# The bit-burst algorithm 

Paul Zimmermann, RINRIA, Coria, Nancy

$$
\text { July 21, } 2006
$$

## Brent's Algorithm for exp

The Complexity of Multiple-Precision Arithmetic, in The Complexity of Computational Problem Solving, edited by R. S. Anderssen and R. P. Brent, Univ. of Queensland Press, 1976.

Theorem 6.2 If $M(n)$ satisfies $2 M(n) \leq M(2 n)$ then

$$
t_{n}(\exp ) \leq c_{32} M(n) \log ^{2}(n)
$$

## Idea of Brent's Algorithm

Write $x=x_{1}+x_{2}+\cdots+x_{j}+\cdots+x_{k}$, where $x_{j}=\frac{r_{j}}{2^{2^{j}}}$, with $r_{j}$ integer with at most $2^{j-1}$ bits.

Example:

$$
x=0.0 \underbrace{1}_{r_{1}} \underbrace{10}_{r_{2}} \underbrace{1101}_{r_{3}} 101 \ldots
$$

Evaluate each $\exp \left(x_{j}\right)$ using binary splitting.
We can stop when $x_{j}^{k} / k!<2^{-n}$, i.e. when $2^{n}<k!2^{k 2^{j-1}}$.
Thus the last term of the Taylor series has size $O(n)$, and the cost of each binary splitting tree is $O(M(n) \log n)$.
The total cost is thus $O\left(M(n) \log ^{2} n\right)$.

## Brent's Lost Algorithm for sin

Theorem 6.2 continues with:
Theorem 6.2 If $M(n)$ satisfies $2 M(n) \leq M(2 n)$ then

$$
\begin{equation*}
t_{n}(\exp ) \leq c_{32} M(n) \log ^{2}(n) \tag{6.27}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{n}(\sin ) \leq c_{33} M(n) \log ^{2}(n) \tag{6.28}
\end{equation*}
$$

and the proof ends with:
[...] This establishes (6.27), and the proof of (6.28) is similar.

## Brent's Lost Algorithm for sin

Write $x=x_{1}+x_{2}+\cdots+x_{k}$ as for exp.

$$
\begin{aligned}
& \sin \left(x_{j}+r\right)=\sin x_{j} \cos r+\cos x_{j} \sin r \\
& \cos \left(x_{j}+r\right)=\cos x_{j} \cos r-\sin x_{j} \sin r
\end{aligned}
$$

1. Get $\sin x_{j}, \cos x_{j}$ by binary splitting: $O(M(n) \log n)$.
2. Compute $\sin r$ and $\cos r$ recursively.
3. Reconstruct $\sin \left(x_{j}+r\right)$ and $\cos \left(x_{j}+r\right)$ with the above formulae.

Total cost $O\left(M(n) \log ^{2} n\right)$.

## Holonomic (D-finite) functions

Definition: $f$ is holonomic iff it satisfies a linear differential equation with polynomial coefficients in $x$ :

$$
a_{k}(x) f^{(k)}(x)+\cdots+a_{1}(x) f^{\prime}(x)+a_{0}(x) f(x)=b(x)
$$

Running example: $f=\arctan$

$$
\left(1+x^{2}\right) f^{\prime}(x)=1
$$

Holonomic functions are closed under sum, product, Hadamard product, right composition with an algebraic function, and algebraic functions are holonomic.

Their Taylor coefficients $\left(a_{n}\right)$ satisfy a linear recurrence with polynomial coefficients in $n$ :

$$
n a_{n}+(n-2) a_{n-2}=0, a_{0}=1, a_{1}=1
$$

Computations on holonomic functions can be performed with the Maple gfun package developed with B. Salve:
> with(gfun):
$>\operatorname{deq}:=\left(1+x^{\wedge} 2\right) * \operatorname{diff}(f(x), x)-1:$
> diffeqtorec (\{deq, $f(0)=0\}, f(x), a(n))$;

$$
\{a(0)=0, n a(n)+(n+2) a(n+2), a(1)=1\}
$$

> rectodiffeq(\%, afn), fix));

$$
\begin{aligned}
2 & / d \quad \mid \\
\{(1+x) & |--f(x)|-1, f(0)=0\} \\
& \mid d x \quad /
\end{aligned}
$$

## The problem

Input: a holonomic function $f$, given by its differential equation, and a $n$-bit floating-point number $x \in[0,1 / 2]$.

Output: $n$-bit approximation of $f(x)$.
D. V. Chudnovsky and G. V. Chudnovsky, Computer Algebra in the Service of Mathematical Physics and Number Theory, Computers in Mathematics (Stanford, CA, 1986), Lecture Notes in Pure and Applied Mathematics, 1990.

Joris van der Hoeven, Fast evaluation of holonomic functions, Theoretical Computer Science, 2000.

## Sums of holonomic series

If $\left(a_{n}\right)$ is holonomic, so is $\left(\sum a_{n}\right)$.
Proof: let $b_{n}=\sum_{k=0}^{n} a_{k}$.
Substitute $a_{n}$ by $b_{n}-b_{n-1}$ in the recurrence for $a_{n}$ : we get a recurrence of order one more for $b_{n}$.
Alternate Proof: if $f(x)=\sum a_{n} x^{n}$, then
$g(x)=\sum b_{n} x^{n}$ is $f(x) \cdot \frac{1}{1-x}$.
Example: the coefficients of $\arctan x$ satisfy:

$$
n a_{n}+(n-2) a_{n-2}=0
$$

Those of $b_{n}:=\sum_{k=0}^{n} a_{k}$ satisfy:

$$
n b_{n}-n b_{n-1}+(n-2) b_{n-2}+(2-n) b_{n-3}=0
$$

More generally, if $p / q$ is a rational, consider:

$$
b_{n}=\sum_{k=0}^{n} a_{k}(p / q)^{k}
$$

We have:

$$
\begin{gathered}
b_{n}-b_{n-1}=a_{n} \frac{p^{n}}{q^{n}} \\
a_{n}=\frac{q^{n}}{p^{n}}\left(b_{n}-b_{n-1}\right)
\end{gathered}
$$

Thus we get for $\arctan (p / q)$ :

$$
q^{2} n b_{n}-q^{2} n b_{n-1}+p^{2}(n-2) b_{n-2}-p^{2}(n-2) b_{n-3}=0
$$

Example: compute $\arctan (3 / 7)$.
$\mathrm{b}:=\operatorname{proc}(\mathrm{n})$ option remember;
$(49 * n * b(n-1)-9 *(n-2) * b(n-2)+9 *(n-2) * b(n-3)) / 49 / n$ end:
b(0) :=0:
b(1) :=3/7:
b(2) :=3/7:
> seq(b2(2*n+1), n=0..5);
$\begin{array}{lllll}138 & 34053 & 11669244 & 81695643 & 44033065842\end{array}$
3/7, ---, -----, ---------, ---------- -----------
$\begin{array}{lllll}343 & 84035 & 28824005 & 201768035 & 108752970865\end{array}$
> evalf(b2(23)), evalf(arctan(3/7));

$$
0.4048917863,0.4048917863
$$

We have:

$$
\left(\begin{array}{c}
b_{n+3} \\
b_{n+2} \\
b_{n+1}
\end{array}\right)=\left(\begin{array}{ccc}
1 & \frac{-9(n+1)}{49(n+3)} & \frac{9(n+1)}{49(n+3)} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
b_{n+2} \\
b_{n+1} \\
b_{n}
\end{array}\right)
$$

i.e.

$$
B_{n+1}=M_{n+1} B_{n}
$$

with $B_{n}:=\left(\begin{array}{c}b_{n+2} \\ b_{n+1} \\ b_{n}\end{array}\right)$.
$B_{n}=M_{n} M_{n-1} \cdots M_{2} M_{1} B_{0}$ can be evaluated by applying the binary splitting algorithm to the matrix product

$$
M_{n} M_{n-1} \cdots M_{2} M_{1},
$$

possibly by taking out the denominators to work on integers only.

Now write:

$$
x=\underbrace{r_{0}+r_{1}+\cdots+r_{j}}_{R_{j}}+\cdots+r_{k}
$$

where the $r_{j}$ are (small) rationals.
Define $f_{0}(x)=\arctan (x), f_{1}(x)=f_{0}\left(r_{0}+x\right)-f_{0}\left(r_{0}\right), \ldots$, $f_{j+1}(x)=f_{j}\left(r_{j}+x\right)-f_{j}\left(r_{j}\right)$.

Then $f_{j}(x)=f_{0}\left(R_{j-1}+x\right)-f_{0}\left(R_{j-1}\right)$, and $f_{j}\left(r_{j}\right)=f_{0}\left(R_{j}\right)-f_{0}\left(R_{j-1}\right)$, thus

$$
f_{0}\left(r_{0}\right)+f_{1}\left(r_{1}\right)+\cdots+f_{k}\left(r_{k}\right)=f_{0}\left(x_{0}\right)
$$

The main point is that $f_{j}$ is holonomic since $f_{j}(x)=f_{0}\left(R_{j-1}+x\right)-f_{0}\left(R_{j-1}\right):$
$>\operatorname{deq}:=\left(1+(R+x)^{\wedge}\right) * \operatorname{diff}(f(x), x)-1$ :
> diffeqtorec (\{deq, $f(0)=0\}, f(x), a(n))$;
$\{\mathrm{na}(\mathrm{n})+(2 \mathrm{R} \mathrm{n}+2 \mathrm{R}) \mathrm{a}(\mathrm{n}+1)$

$$
\begin{aligned}
& \quad{ }^{2}\left(\left(1+R^{2}\right) \mathrm{n}+2+2 R^{2}\right) a(n+2), a(0)=0, \\
& \quad 1 \\
& a(1)=-----\} \\
& \quad 2 \\
& 1+R
\end{aligned}
$$

With $R=p / q$, we get

$$
\left(p^{2}+q^{2}\right) n a_{n}+2 p q(n-1) a_{n-1}+q^{2}(n-2) a_{n-2}=0
$$

Since the recurrence for $\left(a_{n}\right)$ is similar, that for $\left(b_{n}:=\sum a_{k} p^{k} / q^{k}\right)$ is also similar.

## The Algorithm (1/2)

1. Compute the differential eq. for $g(x)=f(p / q+x)$.

$$
\left(1+(p / q+x)^{2}\right) g^{\prime}(x)-1=0
$$

2. Deduce the recurrence for the coefficients $a_{n}$ of $g(x)$.

$$
\left(p^{2}+q^{2}\right) n a_{n}+2 p q(n-1) a_{n-1}+q^{2}(n-2) a_{n-2}=0
$$

3. Deduce the recurrence for $b_{n}=\sum_{k=0}^{n} a_{k}(u / v)^{k}$.

$$
v^{2}\left(p^{2}+q^{2}\right) n b_{n}-v\left(2 p q u+v p^{2} n-2 p q u n+v n q^{2}\right) b_{n-1}
$$

$$
-q u(2 q u-q u n+2 v p n-2 v p) b_{n-2}-q^{2} u^{2}(n-2) b_{n-3}=0
$$

## The Algorithm (2/2)

4. Split $x=r_{0}+\cdots+r_{k}$. Define $R_{j}=r_{0}+\cdots+r_{j}$, and $f_{j}=f\left(R_{j-1}+x\right)-f\left(R_{j-1}\right)$.
5. For each $0 \leq j \leq k$, form the $b_{n}$ recurrence for $f_{j}$ at $x=r_{j}$, and approximate by binary splitting $y_{j} \approx f_{j}\left(r_{j}\right)$.
6. Compute $y_{0}+\cdots+y_{k}$.

Example: consider $x_{0}=3 / 7$ (in binary form).

$$
x_{0}=0.0 \underbrace{1}_{r_{0}} \underbrace{10}_{r_{1}} \underbrace{1101}_{r_{2}} 101 \ldots
$$

We have $r_{0}=1 / 4, r_{1}=2 / 16, r_{2}=13 / 256$.
$f_{1}(x)=f_{0}(1 / 4+x):$

$$
f_{0}: n a_{n}+(n-2) a_{n-2}=0
$$

$f_{0}(1 / 4): 16 n b_{n}-16 n b_{n-1}+(n-2) b_{n-2}-(n-2) b_{n-3}=0$

$$
b_{0}=0, b_{1}=b_{2}=1 / 4
$$

$$
f_{2}(x)=f_{1}(1 / 8+x)=f_{0}(3 / 8+x)
$$

$$
f_{1}: 17 n a_{n}+8(n-1) a_{n-1}+16(n-2) a_{n-2}=0
$$

$$
\begin{gathered}
f_{1}(1 / 8): 68 n b_{n}-(64 n+4) b_{n-1}-(3 n-2) b_{n-2}-(n-2) b_{n-3}=0 \\
b_{0}=0, b_{1}=2 / 17, b_{2}=33 / 289
\end{gathered}
$$

$$
f_{3}(x)=f_{2}(13 / 256+x)=f_{0}(109 / 256+x):
$$

$$
f_{2}: 73 n a_{n}+48(n-1) a_{n-1}+64(n-2) a_{n-2}=0
$$

$$
f_{2}(13 / 256):
$$

$$
74752 n b_{n}-(72256 n+2496) b_{n-1}-(2327 n-2158) b_{n-2}-(169 n-338) b_{n-3}
$$

$$
b_{0}=0, b_{1}=13 / 292, b_{2}=29861 / 682112
$$

## Complexity Analysis (1/2)

The recurrence for the coefficients of $f_{j}(x)$ can be directly obtained from that of $f_{0}$ by a translation of $R_{j-1}=r_{0}+\cdots+r_{j-1}$.
$R_{j-1}$ has size $O\left(2^{j}\right)$, thus each $a_{i}$ (and thus $b_{i}$ ) grows by $O\left(2^{j} \log n\right)$.

Thus $a_{i}\left(\right.$ and $\left.b_{i}\right)$ has size $O\left(i 2^{j} \log n\right)$.
If $f$ has a finite radius of convergence, we need $\Theta\left(n / 2^{j}\right)$ terms to get an accuracy of $n$ bits for $f(x)$ when $x<2^{-2^{j}}$.

The largest term $a_{n / 2^{j}}$ has thus size $O(n \log n)$.

## Complexity Analysis (2/2)

Since $x^{n / 2^{j}}$ has size $O(n)$, the root of the binary
(splitting) tree has size $O(n \log n)$.
The cost of each binary splitting tree is:
$O(M(n \log n)+2 M(n / 2 \log (n / 2))+4 M(n / 4 \log (n / 4))+\cdots)$

$$
=O(M(n \log n) \log n)
$$

If we assume $M(n)=O\left(n \log ^{k} n\right)$, this is $O\left(M(n) \log ^{2} n\right)$.
The total cost is $O\left(M(n) \log ^{3} n\right)$.

## Another way to compute $\left(b_{n}\right)$

If $\left(a_{n}\right)$ has order $k,\left(b_{n}\right)$ has order $k+1$.
We have to multiply $(k+1) \times(k+1)$ integer matrices, plus the denominators, i.e. $(k+1)^{3}+1$ integer multiplications per node tree.

Alternate way: we want to compute $S(0, n)$ where

$$
S(a, b)=\sum_{k=a}^{b-1} \frac{p(a) p(a+1) \cdots p(k-1)}{q(a) q(a+1) \cdots q(k-1)}
$$

where $p(\cdot)$ is a $k \times k$ matrix, and $q(\cdot)$ an integer.
Write $P(a, b)=p(a) p(a+1) \cdots p(b-1)$,
$Q(a, b)=q(a) q(a+1) \cdots q(b-1)$, then
$T(a, b)=Q(a, b) S(a, b)$ can be written:

$$
\begin{gathered}
P(a, b)=P(a, c) P(c, b), Q(a, b)=Q(a, c) Q(c, b) \\
T(a, b)=T(a, c) Q(c, b)+P(a, c) T(c, b)
\end{gathered}
$$

This needs one $k \times k$ matrix product for $P$, one integer product for $Q$, one matrix-scalar product for $T Q$, and another matrix product for $P T$. The cost is $2 k^{3}+k^{2}+1$ per node tree.

| $k$ | $2 k^{3}+k^{2}+1$ | $(k+1)^{3}+1$ |
| :---: | :---: | :---: |
| 1 | 4 | 9 |
| 2 | 21 | 28 |
| 3 | 64 | 65 |
| 4 | 145 | 126 |

Conclusion: using $k \times k$ matrices is (theoretically) better for $k \leq 3$.

## Is $M(n) \log ^{2} n$ better than $M(n) \log n$ ?

Some $O\left(M(n) \log ^{2} n\right)$ algorithms based on binary splitting are better in practice than theoretically optimal $O(M(n) \log n)$ algorithms.

Example: the gmp-chudnovsky.c program available on the GMP web page is more efficient than the const_pi.c program from the MPFR library, up to several million digits (1.867Mhz Pentium M with gmp-4.2, mpfr-dev):

| digits | 1 M | 2 M | 5 M | 10 M |
| :---: | :---: | :---: | :---: | :---: |
| const_pi.c | 21.8 s | 54.4 s | 180 s | 440 s |
| gmp-chudnovsky.c | 4.3 s | 10.5 s | 36.6 s | 95.6 s |
| ratio | 5.1 | 5.2 | 4.9 | 4.6 |

## Can we explain that?

## Save a Factor of 2

When analyzing Brent's algorithm for exp, or other binary splitting algorithms, we often write:

$$
\begin{aligned}
S(n):=M(n) \log n+ & 2 M\left(\frac{n}{2}\right) \log \left(\frac{n}{2}\right)+4 M\left(\frac{n}{4}\right) \log \left(\frac{n}{4}\right)+\cdots \\
& \approx M(n) \log ^{2} n
\end{aligned}
$$

As pointed out by Damien Stehlé, this is wrong because the $\log \left(\frac{n}{2 j}\right)$ terms linearly decrease to zero:

$$
S(n) \approx \frac{1}{2} M(n) \log ^{2} n
$$

## And Another Factor of 2

If the binary splitting algorithm is optimal, the last multiply gives a result of size exactly $n$, i.e. the operands have size $n / 2$.

This gives $S(n / 2) \approx \frac{1}{4} M(n) \log ^{2} n$.

