
The CORE-MATH Project

Alexei Sibidanov, Paul Zimmermann, Stéphane Glondu

Arith 2022 conference, September 12, 2022

The CORE-MATH Project 1/36

Which library is correct?

#include <stdio.h>
#include <math.h>

int main()
{

float x1 = 1.01027, x2 = 1.775031328;
printf ("sinf(x1)=%.9f sinf(x2)=%.9f\n", sinf (x1), sinf (x2));

}

GNU libc 2.36:
sinf(x1)=0.846975386 sinf(x2)=0.979216456

Intel Math Library (oneAPI 2022.0.0):
sinf(x1)=0.846975446 sinf(x2)=0.979216397

The CORE-MATH Project 2/36

Which version is correct?

#include <stdio.h>
#include <math.h>
#include <gnu/libc-version.h>

int main() {
printf("GNU libc version: %s\n", gnu_get_libc_version ());
double x = -0x1.f8b791cafcdefp+4; printf ("sin(x)=%la\n", sin (x));

}

$ gcc -fno-builtin sin.c -lm

GNU libc version 2.27:
sin(x)=-0x1.073ca87470df9p-3

GNU libc version 2.36:
sin(x)=-0x1.073ca87470dfap-3

The CORE-MATH Project 3/36

Unexpected behavior on different hardware

#include <stdio.h>
#include <math.h>
int main() {

double x = 0x1.01825ca7da7e5p+0;
printf ("x=%la y=%la\n", x, acosh (x));

}

$ icc -fno-builtin test_acosh.c # icc version 19.1.3.304

sirocco14.plafrim.cluster (Intel Xeon Gold 6142):
x=0x1.01825ca7da7e5p+0 y=0x1.bc8c6186687cbp-4

zonda03.plafrim.cluster (AMD EPYC 7452, same binary):
x=0x1.01825ca7da7e5p+0 y=0x1.bc8c6186687cap-4

The CORE-MATH Project 4/36

Our Dream

#include <stdio.h>
#include <math.h>

int main()
{

float x1 = 1.01027, x2 = 1.775031328;
printf ("sinf(x1)=%.9f sinf(x2)=%.9f\n", cr_sinf (x1), cr_sinf (x2));

}

GNU libc 3.4.5:
sinf(x1)=0.846975386 sinf(x2)=0.979216397

Intel Math Library 23.1.4.217:
sinf(x1)=0.846975386 sinf(x2)=0.979216397

The CORE-MATH Project 5/36

Correct Rounding

Definition
For a mathematical function f , a floating-point format F , the correct rounding of f (x)
for x ∈ F is the unique floating-point number y ∈ F which is closest to f (x) in the
given rounding direction.

Remark: here “closest” means with ties resolved (if any).

Consequence: uniqueness =⇒ reproducibility.

The CORE-MATH Project 6/36

What does IEEE 754 say?

The CORE-MATH Project 7/36

What does the C standard say?

The CORE-MATH Project 8/36

Hard-to-Round (HR) Cases
Binary32:

pow(0x1.46ee2p+67, -0x1.acbb3ap-7)
= 0x1.15f75e00000000000000058b...p-1

Binary64:

hypot(0x1.6p+0, 0x1.2c2fc595456a7p-26)
= 0x1.60000000000008000000000000141...

Decimal64:

exp(0.09407822313572878)
= 1.09864568206633850000000000000000278...

The CORE-MATH Project 9/36

How to Round Correctly?

Ziv’s “onion peeling” Strategy.
Assume the target type has n bits.
Let ◦() the current rounding mode.

[quick phase/fast path] compute an approximation y with say n + 10 correct bits,
and maximal error ε

[rounding test] if ◦(y − ε) = ◦(y + ε), return that number
[if any] deal with exact or midpoint cases
[accurate phase/slow path] otherwise compute an approximation y ′ with more
than m correct bits, where m is a bound on the hardest-to-round cases, then ◦(y ′)
is always CR (Table Maker’s Dilemma)

The CORE-MATH Project 10/36

A figure is better than thousand words

2

4

6

8

10

12

14

Rounding boundary

Consecutive floating point values

A
dd

iti
on

al
 p

re
ci

si
on

 (
bi

t)

A
cc

ur
at

e
Pa

th

Fast path precision

Worst case limit

Fast Path Fast Path Fast Path Fast Path

The CORE-MATH Project 11/36

MathLib/libultim (Ziv et al., IBM, 1991)

Provides the following binary64 functions: acos, asin, atan, atan2, exp, exp2,
log, log2, cos, sin, tan, cot, pow

Slow path based on multiple-precision arithmetic with up to 768 bits.
Correct rounding only for rounding to nearest.
Integrated in GNU libc 2.27 (except acos, exp2, log2 and cot).
Slow path removed progressively after GNU libc 2.27.
440,000 cycles for binary64 pow in the “768-bit” path.
Non-official copy: https://github.com/dreal-deps/mathlib.

The CORE-MATH Project 12/36

https://github.com/dreal-deps/mathlib

CRLIBM (Muller et al., 2004-2006)
Provides exp, expm1, log, log1p, log2, log10, sin, cos, tan, asin,
acos, atan, sinh, cosh, sinpi, cospi, tanpi, atanpi, and pow
(incomplete).
All 4 rounding modes: exp_rn, exp_rz, exp_ru, exp_rd.
Assumes rounding precision to double, and rounding mode to nearest-even
(crlibm_init).

use of modern instructions (FMA)
knowledge of HR cases =⇒ better tuning of slow path
use of triple-double arithmetic

For double-precision exp, [6] reports a max/avg ratio of 6500 for MathLib, against
only 6.6 for CR-LIBM.
[6] Daramy-Loirat, Defour, de Dinechin, Gallet, Gast, Lauter, Muller, CR-LIBM: A
library of correctly rounded elementary functions in double-precision, 2006.

The CORE-MATH Project 13/36

RLIBM (2020-)

Santosh Nagarakatte, M. Aanjaneya, J.P. Lim, S. Park.
Provides binary32 cosh, cospi, exp, exp10, exp2, log, log10, log2, sinh,
sinpi.
All rounding modes (in RLIBM-ALL).
Provides not only IEEE binary formats, but also posits.
Use new approach based on linear programming, to find polynomials that yield correct
rounding.
Does this approach scale for binary64?
https://people.cs.rutgers.edu/~sn349/rlibm/

The CORE-MATH Project 14/36

https://people.cs.rutgers.edu/~sn349/rlibm/

LLVM-libc (2022-)

Authors: Tue Ly, Siva Chandra, Kirill Okhotnikov.
Supported by Google.
Goal is to provide only correctly-rounded routines.
LLVM 14.0.6 already provides (correctly-rounded) binary32 log, log10, log2,
hypot, and binary64 hypot.

The CORE-MATH Project 15/36

Reserved Names

The current draft of the C2x standard (N3047) contains (page 451):

Function names that begin with cr_ are potentially reserved identifiers and
may be added to the <math.h> header. The cr_ prefix is intended to indicate
a correctly rounded version of the function.

C2x also contains new functions: exp2m1, exp10m1, log2p1, rsqrt, sinpi,
cospi, tanpi, asinpi, acospi, atanpi, atan2pi.

The CORE-MATH Project 16/36

The CORE-MATH methodology and expertise
Compute exact, midpoint and HR cases (including for bivariate binary32 functions):
BaCSeL software tool.

Implement a quick phase with about 10-15 extra bits wrt the target precision with
small or no tables and optimal minimax polynomials: Sollya software tool.

Analyze the maximum error of the quick phase and deduce the rounding test bound:
tight error analysis.

Tune the accurate phase accuracy with knowledge of the HR cases, with some
exceptional inputs if needed.

Check correctness on the exact, midpoint and HR cases, for all rounding modes: GNU
MPFR software tool.

The CORE-MATH Project 17/36

HR cases for atan2

y , x is a HR case for atan2 iff atan(y/x) is near a 25-bit number z in the binary32
range.
Thus y/x is near tan z .
Algorithm:

for each 25-bit number z in the binary32 range:
compute the continued fraction of tan z
take the largest convergent y/x such that both y and x are representable on 24
bits
then y , x is a hard-to-round case for atan2

Worst non-trivial case (x , y ̸= 2k) is:

atan2(0x1.3ee9f4p+37, 0x1.7e87d2p+23) = 0x1.921ae900000000000008b4...p+0

The CORE-MATH Project 18/36

Methodology in action: binary64 cube root

computation of exact cases
computation of HR-cases
fast path
accurate path

The CORE-MATH Project 19/36

Binary64 cube root: exact cases

We want
y3 = x

with both x and y binary64 numbers.
Wlog, we can assume 1 ≤ y < 2.
Write y = m · 2e with m odd.
Necessarily m ≤ ⌊253/3⌋ = 208063, otherwise m3 does not fit into 53 bits.
Total 104032 exact cases.

Remark: output of cbrt is never in the subnormal range.

Note: we deal with exact cases after the rounding test, outside the critical path.

The CORE-MATH Project 20/36

Binary64 cube root: hard-to-round cases

We used the BaCSeL software tool.
Wlog, we can restrict to 1/2 ≤ x < 4.
We search inputs with at least 44 identical bits after the round bit.
Real time about 2 hours per binade on a 112-core E7-4850 at 2.2Ghz.
We found 1496 such inputs: 491 in [1/2, 1), 501 in [1, 2), 504 in [2, 4).

cbrt(0x1.9b78223aa307cp+1) = 0x1.79d15d0e8d59b80000000000000ffc...

The CORE-MATH Project 21/36

Binary64 cube root: fast path (1/3)
scale a to [1, 2)
compute an initial 3rd-order minimax approximation x0 with rel. error < 0.3 · 10−3

1 1.2 1.4 1.6 1.8 2
a

0.2−

0.1−

0

0.1

0.2

3−10×

 a
)

/ a
− 3 0

(x

The CORE-MATH Project 22/36

Binary64 cube root: fast path (2/3)
scale a to [1, 2)
compute an initial 3rd-order minimax approximation x0 with rel. error < 0.3 · 10−3

perform a Newton iteration of order 3 to get x1 with relative error < 6 · 10−12

1 1.2 1.4 1.6 1.8 2
a

5−

0

5

12−10×

 a
)

/ a
− 3 1

(x

The CORE-MATH Project 23/36

Binary64 cube root: fast path (3/3)
scale a to [1, 2)
initial 3rd-order minimax approximation x0 with rel. error < 0.3 · 10−3 (double)
Newton iteration of order 3 to get x1 with rel. error < 6 · 10−12 (double)
Newton iteration of order 2 to get x2 with rel. error < 1.32 · 10−23 (double-double)

2 4 6 8
a

10−

5−

0

24−10×

1/
3

 a− 2x

The CORE-MATH Project 24/36

Binary64 cube root: fast path

At the end of the fast path, a1/3 is approximated by x2 := xhigh
2 + x low

2 .

Lemma
Whatever the rounding mode, we have |x low

2 | < 2−52.

Maximal error |a1/3 − x2| < 1.32 · 10−23 < 2−76.
Round to nearest: check

||x low
2 | − 2−53| > 2−76

where 2−53 = 1/2ulp(xhigh
2).

Directed modes:
|x low

2 | > 2−76 and |x low
2 − 2−52| > 2−76

Probability of the accurate path < 2−76/2−52 = 2−24.

The CORE-MATH Project 25/36

Binary64 cube root: accurate path

The value x2 at the end of the fast path has about 76 correct bits.
We perform another Newton iteration in double-double, and get x3 with about 104 bits
of accuracy.

The CORE-MATH Project 26/36

Binary64 cube root: accurate path

For a few hard-to-round cases, the accurate path does not return a correctly rounded
value.
We hardcode the correct result for them (only 9 values), where z is the input value
reduced to [1, 8):

if (abs(z) == 0x1.9b78223aa307cp+1)
y = copysign (0x1.79d15d0e8d59cp+0, z);

The CORE-MATH Project 27/36

Performance comparison: binary32 sine function

Intel Math Library from icx 2021.1, AMD libm 3.9, LLVM 14.0.6, GNU libc 2.35,
CORE-MATH a9d7d84

0 5 10 15 20 25 30 35 40 45

CPU clock cycles per function call (Less is better)

CORE-MATH 19.6

GLIBC2.35 29.2

LLVM 41.6

AMD 42.7

INTEL 27.0

sinf reciprocal throughput @ R5-2400G

The CORE-MATH Project 28/36

Binary32 error function

0 10 20 30 40 50 60 70

CPU clock cycles per function call (Less is better)

CORE-MATH 15.8

GLIBC2.35 66.2

INTEL 28.4

erff reciprocal throughput @ R5-2400G

The CORE-MATH Project 29/36

Binary32 power function

0 5 10 15 20 25 30 35 40

CPU clock cycles per function call (Less is better)

CORE-MATH 38.8

GLIBC2.35 23.8

AMD 34.3

INTEL 29.4

powf reciprocal throughput @ R5-2400G

The CORE-MATH Project 30/36

Binary64 cube root

0 10 20 30 40 50 60

CPU clock cycles per function call (Less is better)

CORE-MATH 51.3

GLIBC2.35 62.2

AMD 44.2

INTEL 21.0

cbrt reciprocal throughput @ R5-2400G

The CORE-MATH Project 31/36

Binary64 arc-cosine

0 10 20 30 40 50

CPU clock cycles per function call (Less is better)

CORE-MATH 45.5

GLIBC2.35 56.3

AMD 46.9

INTEL 37.3

acos reciprocal throughput @ R5-2400G

The CORE-MATH Project 32/36

Binary64 hypot

210
CPU clock cycles per function call (Less is better)

CORE-MATH 27.8

GLIBC2.35 60.9

LLVM 426.9

AMD 48.2

INTEL 34.0

hypot reciprocal throughput @ R5-2400G

The CORE-MATH Project 33/36

Current progress

See https://core-math.gitlabpages.inria.fr/

MIT license to make integration easier.

binary32: all C99 functions implemented plus exp10

binary64: acos, cbrt, exp, exp2, hypot. In review: asin, exp10, pow

The CORE-MATH Project 34/36

https://core-math.gitlabpages.inria.fr/

Conclusion

We present for the first time implementations of correctly rounded routines as fast as
in the best current math libraries or even faster.

Full set of C99 binary32 functions ready for integration (either as expf or cr_expf).

Full set of C99 binary64 functions planned for end of 2023.

Time for IEEE-754 to require correct rounding!

Not yet another libm, but aimed at integration in existing libms.

If you want CORE-MATH routines to be optimized for your particular hardware, please
contact us.

The CORE-MATH Project 35/36

The CORE-MATH perf.sh tool
On a AMD EPYC 7282:

$./perf.sh atanf
GNU libc version: 2.36
GNU libc release: stable
17.592 # CORE-MATH
31.617 # GNU libc 2.36

$ PERF_ARGS=--latency ./perf.sh atanf
61.456 # CORE-MATH
72.358 # GNU libc 2.36

$ LIBM=libllvmlibc-14.0.6.a ./perf.sh log10f
10.754 # CORE-MATH
18.513 # GNU libc 2.36
9.952 # LLVM 14.0.6

The CORE-MATH Project 36/36

