Error bounds on complex floating-point multiplication

Paul Zimmermann, INRIA/LORIA, Nancy, France

(joint work with Richard Brent and Colin Percival)
December 14th, 2005

Notations

- t-digit base β f-p arithmetic
- no underflow/overflow
- all roundings to nearest (even)
$\circ(x)$ is the rounding to nearest of x
$a \oplus b=\circ(a+b), \quad a \otimes b=\circ(a \cdot b)$
$\operatorname{ulp}(x)$ is the "unit in last place" of x :

$$
\beta^{t-1} \operatorname{ulp}(x) \leq|x|<\beta^{t} \operatorname{ulp}(x)
$$

Complex Multiplication

$$
\begin{gathered}
z_{0}=a_{0}+b_{0} i, \quad z_{1}=a_{1}+b_{1} i \\
z_{0} z_{1}=\left(a_{0} a_{1}-b_{0} b_{1}\right)+\left(a_{0} b_{1}+b_{0} a_{1}\right) i \\
z_{2}=\left(\left(a_{0} \otimes a_{1}\right) \ominus\left(b_{0} \otimes b_{1}\right)\right)+\left(\left(a_{0} \otimes b_{1}\right) \oplus\left(b_{0} \otimes a_{1}\right)\right) i
\end{gathered}
$$

What is the largest relative error?

$$
\frac{\left|z_{2}-z_{0} z_{1}\right|}{\left|z_{0} z_{1}\right|}
$$

Plan

- previous work
- proof of the $\sqrt{5}$ bound
- worst-cases for base $\beta=2$
- future work

References:

Rapid multiplication modulo the sum and difference of highly composite numbers, C. Percival, Math. of Comp., 2003.

Error bounds on complex floating-point multiplication, R. Brent, C. Percival, P. Z., submitted to Math. of Comp., 2005, 12 pages.

Higham's Bound

N. J. Higham, Accuracy and Stability of Numerical Algorithms, Second Edition, SIAM, 2002.

$$
\left|z_{2}-z_{0} z_{1}\right| \leq \epsilon \sqrt{8}\left|z_{0} z_{1}\right|
$$

where $\epsilon=\frac{1}{2} \operatorname{ulp}(1)=\frac{1}{2} \beta^{1-t}$.

Higham's Bound (sketch)

$$
\begin{aligned}
& \left|\mathcal{I}\left(z_{2}-z_{0} z_{1}\right)\right| \leq 2 \epsilon \cdot\left(a_{0} b_{1}+b_{0} a_{1}\right) \\
& \left|\mathcal{R}\left(z_{2}-z_{0} z_{1}\right)\right| \leq 2 \epsilon \cdot\left(a_{0} a_{1}\right)+O\left(\epsilon^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\sqrt{\mathcal{R}^{2}+\mathcal{I}^{2}} & \leq \epsilon \sqrt{4\left(a_{0} a_{1}\right)^{2}+4\left(a_{0} b_{1}+b_{0} a_{1}\right)^{2}}+O\left(\epsilon^{2}\right) \\
& \leq \epsilon \sqrt{8\left(a_{0} a_{1}-b_{0} b_{1}\right)^{2}+8\left(a_{0} b_{1}+b_{0} a_{1}\right)^{2}}+O\left(\epsilon^{2}\right)
\end{aligned}
$$

A Maple Proof

$>\mathrm{e}:=8 *(\mathrm{a} 0 * \mathrm{~b} 1+\mathrm{a} 1 * \mathrm{~b} 0)^{\wedge} 2+8 *(\mathrm{a} 0 * \mathrm{a} 1-\mathrm{b} 0 * \mathrm{~b} 1)^{\wedge} 2$

$$
-4 *(\mathrm{a} 0 * \mathrm{~b} 1+\mathrm{a} 1 * \mathrm{~b} 0)^{\wedge} 2-4 *(\mathrm{a} 0 * \mathrm{a} 1)^{\wedge} 2:
$$

$>$ expand(e);

$$
\begin{array}{llllll}
2 & 2 & 2 & 2 & 2 & 2
\end{array}
$$

$4 \mathrm{a} 0 \mathrm{~b} 1-8 \mathrm{a} 0 \mathrm{~b} 1 \mathrm{a} 1 \mathrm{~b} 0+4 \mathrm{a} 1 \mathrm{~b} 0+4 \mathrm{a} 0 \mathrm{a} 1$

$$
\begin{array}{r}
2{ }^{2}{ }^{2} \\
+8 b 0 \mathrm{~b} 1
\end{array}
$$

This is:

$$
4\left(a_{0} b_{1}-a_{1} b_{0}\right)^{2}+4 a_{0}^{2} a_{1}^{2}+8 b_{0}^{2} b_{1}^{2}
$$

A 10-line but Wrong Proof

[...] we observe that if $2 b_{0} b_{1} \geq a_{0} a_{1}$ there is no error introduced by the subtraction [6]; further, if $2 b_{0} b_{1}<a_{0} a_{1}$ then the total error introduced in computing $b_{0} b_{1}$ and performing the subtraction is bounded by $\epsilon\left(a_{0} a_{1}-b_{0} b_{1}\right)$.

$$
\beta=2, t=5, z_{0}=28+17 i, z_{1}=31+18 i
$$

Total error on $b_{0} b_{1}$ and subtraction: $16-(-2)=18$

$$
\epsilon\left(a_{0} a_{1}-b_{0} b_{1}\right)=17.5625
$$

Our Main Result

Theorem 1. Let $z_{0}=a_{0}+b_{0} i$ and $z_{1}=a_{1}+b_{1} i$, with $a_{0}, b_{0}, a_{1}, b_{1}$ floating-point values with t-digit base- β significands, and let

$$
z_{2}=\left(\left(a_{0} \otimes a_{1}\right) \ominus\left(b_{0} \otimes b_{1}\right)\right)+\left(\left(a_{0} \otimes b_{1}\right) \oplus\left(b_{0} \otimes a_{1}\right)\right) i
$$

be computed. Providing that no overflow or underflow occur, no denormal values are produced, arithmetic results are correctly rounded to a nearest representable value, $z_{0} z_{1} \neq 0$, and $\epsilon \leq 2^{-5}$, the relative error

$$
\left|z_{2}\left(z_{0} z_{1}\right)^{-1}-1\right|
$$

is less than $\epsilon \sqrt{5}=\frac{1}{2} \beta^{1-t} \sqrt{5}$.

Symmetries

Let $\mathcal{R}\left(a_{0}, b_{0}, a_{1}, b_{1}\right):=\left(a_{0} \otimes a_{1}\right) \ominus\left(b_{0} \otimes b_{1}\right)$ and $\mathcal{I}\left(a_{0}, b_{0}, a_{1}, b_{1}\right):=\left(a_{0} \otimes b_{1}\right) \oplus\left(b_{0} \otimes a_{1}\right)$.

The change $z_{0} \rightarrow z_{0} i$ gives $\left(a_{0}, b_{0}\right) \rightarrow\left(-b_{0}, a_{0}\right)$, and $\mathcal{R} \rightarrow-\mathcal{I}, \mathcal{I} \rightarrow \mathcal{R}$, thus the relative error on z_{2} is unchanged.

The same holds for $z_{1} \rightarrow z_{1} i$. We can thus assume z_{0} and z_{1} in the 1 st quadrant:

$$
a_{0}, b_{0}, a_{1}, b_{1} \geq 0
$$

Similarly, $\left(z_{0}, z_{1}\right) \rightarrow\left(i \overline{z_{0}}, i \overline{z_{1}}\right)$ gives $\mathcal{R} \rightarrow-\mathcal{R}, \mathcal{I} \rightarrow \mathcal{I}$.

We can thus assume $z_{0} z_{1}$ is in the 1 st quadrant:

$$
b_{0} b_{1} \leq a_{0} a_{1}
$$

By exchanging z_{0} and z_{1}, we can assume

$$
b_{0} a_{1} \leq a_{0} b_{1}
$$

Then by $z_{0} \rightarrow z_{0} \cdot 2^{j}$ and $z_{1} \rightarrow z_{1} \cdot 2^{k}$, we can assume

$$
\frac{1}{2} \leq a_{0}<1, \quad \frac{1}{2} \leq a_{0} a_{1}<1
$$

In the sequel, we assume all those inequalities hold.

Error bounds on complex floating-point multiplication, Sun Menlo Park, December 14th, 2005

Proof of Theorem 1 (sketch)

(1) bound on the imaginary part: two cases (I1, I2)

$$
\left|\mathcal{I}\left(z_{2}-z_{0} z_{1}\right)\right| \leq \epsilon \cdot\left(2 a_{0} b_{1}+2 b_{0} a_{1}\right)
$$

(2) bound on the real part: four cases (R1, R2, R3, R4)

$$
\left|\mathcal{R}\left(z_{2}-z_{0} z_{1}\right)\right| \leq \epsilon \cdot\left(\lambda a_{0} a_{1}+\mu b_{0} b_{1}\right)+\gamma \epsilon^{2} \cdot\left(a_{0} a_{1}+b_{0} b_{1}\right)
$$

with different λ, μ, γ;
(3) from (1) and (2) we deduce:

$$
\left|z_{2}-z_{0} z_{1}\right| \leq \nu \epsilon \cdot\left|z_{0} z_{1}\right|
$$

Preliminary Lemma

Lemma. For any real x, let $y=\circ(x)$, we have:

$$
\begin{gathered}
|y-x| \leq \frac{1}{2} \operatorname{ulp}(x) \\
|y-x|<\epsilon \cdot|x|
\end{gathered}
$$

First bound trivial for $\operatorname{ulp}(x)=\operatorname{ulp}(y)$. Otherwise $y=\beta^{j}$ and $|y-x| \leq \frac{1}{2 \beta} \operatorname{ulp}(y)=\frac{1}{2} \operatorname{ulp}(x)$.
The 2nd follows from the 1st, with $\beta^{t-1} \operatorname{ulp}(x) \leq|x|$ (equality if $|x|=\beta^{j}$ only) and $\epsilon=\frac{1}{2} \beta^{1-t}$.

The Imaginary Part

$$
\begin{aligned}
\mid \mathcal{I}\left(z_{2}\right. & \left.-z_{0} z_{1}\right)\left|\leq\left|a_{0} \otimes b_{1}-a_{0} b_{1}\right|+\left|b_{0} \otimes a_{1}-b_{0} a_{1}\right|\right. \\
& +\left|\left(\left(a_{0} \otimes b_{1}\right) \oplus\left(b_{0} \otimes a_{1}\right)\right)-\left(a_{0} \otimes b_{1}+b_{0} \otimes a_{1}\right)\right|
\end{aligned}
$$

Two cases:
Case I1: $\operatorname{ulp}\left(a_{0} b_{1}+b_{0} a_{1}\right)<\operatorname{ulp}\left(a_{0} \otimes b_{1}+b_{0} \otimes a_{1}\right)$
Case I2: $\operatorname{ulp}\left(a_{0} \otimes b_{1}+b_{0} \otimes a_{1}\right) \leq \operatorname{ulp}\left(a_{0} b_{1}+b_{0} a_{1}\right)$

I1: $\operatorname{ulp}\left(a_{0} b_{1}+b_{0} a_{1}\right)<\operatorname{ulp}\left(a_{0} \otimes b_{1}+b_{0} \otimes a_{1}\right)$

Exceptional case.
Example: $z_{0}=0.1011+0.1000 i, z_{1}=0.1100+0.1110 i$.
$a_{0} b_{1}+b_{0} a_{1}=0.11111010$
$a_{0} \otimes b_{1}=0.1010, b_{0} \otimes a_{1}=0.0110$,
$a_{0} \otimes b_{1}+b_{0} \otimes a_{1}=1.000$
Remark: $a_{0} \otimes b_{1}+b_{0} \otimes a_{1}$ is not necessarily a power of 2 . Consider $t=5, z_{0}=30+19 i, z_{1}=19+22 i$, then $a_{0} b_{1}+b_{0} a_{1}=1021, a_{0} \otimes b_{1}+b_{0} \otimes a_{1}=672+368=1040$.

$$
\begin{aligned}
& \text { I1: } \operatorname{ulp}\left(a_{0} b_{1}+b_{0} a_{1}\right)<\operatorname{ulp}\left(a_{0} \otimes b_{1}+b_{0} \otimes a_{1}\right) \\
& a_{0} b_{1}+b_{0} a_{1}<\beta^{t} \operatorname{ulp}\left(a_{0} b_{1}+b_{0} a_{1}\right) \leq a_{0} \otimes b_{1}+b_{0} \otimes a_{1}
\end{aligned}
$$

Thus:

$$
\begin{aligned}
\mid\left(a_{0} \otimes b_{1}+b_{0} \otimes a_{1}\right) & -\beta^{t} u \operatorname{ulp}\left(a_{0} b_{1}+b_{0} a_{1}\right) \mid \\
& <\left(a_{0} \otimes b_{1}+b_{0} \otimes a_{1}\right)-\left(a_{0} b_{1}+b_{0} a_{1}\right) \\
& \leq\left|a_{0} \otimes b_{1}-a_{0} b_{1}\right|+\left|b_{0} \otimes a_{1}-b_{0} a_{1}\right| \\
& \leq \epsilon \cdot\left(a_{0} b_{1}+b_{0} a_{1}\right)
\end{aligned}
$$

Since $\beta^{t} u l p\left(a_{0} b_{1}+b_{0} a_{1}\right)$ is representable:

$$
\left|\left(\left(a_{0} \otimes b_{1}\right) \oplus\left(b_{0} \otimes a_{1}\right)\right)-\left(a_{0} \otimes b_{1}+b_{0} \otimes a_{1}\right)\right| \leq \epsilon \cdot\left(a_{0} b_{1}+b_{0} a_{1}\right)
$$

I2: $\operatorname{ulp}\left(a_{0} \otimes b_{1}+b_{0} \otimes a_{1}\right) \leq \operatorname{ulp}\left(a_{0} b_{1}+b_{0} a_{1}\right)$

Usual case.

$$
\begin{aligned}
\mid\left(\left(a_{0} \otimes b_{1}\right) \oplus\left(b_{0} \otimes a_{1}\right)\right) & -\left(a_{0} \otimes b_{1}+b_{0} \otimes a_{1}\right) \mid \\
& \leq \frac{1}{2} \operatorname{ulp}\left(a_{0} \otimes b_{1}+b_{0} \otimes a_{1}\right) \\
& \leq \frac{1}{2} \operatorname{ulp}\left(a_{0} b_{1}+b_{0} a_{1}\right) \\
& \leq \epsilon \cdot\left(a_{0} b_{1}+b_{0} a_{1}\right)
\end{aligned}
$$

In both cases (I1 and I2), we have

$$
\begin{aligned}
\mid\left(\left(a_{0} \otimes b_{1}\right) \oplus\left(b_{0} \otimes a_{1}\right)\right) & -\left(a_{0} \otimes b_{1}+b_{0} \otimes a_{1}\right) \mid \\
& \leq \epsilon \cdot\left(a_{0} b_{1}+b_{0} a_{1}\right)
\end{aligned}
$$

thus:

$$
\begin{aligned}
\mid \mathcal{I}\left(z_{2}\right. & \left.-z_{0} z_{1}\right)\left|\leq\left|a_{0} \otimes b_{1}-a_{0} b_{1}\right|+\left|b_{0} \otimes a_{1}-b_{0} a_{1}\right|\right. \\
& +\left|\left(\left(a_{0} \otimes b_{1}\right) \oplus\left(b_{0} \otimes a_{1}\right)\right)-\left(a_{0} \otimes b_{1}+b_{0} \otimes a_{1}\right)\right| \\
& \leq \epsilon \cdot\left(a_{0} b_{1}\right)+\epsilon \cdot\left(b_{0} a_{1}\right)+\epsilon \cdot\left(a_{0} b_{1}+b_{0} a_{1}\right) \\
& \leq 2 \epsilon \cdot\left(a_{0} b_{1}+b_{0} a_{1}\right) \\
& =2 \epsilon \cdot \mathcal{I}\left(z_{0} z_{1}\right) .
\end{aligned}
$$

A $\sqrt{6}$ Bound

$>\mathrm{e}:=6 *(\mathrm{a} 0 * \mathrm{~b} 1+\mathrm{a} 1 * \mathrm{~b} 0)^{\wedge} 2+6 *(\mathrm{a} 0 * \mathrm{a} 1-\mathrm{b} 0 * \mathrm{~b} 1)^{\wedge} 2$

$$
-4 *(a 0 * b 1+a 1 * b 0)^{\wedge} 2-4 *(a 0 * a 1)^{\wedge} 2:
$$

$>$ expand(e);
22
222
22
$2 \mathrm{a} 0 \mathrm{~b} 1-8 \mathrm{a} 0 \mathrm{~b} 1 \mathrm{a} 1 \mathrm{~b} 0+2 \mathrm{a} 1 \mathrm{~b} 0+2 \mathrm{a} 0 \mathrm{a} 1$

$$
\begin{array}{r}
2{ }^{2} \\
+6 b 0 \mathrm{~b} 1
\end{array}
$$

This is:

$$
2\left(a_{0} b_{1}-b_{0} a_{1}\right)^{2}+2\left(a_{0} a_{1}-b_{0} b_{1}\right)^{2}+4\left(b_{0} b_{1}\right)^{2}
$$

A $\sqrt{4}$ Bound?

We have:

$$
\left|\mathcal{I}\left(z_{2}-z_{0} z_{1}\right)\right| \leq 2 \epsilon \cdot\left(a_{0} b_{1}+b_{0} a_{1}\right)
$$

If we had:

$$
\left|\mathcal{R}\left(z_{2}-z_{0} z_{1}\right)\right| \leq 2 \epsilon \cdot\left(a_{0} a_{1}-b_{0} b_{1}\right)
$$

we would get:

$$
\left|z_{2}-z_{0} z_{1}\right|^{2} \leq 4 \epsilon^{2}\left|z_{0} z_{1}\right|^{2}
$$

and thus:

$$
\left|z_{2}-z_{0} z_{1}\right| \leq 2 \epsilon\left|z_{0} z_{1}\right|
$$

Instead of $2=\sqrt{4}$ we get $\sqrt{5}$ only \ldots

The Real Part

Let $A=\operatorname{ulp}\left(a_{0} a_{1}\right), B=\operatorname{ulp}\left(b_{0} b_{1}\right)$,
$C=\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)$. By hypothesis: $B \leq A$.
R1: $B \leq A \leq C$
R2: $B<C<A$
R3: $C \leq B<A$
R4: $C<B=A$

Case R1: $B \leq A \leq C$

Example: $\beta=2, t=4, z_{0}=14+8 i, z_{1}=15+10 i$

$$
a_{0} \otimes a_{1}-b_{0} \otimes b_{1}=208-80=128, a_{0} a_{1}=210
$$

$$
\left|\mathcal{R}\left(z_{2}-z_{0} z_{1}\right)\right|<\epsilon \cdot\left(2 a_{0} a_{1}-b_{0} b_{1}\right)+\epsilon^{2} \cdot\left(2 a_{0} a_{1}+2 b_{0} b_{1}\right)
$$

which gives:

$$
\left|z_{2}-z_{0} z_{1}\right| \leq \epsilon(\sqrt{32 / 7}+2 \epsilon)\left|z_{0} z_{1}\right|
$$

For $\epsilon \leq 2^{-5}$:

$$
\sqrt{32 / 7}+2 \epsilon \approx 2.138+2 \epsilon \leq 2.201 \leq \sqrt{5} \approx 2.236
$$

Case R2: $B<C<A$

Example: $\beta=2, t=3, z_{0}=14+7 i, z_{1}=10+6 i$

$$
b_{0} b_{1}=42, a_{0} \otimes a_{1}-b_{0} \otimes b_{1}=128-40=88, a_{0} a_{1}=140,
$$

$$
\left|\mathcal{R}\left(z_{2}-z_{0} z_{1}\right)\right|<\epsilon \cdot\left(7 / 4 \cdot a_{0} a_{1}\right)
$$

which gives:

$$
\left|z_{2}-z_{0} z_{1}\right| \leq \epsilon \sqrt{1024 / 207}\left|z_{0} z_{1}\right|
$$

And $\sqrt{1024 / 207} \approx 2.224 \leq \sqrt{5} \approx 2.236$

Case R3: $C \leq B<A$

Example: $\beta=2, t=3, z_{0}=7+4 i, z_{1}=5+7 i$

$$
a_{0} \otimes a_{1}-b_{0} \otimes b_{1}=32-28=4, b_{0} b_{1}=28, a_{0} a_{1}=35
$$

$$
\left|\mathcal{R}\left(z_{2}-z_{0} z_{1}\right)\right|<\epsilon \cdot\left(3 / 2 \cdot a_{0} a_{1}\right)
$$

Since $\frac{3}{2} \leq \frac{7}{4}$, we get a better bound than R2:

$$
\left|z_{2}-z_{0} z_{1}\right| \leq \epsilon \sqrt{256 / 55}\left|z_{0} z_{1}\right|
$$

And $\sqrt{256 / 55} \approx 2.157 \leq \sqrt{5} \approx 2.236$

Case R4:

$$
\operatorname{ulp}\left(a_{0} \otimes a_{1}-b_{0} \otimes b_{1}\right)<\operatorname{ulp}\left(b_{0} b_{1}\right)=\operatorname{ulp}\left(a_{0} a_{1}\right)
$$

Example: $\beta=2, t=3, z_{0}=7+4 i, z_{1}=4+6 i$

$$
a_{0} \otimes a_{1}-b_{0} \otimes b_{1}=28-24=4, b_{0} b_{1}=24, a_{0} a_{1}=28
$$

Sterbenz: $a_{0} \otimes a_{1}-b_{0} \otimes b_{1}$ is exact.

$$
\left|\mathcal{R}\left(z_{2}-z_{0} z_{1}\right)\right| \leq\left|a_{0} \otimes a_{1}-a_{0} a_{1}\right|+\left|b_{0} \otimes b_{1}-b_{0} b_{1}\right|<\epsilon \cdot\left(a_{0} a_{1}+b_{0} b_{1}\right)
$$

$$
\begin{aligned}
\left|z_{2}-z_{0} z_{1}\right| & \leq \sqrt{\mathcal{R}\left(z_{2}-z_{0} z_{1}\right)^{2}+\mathcal{I}\left(z_{2}-z_{0} z_{1}\right)^{2}} \\
& <\epsilon \sqrt{\left(a_{0} a_{1}+b_{0} b_{1}\right)^{2}+\left(2 a_{0} b_{1}+2 b_{0} a_{1}\right)^{2}} \\
& =\epsilon \sqrt{5\left|z_{0} z_{1}\right|^{2}-\left(a_{0} b_{1}-b_{0} a_{1}\right)^{2}-4\left(a_{0} a_{1}-b_{0} b_{1}\right)^{2}} \\
& \leq \epsilon \sqrt{5}\left|z_{0} z_{1}\right|
\end{aligned}
$$

Worst-Case Multiplicands for $\beta=2$

Theorem 2. Assume

$$
\frac{\left|z_{2}-z_{0} z_{1}\right|}{\left|z_{0} z_{1}\right|}>\epsilon \sqrt{5-n \epsilon}>\epsilon \cdot \max (\sqrt{1024 / 207}, \sqrt{32 / 7}+2 \epsilon)
$$

for some positive integer n, then $a_{0} \neq b_{0}, a_{1} \neq b_{1}$, and:

$$
\begin{aligned}
a_{0} a_{1} & =1 / 2+\left(j_{a a}+1 / 2\right) \epsilon+k_{a a} \epsilon^{2} \\
a_{0} b_{1} & =1 / 2+\left(j_{a b}+1 / 2\right) \epsilon+k_{a b} \epsilon^{2} \\
b_{0} a_{1} & =1 / 2+\left(j_{b a}+1 / 2\right) \epsilon+k_{b a} \epsilon^{2} \\
b_{0} b_{1} & =1 / 2+\left(j_{b b}+1 / 2\right) \epsilon+k_{b b} \epsilon^{2}
\end{aligned}
$$

for some integers $j_{x y}, k_{x y}$ satisfying:
$0 \leq j_{a a}, j_{a b}, j_{b a}, j_{b b}<\frac{n}{4}, \quad\left|k_{a a}\right|,\left|k_{b b}\right|<n, \quad\left|k_{a b}\right|,\left|k_{b a}\right|<\frac{n}{2}$

Proof of Theorem 2 (sketch)

$\sqrt{5-n \epsilon}>\sqrt{1024 / 207}$ gives $n \epsilon<\frac{11}{207} \approx 0.053$
Thus $1 / 2 \leq a_{0} a_{1}, a_{0} b_{1}, b_{0} a_{1}, b_{0} b_{1} \leq \approx 1 / 2+\frac{11}{828} \approx 0.513$
Case R4 must hold: $a_{0} \otimes a_{1}-b_{0} \otimes b_{1}$ is exact, and $\operatorname{ulp}\left(b_{0} b_{1}\right)=\operatorname{ulp}\left(a_{0} a_{1}\right)$.
We get a lower bound on $\left|z_{2}-z_{0} z_{1}\right|$, an upper bound on $\left|z_{0} z_{1}\right|$, from which we deduce tight bounds:

$$
\epsilon / 2-(1-\sqrt{1-n \epsilon}) \epsilon<\left|a_{0} \otimes a_{1}-a_{0} a_{1}\right| \leq \epsilon / 2
$$

and similarly for $\left|b_{0} \otimes b_{1}-b_{0} b_{1}\right|, \ldots$
Conclude by noticing that $a_{0} a_{1}$ is an integer multiple of ϵ^{2}

Worst-Case in Single Precision

Corollary 4. In IEEE 754 single-precision arithmetic $\left(\epsilon=2^{-24}\right)$, the worst-case values are:

$$
a_{0}=\frac{3}{4}, b_{0}=\frac{3}{4}(1-4 \epsilon), a_{1}=\frac{2}{3}(1+11 \epsilon), b_{1}=\frac{2}{3}(1+5 \epsilon),
$$

with a relative error $\epsilon \sqrt{5-168 \epsilon} \approx \epsilon \sqrt{4.9999899864}$.

Worst-Case in Double Precision

Corollary 5. In IEEE 754 double-precision arithmetic ($\epsilon=2^{-53}$), the worst-case values are:

$$
a_{0}=\frac{3}{4}(1+4 \epsilon), b_{0}=\frac{3}{4}, a_{1}=\frac{2}{3}(1+7 \epsilon), b_{1}=\frac{2}{3}(1+\epsilon),
$$

with a relative error $\epsilon \sqrt{5-96 \epsilon} \approx \epsilon \sqrt{4.9999999999999893}$.

Conjecture

For precision t large enough, the worst-cases are as in Corollary 4 (single precision) for even precision, and as in Corollary 5 (double precision) for odd precision.

In particular, the worst-case for quadruple precision $t=113$ would be as for double precision.

Applications

- correctly rounded complex multiply (separate relative error on real and imaginary parts)
- complex floating-point FFT (Percival's paper):

Theorem. The FFT allows computation of the cyclic convolution $z=x * y$ of two vectors of length $N=2^{n}$ of complex values such that

$$
\left|z^{\prime}-z\right|_{\infty}<|x| \cdot|y| \cdot\left[(1+\epsilon)^{3 n}(1+\epsilon \sqrt{5})^{3 n+1}(1+\alpha)^{3 n}-1\right],
$$

where $|\cdot|$ denotes the Euclidean norm, and
$\alpha>\left|\left(\omega^{k}\right)^{\prime}-\left(\omega^{k}\right)\right|, \omega=e^{\frac{2 \pi i}{N}}$.

Applications (2)

If $\omega^{k}=x+y i$ is correctly rounded, $\alpha=\epsilon / \sqrt{2}$:
$\operatorname{err}(x), \operatorname{err}(y) \leq \frac{1}{2} \epsilon$,
$\left|z^{\prime}-z\right|_{\infty}<|x| \cdot|y| \cdot\left[(1+\epsilon)^{3 n}(1+\epsilon \sqrt{5})^{3 n+1}(1+\epsilon / \sqrt{2})^{3 n}-1\right]$
Improvement: from $1+1 / \sqrt{2}+\sqrt{8}$ to $1+1 / \sqrt{2}+\sqrt{5}$, about 13%.

Example: multiply two degree 524288 polynomials with digits in $[-5000,5000]$, or 2 million digit numbers.

Open Problems

- simplify the 3-page proof of Theorem 1
- get rid of the ϵ^{2} term in Case R1
- prove the conjecture
- find the worst-cases for any β
- get ω^{k} correctly rounded ...

Percival: linear-time algorithm for max error of 1.5ϵ

Lemma. For any real x, let $y=\circ(x)$, we have:

$$
|y-x|<\frac{\epsilon}{1+\epsilon}|x| .
$$

Proof. We can assume $1 \leq x<2$.
If $1+\epsilon \leq x$:

$$
|y-x| \leq \epsilon \leq \epsilon \frac{x}{1+\epsilon}
$$

If $x=1+\lambda$ with $0 \leq \lambda<\epsilon$:

$$
|y-x|=\lambda \leq \frac{\epsilon}{1+\epsilon}(1+\lambda)
$$

Since:

$$
\lambda(1+\epsilon) \leq \epsilon(1+\lambda)
$$

