
The bit-burst algorithm
Paul Zimmermann, , , Nancy

July 21, 2006

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

Brent’s Algorithm for exp

The Complexity of Multiple-Precision Arithmetic, in The

Complexity of Computational Problem Solving, edited by

R. S. Anderssen and R. P. Brent, Univ. of Queensland

Press, 1976.

Theorem 6.2 If M(n) satisfies 2M(n) ≤ M(2n) then

tn(exp) ≤ c32M(n) log2(n)

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

Idea of Brent’s Algorithm

Write x = x1 + x2 + · · · + xj + · · · + xk, where xj =
rj

22j ,

with rj integer with at most 2j−1 bits.

Example:

x = 0.0 1
︸︷︷︸

r1

10
︸︷︷︸

r2

1101
︸︷︷︸

r3

101 . . .

Evaluate each exp(xj) using binary splitting.

We can stop when xk
j /k! < 2−n, i.e. when 2n < k!2k2j−1

.

Thus the last term of the Taylor series has size O(n), and

the cost of each binary splitting tree is O(M(n) log n).

The total cost is thus O(M(n) log2 n).

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

Brent’s Lost Algorithm for sin

Theorem 6.2 continues with:

Theorem 6.2 If M(n) satisfies 2M(n) ≤ M(2n) then

tn(exp) ≤ c32M(n) log2(n) (6.27)

and

tn(sin) ≤ c33M(n) log2(n) (6.28).

and the proof ends with:

[. . .] This establishes (6.27), and the proof of (6.28) is

similar.

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

Brent’s Lost Algorithm for sin

Write x = x1 + x2 + · · · + xk as for exp.

sin(xj + r) = sinxj cos r + cosxj sin r

cos(xj + r) = cosxj cos r − sin xj sin r

1. Get sin xj , cos xj by binary splitting: O(M(n) log n).

2. Compute sin r and cos r recursively.

3. Reconstruct sin(xj + r) and cos(xj + r) with the above

formulae.

Total cost O(M(n) log2 n).

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

Holonomic (D-finite) functions

Definition: f is holonomic iff it satisfies a linear

differential equation with polynomial coefficients in x:

ak(x)f (k)(x) + · · · + a1(x)f ′(x) + a0(x)f(x) = b(x)

Running example: f = arctan

(1 + x2)f ′(x) = 1

Holonomic functions are closed under sum, product,

Hadamard product, right composition with an algebraic

function, and algebraic functions are holonomic.

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

Their Taylor coefficients (an) satisfy a linear recurrence

with polynomial coefficients in n:

nan + (n − 2)an−2 = 0, a0 = 1, a1 = 1

Computations on holonomic functions can be performed

with the Maple gfun package developed with B. Salvy:

> with(gfun):

> deq := (1+x^2)*diff(f(x), x) - 1:

> diffeqtorec({deq, f(0)=0}, f(x), a(n));

{a(0) = 0, n a(n) + (n + 2) a(n + 2), a(1) = 1}

> rectodiffeq(%, a(n), f(x));

2 /d \

{(1 + x) |-- f(x)| - 1, f(0) = 0}

\dx /

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

The problem

Input: a holonomic function f , given by its differential

equation, and a n-bit floating-point number x ∈ [0, 1/2].

Output: n-bit approximation of f(x).

D. V. Chudnovsky and G. V. Chudnovsky, Computer

Algebra in the Service of Mathematical Physics and

Number Theory, Computers in Mathematics (Stanford,

CA, 1986), Lecture Notes in Pure and Applied

Mathematics, 1990.

Joris van der Hoeven, Fast evaluation of holonomic

functions, Theoretical Computer Science, 2000.

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

Sums of holonomic series

If (an) is holonomic, so is (
∑

an).

Proof: let bn =
∑n

k=0 ak.

Substitute an by bn − bn−1 in the recurrence for an: we

get a recurrence of order one more for bn.

Alternate Proof: if f(x) =
∑

anxn, then

g(x) =
∑

bnxn is f(x) · 1
1−x

.

Example: the coefficients of arctanx satisfy:

nan + (n − 2)an−2 = 0

Those of bn :=
∑n

k=0 ak satisfy:

nbn − nbn−1 + (n − 2)bn−2 + (2 − n)bn−3 = 0

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

More generally, if p/q is a rational, consider:

bn =

n∑

k=0

ak(p/q)
k

We have:

bn − bn−1 = an
pn

qn

an =
qn

pn
(bn − bn−1)

Thus we get for arctan(p/q):

q2nbn − q2nbn−1 + p2(n − 2)bn−2 − p2(n − 2)bn−3 = 0

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

Example: compute arctan(3/7).

b := proc(n) option remember;

(49*n*b(n-1)-9*(n-2)*b(n-2)+9*(n-2)*b(n-3))/49/n

end:

b(0):=0:

b(1):=3/7:

b(2):=3/7:

> seq(b2(2*n+1), n=0..5);

138 34053 11669244 81695643 44033065842

3/7, ---, -----, --------, ---------, ------------

343 84035 28824005 201768035 108752970865

> evalf(b2(23)), evalf(arctan(3/7));

0.4048917863, 0.4048917863

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

We have:

bn+3

bn+2

bn+1

=

1 −9(n+1)
49(n+3)

9(n+1)
49(n+3)

1 0 0

0 1 0

bn+2

bn+1

bn

i.e.

Bn+1 = Mn+1Bn

with Bn :=

bn+2

bn+1

bn

.

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

Bn = MnMn−1 · · ·M2M1B0 can be evaluated by applying

the binary splitting algorithm to the matrix product

MnMn−1 · · ·M2M1,

possibly by taking out the denominators to work on

integers only.

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

Now write:

x = r0 + r1 + · · · + rj
︸ ︷︷ ︸

Rj

+ · · · + rk

where the rj are (small) rationals.

Define f0(x) = arctan(x), f1(x) = f0(r0 + x)− f0(r0), . . . ,

fj+1(x) = fj(rj + x) − fj(rj).

Then fj(x) = f0(Rj−1 + x) − f0(Rj−1), and

fj(rj) = f0(Rj) − f0(Rj−1), thus

f0(r0) + f1(r1) + · · · + fk(rk) = f0(x0)

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

The main point is that fj is holonomic since

fj(x) = f0(Rj−1 + x) − f0(Rj−1):

> deq := (1+(R+x)^2)*diff(f(x), x) - 1:

> diffeqtorec({deq, f(0)=0}, f(x), a(n));

{n a(n) + (2 R n + 2 R) a(n + 1)

2 2

+ ((1 + R) n + 2 + 2 R) a(n + 2), a(0) = 0,

1

a(1) = ------}

2

1 + R

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

With R = p/q, we get

(p2 + q2)nan + 2pq(n − 1)an−1 + q2(n − 2)an−2 = 0

Since the recurrence for (an) is similar, that for

(bn :=
∑

akp
k/qk) is also similar.

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

The Algorithm (1/2)

1. Compute the differential eq. for g(x) = f(p/q + x).

(1 + (p/q + x)2)g′(x) − 1 = 0

2. Deduce the recurrence for the coefficients an of g(x).

(p2 + q2)nan + 2pq(n − 1)an−1 + q2(n − 2)an−2 = 0

3. Deduce the recurrence for bn =
∑n

k=0 ak(u/v)k.

v2(p2 + q2)nbn − v(2pqu + vp2n − 2pqun + vnq2)bn−1

−qu(2qu − qun + 2vpn − 2vp)bn−2 − q2u2(n − 2)bn−3 = 0

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

The Algorithm (2/2)

4. Split x = r0 + · · · + rk. Define Rj = r0 + · · · + rj , and

fj = f(Rj−1 + x) − f(Rj−1).

5. For each 0 ≤ j ≤ k, form the bn recurrence for fj at

x = rj , and approximate by binary splitting yj ≈ fj(rj).

6. Compute y0 + · · · + yk.

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

Example: consider x0 = 3/7 (in binary form).

x0 = 0.0 1
︸︷︷︸

r0

10
︸︷︷︸

r1

1101
︸︷︷︸

r2

101 . . .

We have r0 = 1/4, r1 = 2/16, r2 = 13/256.

f1(x) = f0(1/4 + x):

f0 : nan + (n − 2)an−2 = 0

f0(1/4) : 16nbn − 16nbn−1 + (n− 2)bn−2 − (n− 2)bn−3 = 0

b0 = 0, b1 = b2 = 1/4

f2(x) = f1(1/8 + x) = f0(3/8 + x):

f1 : 17nan + 8(n − 1)an−1 + 16(n − 2)an−2 = 0

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

f1(1/8) : 68nbn−(64n+4)bn−1−(3n−2)bn−2−(n−2)bn−3 = 0

b0 = 0, b1 = 2/17, b2 = 33/289

f3(x) = f2(13/256 + x) = f0(109/256 + x):

f2 : 73nan + 48(n − 1)an−1 + 64(n − 2)an−2 = 0

f2(13/256):

74752nbn − (72256n + 2496)bn−1 − (2327n − 2158)bn−2 − (169n − 338)bn−3

b0 = 0, b1 = 13/292, b2 = 29861/682112

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

Complexity Analysis (1/2)

The recurrence for the coefficients of fj(x) can be

directly obtained from that of f0 by a translation of

Rj−1 = r0 + · · · + rj−1.

Rj−1 has size O(2j), thus each ai (and thus bi) grows by

O(2j log n).

Thus ai (and bi) has size O(i2j log n).

If f has a finite radius of convergence, we need Θ(n/2j)

terms to get an accuracy of n bits for f(x) when x < 2−2j

.

The largest term an/2j has thus size O(n log n).

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

Complexity Analysis (2/2)

Since xn/2j

has size O(n), the root of the binary

(splitting) tree has size O(n log n).

The cost of each binary splitting tree is:

O(M(n log n)+2M(n/2 log(n/2))+4M(n/4 log(n/4))+· · ·)

= O(M(n log n) log n)

If we assume M(n) = O(n logk n), this is O(M(n) log2 n).

The total cost is O(M(n) log3 n).

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

Another way to compute (bn)

If (an) has order k, (bn) has order k + 1.

We have to multiply (k + 1) × (k + 1) integer matrices,

plus the denominators, i.e. (k + 1)3 + 1 integer

multiplications per node tree.

Alternate way: we want to compute S(0, n) where

S(a, b) =
b−1∑

k=a

p(a)p(a + 1) · · · p(k − 1)

q(a)q(a + 1) · · · q(k − 1)

where p(·) is a k × k matrix, and q(·) an integer.

Write P (a, b) = p(a)p(a + 1) · · · p(b − 1),

Q(a, b) = q(a)q(a + 1) · · · q(b − 1), then

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

T (a, b) = Q(a, b)S(a, b) can be written:

P (a, b) = P (a, c)P (c, b), Q(a, b) = Q(a, c)Q(c, b)

T (a, b) = T (a, c)Q(c, b) + P (a, c)T (c, b)

This needs one k × k matrix product for P , one integer

product for Q, one matrix-scalar product for TQ, and

another matrix product for PT . The cost is 2k3 + k2 + 1

per node tree.

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

k 2k3 + k2 + 1 (k + 1)3 + 1

1 4 9

2 21 28

3 64 65

4 145 126

Conclusion: using k × k matrices is (theoretically) better

for k ≤ 3.

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

Is M(n) log2 n better than M(n) log n?

Some O(M(n) log2 n) algorithms based on binary

splitting are better in practice than theoretically optimal

O(M(n) log n) algorithms.

Example: the gmp-chudnovsky.c program available on

the GMP web page is more efficient than the const pi.c

program from the mpfr library, up to several million

digits (1.867Mhz Pentium M with gmp-4.2, mpfr-dev):

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

digits 1M 2M 5M 10M

const pi.c 21.8s 54.4s 180s 440s

gmp-chudnovsky.c 4.3s 10.5s 36.6s 95.6s

ratio 5.1 5.2 4.9 4.6

Can we explain that?

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

Save a Factor of 2

When analyzing Brent’s algorithm for exp, or other

binary splitting algorithms, we often write:

S(n) := M(n) log n+2M(
n

2
) log(

n

2
)+4M(

n

4
) log(

n

4
)+ · · ·

≈ M(n) log2 n

As pointed out by Damien Stehlé, this is wrong because

the log(n
2j) terms linearly decrease to zero:

S(n) ≈
1

2
M(n) log2 n

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

And Another Factor of 2

If the binary splitting algorithm is optimal, the last

multiply gives a result of size exactly n, i.e. the operands

have size n/2.

This gives S(n/2) ≈ 1
4
M(n) log2 n.

Computing by the Numbers: Algorithms, Precision, and Complexity, Berlin, July 20-21, 2006

