathematical
Functions ... Up to the End User

CORE-MATH Correctly Rounded Mathematical Functions ... Up to the End User 1/18

Today

#include <stdio.h>
#include <math.h>

int main()
{

float x1 = 1.01027, x2 = 1.775031328;
printf ("sinf(x1)=%.9f sinf(x2)=%.9f\n",

sinf (x1), sinf (x2));
}

GNU libc 2.35:
sinf(x1)=0.846975386 sinf(x2)=0.979216456

Intel Math Library (oneAPI 2022.0.0):
sinf(x1)=0.846975446 sinf(x2)=0.979216397

CORE-MATH Correctly Rounded Mathematical Functions ... Up to the End User 2/18

Our Dream

#include <stdio.h>
#include <math.h>

int main()
{

float x1 = 1.01027, x2 = 1.775031328;
printf ("sinf(x1)=%.9f sinf(x2)=%.9f\n",

cr_sinf (x1), cr_sinf (x2));
}

GNU libc 3.4.5:
sinf(x1)=0.846975386 sinf(x2)=0.979216397

Intel Math Library 23.1.4.217:
sinf(x1)=0.846975386 sinf(x2)=0.979216397

CORE-MATH Correctly Rounded Mathematical Functions ... Up to the End User 3/18

How to make our dream possible?

wait for the next IEEE-754 revision (2029), try to convince
the revision committee that correct rounding is required for
math functions, and wait another 5-10 years that math
libraries do comply;
or build yet another mathematical library with correct
rounding, make it available to users, and maintain it over the
different hardware, operating systems and compilers;
or write efficient math routines with correct rounding, and
contribute them to the already existing math libraries (GNU
libc, Intel Math Library, AMD Libm, Redhat Newlib,
OpenLibm, Musl, ...)

CORE-MATH Correctly Rounded Mathematical Functions ... Up to the End User 4/18

Current mathematical libraries

binary32 binary64 binary80 binary128
GNU libc

√ √ √ √

Intel Math Library
√ √ √ √

AMD Libm
√ √

Redhat Newlib
√ √

OpenLibm
√ √ √

Musl
√ √ √

GNU libc is available in most Linux distributions.
The Intel Math Library is now freely available as a Docker image.
Musl is available in Alpine Linux.
IML and most of AMD Libm have their own code base, other
libraries share some functions.
Also: Apple Math Library, LLVM libc, CUDA libm, RoCM

CORE-MATH Correctly Rounded Mathematical Functions ... Up to the End User 5/18

Why did previous attempts fail?

MathLib/libultim (Ziv, 1991): almost succeeded, since
Mathlib code was introduced in GNU libc, but the “slow
path” was removed from 2018 to 2021. Main drawbacks:
obscure code, large tables, very slow worst cases;
CRlibm (Daramy-Loirat, Defour, de Dinechin, Gallet, Gast,
Lauter, Muller, 2004-2006): much better worst-case
performance, proofs of correctness, small tables, better use of
FMA. Initial goal was only a “proof of concept” with good
performance (and it was successful as such).

CORE-MATH Correctly Rounded Mathematical Functions ... Up to the End User 6/18

Why would it succeed now?

the next C standard has reserved names cr_sin for
correctly-rounded (CR) functions (see draft N2731);
recent progress in the search for worst cases (TaMaDi project
2010-2013, BacSel tool, Serge Torres PhD thesis 2016). This
will help in reducing the worst-case times;
recent progress in the implementation (MetaLibm project,
2014-2018);
very good knowledge of the field (Handbook of Floating-Point
Arithmetic, 2010, 2nd edition 2018);
good contacts with the developers of math libraries, with the
C Floating-Point group working on C bindings for IEEE 754;
numerical reproducibility is more and more a concern (cf
NRE2019 workshop in 2019, ICERM workshop in 2020)

CORE-MATH Correctly Rounded Mathematical Functions ... Up to the End User 7/18

Workplan

Phase 1 (completed): publish efficient CR code for two sample
functions (cbrt and acos).
Phase 2 (in progress): contact developers/vendors of math libraries
and propose them to join the project (as observer, developer,
counsellor, information provider, computing power provider, ...).
Discuss with them of technical details (license, size of tables, code
size, ...)
Phase 3 (started): implement highly optimized CR code with
proofs, and help developers/vendors of math libraries to integrate it
Phase 4: provide support if bugs are found in our original code
and/or in the proofs.

CORE-MATH Correctly Rounded Mathematical Functions ... Up to the End User 8/18

Which functions?

Target the 39 functions defined in IEEE 754-2019:

exp, expm1, exp2, exp2m1, exp10, exp10m1;
log, log2, log10, logp1, log2p1, log10p1;
hypot;
rSqrt;
compound;
rootn, pown, pow, powr;
sin, cos, tan, sinPi, cosPi, tanPi;
asin, acos, atan, asinPi, acosPi, atanPi;
atan2, atan2Pi;
sinh, cosh, tanh;
asinh, acosh, atanh.

CORE-MATH Correctly Rounded Mathematical Functions ... Up to the End User 9/18

Which target formats

single precision (binary32);
double precision (binary64);
extended double precision (long double on x86_64);
quadruple precision (binary128).

CORE-MATH Correctly Rounded Mathematical Functions ... Up to the End User 10/18

How to Round Correctly?

Assume the target type has n bits.
Let m be a bound on the HR (hardest-to-round) cases (usually
m ≈ 2n), and ◦() the current rounding mode.

exp(0.09407822313572878) = 1.09864568206633850000000000000000278
[quick phase] compute an approximation y with say n + 10
correct bits, and maximal error ε

[rounding test] if ◦(y − ε) = ◦(y + ε), return that number
[accurate phase] otherwise compute an approximation y ′ with
more than m correct bits, then ◦(y ′) is always CR

CORE-MATH Correctly Rounded Mathematical Functions ... Up to the End User 11/18

Workplan for a given function and a given
target format

Compute hardest-to-round (HR) cases and exact cases (if any).
Try several implementations of the quick phase and of the accurate
phase: different kinds of argument reduction, different internal
formats (double, int64_t), optional use of FMA. Check their
correctness on the HR and exact cases.
Keep the fastest one, optionally prove its correctness, possibly with
the use of some exhaustive search, and tools like Sollya, Gappa.
Publish the code. Help the math lib vendors/developers to
integrate the code.

CORE-MATH Correctly Rounded Mathematical Functions ... Up to the End User 12/18

How to do for missing HR cases?

In some cases (atan2/hypot/pow in single precision, sin in double
precision, all functions in quadruple precision), it might be very
difficult to compute HR cases.
At the end of the accurate phase, since we know the maximal
error, we can perform a second rounding test.
If it succeeds, we are sure the computed value is CR.
Otherwise, it might be wrong. Either return it (default mode), or
launch an exception at the user request.
Possibly offer bug bounties for non-CR cases, or inputs giving such
an exception.
Cf Brisebarre/Hanrot estimates on the number of HR cases.

CORE-MATH Correctly Rounded Mathematical Functions ... Up to the End User 13/18

How to deal with rounding modes?

One routine for each mathematical function:

fesetround (FE_TOWARDZERO);
y = cr_sin (x);

This is already how it works for the sqrt function.

CORE-MATH Correctly Rounded Mathematical Functions ... Up to the End User 14/18

Current progress

Cf https://core-math.gitlabpages.inria.fr/

MIT license to make integration easier.

binary32: all C99 functions implemented (except powf)
binary64: acos, cbrt, exp (to nearest)
binary80: acos, cbrt
binary128: acos, cbrt

CORE-MATH Correctly Rounded Mathematical Functions ... Up to the End User 15/18

https://core-math.gitlabpages.inria.fr/

And what about performance?

0 20 40 60 80 100 120 140
CPU clock cycles per function call (Less is better)

AS_cr_erff throughput @ i9-11900H16.7

AS_cr_erff latency @ i9-11900H 48.0

AS_cr_erff throughput @ R5-2400G15.6

AS_cr_erff latency @ R5-2400G 50.6

PZ_cr_erff throughput @ i9-11900H22.7

PZ_cr_erff latency @ i9-11900H 71.7

PZ_cr_erff throughput @ R5-2400G24.6

PZ_cr_erff latency @ R5-2400G 74.9

erff@glibc2.34 throughput @ i9-11900H 66.2

erff@glibc2.34 latency @ i9-11900H 143.3

erff@glibc2.34 throughput @ R5-2400G 66.6

erff@glibc2.34 latency @ R5-2400G 138.1

erff@icc 19.1.1.217 throughput @ i9-11900H25.6

erff@icc 19.1.1.217 latency @ i9-11900H 74.2

erff@icc 19.1.1.217 throughput @ R5-2400G28.3

erff@icc 19.1.1.217 latency @ R5-2400G 72.8

4.16, 4.16])−Performance of erff implementations (100000 random uniformly distributed arguments in [

CORE-MATH Correctly Rounded Mathematical Functions ... Up to the End User 16/18

How can I contribute?

• find a bug in the published functions
• submit a faster CR implementation
• find hard-to-round cases for binary64, binary80 or binary128
• make a formal proof of some implementation
• work on the integration in some libm

CORE-MATH Correctly Rounded Mathematical Functions ... Up to the End User 17/18

References

https://core-math.gitlabpages.inria.fr/: main page

https://gitlab.inria.fr/core-math/core-math/: git page

CORE-MATH Correctly Rounded Mathematical Functions ... Up to the End User 18/18

https://core-math.gitlabpages.inria.fr/
https://gitlab.inria.fr/core-math/core-math/

