How Fast Can We Multiply Over GF(2)[x]?

Paul Zimmermann INRIA Lorraine/LORIA, Nancy, France

(thanks to Richard Brent, Pierrick Gaudry, Samuli Larvala, Emmanuel Thomé)

Algorithmic Number Theory Conference, Turku, May 10, 2007

Followup to Mika's talk (preproceedings, p. 25)

Theorem. The first digit of $F_{5\cdot 10^{87}}$ is 1.

Followup to Mika's talk (preproceedings, p. 25)

Theorem. The first digit of $F_{5\cdot 10^{87}}$ is 1.

Proof:

```
bash-3.00$ time ./fib 5e87
```

prec=302

user 0m0.004s

Credits: MPFR (www.mpfr.org), MPFI.

Plan of the talk

• Theory

Algorithms

Algorithmic Number Theory Conference, Turku, May 10, 2007 - p. 3/49

• Theory

- Algorithms
- Numbers

Algorithmic Number Theory Conference, Turku, May 10, 2007 - p. 3/49

Motivation: Search for Primitive Trinomials

T. Kumada, H. Leeb, Y. Kurita and M. Matsumoto, New primitive *t*-nomials (t = 3, 5) over GF(2) whose degree is a Mersenne exponent, Math. Comp., (2000):

 $x^{859433} + x^{288477} + 1.$

Motivation: Search for Primitive Trinomials

T. Kumada, H. Leeb, Y. Kurita and M. Matsumoto, New primitive *t*-nomials (t = 3, 5) over GF(2) whose degree is a Mersenne exponent, Math. Comp., (2000):

$$x^{859433} + x^{288477} + 1$$

With Richard Brent and Samuli Larvala (Helsinki University of Technology), we started a search in 2000 ...

Motivation: Search for Primitive Trinomials

T. Kumada, H. Leeb, Y. Kurita and M. Matsumoto, New primitive *t*-nomials (t = 3, 5) over GF(2) whose degree is a Mersenne exponent, Math. Comp., (2000):

$$x^{859433} + x^{288477} + 1$$

With Richard Brent and Samuli Larvala (Helsinki University of Technology), we started a search in 2000 ...

June 26, 2000:

$$x^{859433} + x^{170340} + 1$$

Status so far

 $x^r + x^s + 1$

r	S	when
756839	215747, 267428, 279695	June 2000
859433	170340, 288477	June 2000
3021377	361604, 1010202	July 2000 to April 2001: 13 GIPS-years
6972593	3037958	Feb 2001 to July 2003: 230 GIPS-years

Status so far

 $x^r + x^s + 1$

r	s	when
756839	215747, 267428, 279695	June 2000
859433	170340, 288477	June 2000
3021377	361604, 1010202	July 2000 to April 2001: 13 GIPS-years
6972593	3037958	Feb 2001 to July 2003: 230 GIPS-years

Largest known primitive trinomial:

$$x^{6972593} + x^{3037958} + 1$$

(August 31, 2002, while Samuli Larvala and PZ were visiting Richard Brent in Oxford)

Status so far

 $x^r + x^s + 1$

r	S	when
756839	215747, 267428, 279695	June 2000
859433	170340, 288477	June 2000
3021377	361604, 1010202	July 2000 to April 2001: 13 GIPS-years
6972593	3037958	Feb 2001 to July 2003: 230 GIPS-years

Largest known primitive trinomial:

$$x^{6972593} + x^{3037958} + 1$$

(August 31, 2002, while Samuli Larvala and PZ were visiting Richard Brent in Oxford)

As a comparison, RSA-155 (1999) took 8 GIPS years.

THEORY

 $\operatorname{GF}(2)$

Field with two elements: $\{0, 1\}$.

$\operatorname{GF}(2)$

Field with two elements: $\{0, 1\}$.

Addition table:

+	0	1
0	0	1
1	1	0

GF(2)

Field with two elements: $\{0,1\}$.

Addition table:

+	0	1
0	0	1
1	1	0

Multiplication table:

$$\begin{array}{c|ccc} \times & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$$

Polynomial ring:

$$a(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0,$$

where $a_i \in \{0, 1\}$.

Polynomial ring:

$$a(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0,$$

where $a_i \in \{0, 1\}$.

If $a_d \neq 0$, $d = \deg(a)$.

Definition. $a(x) \in \operatorname{GF}(2)[x]$ is *irreducible* if

$$a(x) = b(x)c(x)$$

implies b(x) = 1 or c(x) = 1.

Definition. $a(x) \in GF(2)[x]$ is *irreducible* if

$$a(x) = b(x)c(x)$$

implies b(x) = 1 or c(x) = 1.

Example 1. $x^3 + x + 1$ is irreducible.

Definition. $a(x) \in GF(2)[x]$ is *irreducible* if

$$a(x) = b(x)c(x)$$

implies b(x) = 1 or c(x) = 1.

Example 1. $x^3 + x + 1$ is irreducible.

Example 2. $x^3 + 1$ is not:

$$x^{3} + 1 = (x^{2} + x + 1)(x + 1)$$

Definition. $a(x) \in \operatorname{GF}(2)[x]$ is *irreducible* if

$$a(x) = b(x)c(x)$$

implies b(x) = 1 or c(x) = 1.

Example 1. $x^3 + x + 1$ is irreducible.

Example 2. $x^3 + 1$ is not:

$$x^{3} + 1 = (x^{2} + x + 1)(x + 1)$$

Example 3. $x^4 + x^2 + x + 1$ is not either (irreducible over \mathbb{Q}):

$$x^{4} + x^{2} + x + 1 = (x^{3} + x^{2} + 1)(x + 1)$$

 \implies efficient way to implement arithmetic over $GF(2^r)$.

 \implies efficient way to implement arithmetic over $GF(2^r)$.

First try monomials: x^r is divisible by x...

 \implies efficient way to implement arithmetic over $GF(2^r)$.

First try monomials: x^r is divisible by x...

Next try binomials: $x^r + 1$ is divisible by x + 1:

$$x^{r} + 1 = (x + 1)(x^{r-1} + x^{r-2} + \dots + x + 1)$$

 \implies efficient way to implement arithmetic over $GF(2^r)$.

First try monomials: x^r is divisible by x...

Next try binomials: $x^r + 1$ is divisible by x + 1:

$$x^{r} + 1 = (x+1)(x^{r-1} + x^{r-2} + \dots + x + 1)$$

Then try trinomials:

$$x^r + x^s + 1 \qquad \text{with } r > s > 0.$$

Primitive Trinomials

Definition. A polynomial $f(x) \in \operatorname{GF}(2)[x]$ is said *primitive* iff:

(1) f(x) is irreducible;

(2a) x has order $2^r - 1$ modulo f(x), where $r := \deg(f)$;

Cf Lucas test (Nitin's talk).

Primitive Trinomials

Definition. A polynomial $f(x) \in GF(2)[x]$ is said *primitive* iff:

(1) f(x) is irreducible;

(2a) x has order $2^r - 1$ modulo f(x), where $r := \deg(f)$;

Cf Lucas test (Nitin's talk).

Example 1. $x^4 + x + 1$ is primitive:

 $\begin{array}{c} x,x^2,x^3,x+1,x^2+x,x^3+x^2,x^3+x+1,x^2+1,x^3+x,x^2+x+1,x^3+x^2+x,\\ &x^3+x^2+x+1,x^3+x^2+1,x^3+1,x^{15}\equiv 1. \end{array}$

Primitive Trinomials

Definition. A polynomial $f(x) \in GF(2)[x]$ is said *primitive* iff:

(1) f(x) is irreducible;

(2a) x has order $2^r - 1$ modulo f(x), where $r := \deg(f)$;

Cf Lucas test (Nitin's talk).

Example 1. $x^4 + x + 1$ is primitive:

 $\begin{array}{c} x,x^2,x^3,x+1,x^2+x,x^3+x^2,x^3+x+1,x^2+1,x^3+x,x^2+x+1,x^3+x^2+x,\\ \\ x^3+x^2+x+1,x^3+x^2+1,x^3+1,x^{15}\equiv 1. \end{array}$

Example 2. $x^6 + x^3 + 1$ is irreducible but not primitive:

$$x^9 \equiv 1 \mod (x^6 + x^3 + 1).$$

1. Check f(x) is irreducible.

- 1. Check f(x) is irreducible.
- 2. Check $x^{2^r-1} = 1 \mod f(x)$.

- 1. Check f(x) is irreducible.
- 2. Check $x^{2^r-1} = 1 \mod f(x)$.
- 3. For each prime divisor p of $2^r 1$, check

$$x^{(2^r-1)/p} \neq 1 \mod f(x)$$

- 1. Check f(x) is irreducible.
- 2. Check $x^{2^r-1} = 1 \mod f(x)$.
- 3. For each prime divisor p of $2^r 1$, check

$$x^{(2^r-1)/p} \neq 1 \bmod f(x)$$

Need to factor $2^r - 1 \dots$

- 1. Check f(x) is irreducible.
- 2. Check $x^{2^r-1} = 1 \mod f(x)$.
- 3. For each prime divisor p of $2^r 1$, check

$$x^{(2^r-1)/p} \neq 1 \bmod f(x)$$

Need to factor $2^r - 1 \dots$

Easy if $2^r - 1$ is known to be prime:

$$f(x)$$
 irreducible $\Longrightarrow f(x)$ primitive

Use Mersenne primes $2^r - 1$

Great Internet Mersenne Prime Search (GIMPS, www.mersenne.org).

N

George

Woltman

	r	date	$r \bmod 8$
M35	1398269	Nov 1996	5
M36	2976221	Aug 1997	5
M37	3021377	Jan 1998	1
M38	6972593	Jun 1999	1
M39	13466917	Nov 2001	5
M40?	20996011	Nov 2003	3
M41?	24036583	May 2004	7
M42?	25964951	Feb 2005	7
M43?	30402457	Dec 2005	1
M44?	32582657	Sep 2006	1

Does an irreducible/primitive trinomial exist for all degree r?

Does an irreducible/primitive trinomial exist for all degree r?

No!

Does an irreducible/primitive trinomial exist for all degree r?

No!

Example. No irreducible trinomial of degree 8:

$$x^{8} + x + 1 = (x^{6} + x^{5} + x^{3} + x^{2} + 1)(x^{2} + x + 1)$$
$$x^{8} + x^{2} + 1 = (x^{4} + x + 1)^{2}$$
$$x^{8} + x^{3} + 1 = (x^{3} + x + 1)(x^{5} + x^{3} + x^{2} + x + 1)$$
$$x^{8} + x^{4} + 1 = (x^{2} + x + 1)^{4}$$

Does an irreducible/primitive trinomial exist for all degree r?

No!

Example. No irreducible trinomial of degree 8:

$$x^{8} + x + 1 = (x^{6} + x^{5} + x^{3} + x^{2} + 1)(x^{2} + x + 1)$$
$$x^{8} + x^{2} + 1 = (x^{4} + x + 1)^{2}$$
$$x^{8} + x^{3} + 1 = (x^{3} + x + 1)(x^{5} + x^{3} + x^{2} + x + 1)$$
$$x^{8} + x^{4} + 1 = (x^{2} + x + 1)^{4}$$

In general, no irreducible trinomial of degree r = 8k.

Previous work by von zur Gathen (2002), Dalen (1955), Dickson (1906), Stickelberger (1897), Pellet (1878), ...

Theorem. Suppose r > s > 0, r - s odd. Then $x^r + x^s + 1$ has an even number of irreducible factors over GF(2) if and only if one of the following holds:

- r is even, $r \neq 2s$, $rs/2 \mod 4 \in \{0, 1\}$;
- $2r \neq 0 \mod s, r = \pm 3 \mod 8;$
- $2r = 0 \mod s, r = \pm 1 \mod 8.$

Previous work by von zur Gathen (2002), Dalen (1955), Dickson (1906), Stickelberger (1897), Pellet (1878), ...

Theorem. Suppose r > s > 0, r - s odd. Then $x^r + x^s + 1$ has an even number of irreducible factors over GF(2) if and only if one of the following holds:

- $r \text{ is even}, r \neq 2s, rs/2 \mod 4 \in \{0, 1\};$
- $2r \neq 0 \mod s, r = \pm 3 \mod 8;$
- $2r = 0 \mod s, r = \pm 1 \mod 8.$

Corollary 1. If r is prime, $r = \pm 3 \mod 8$, $s \notin \{2, r-2\}$, then $x^r + x^s + 1$ is reducible. \implies need to check only $x^r + x^2 + 1$. Previous work by von zur Gathen (2002), Dalen (1955), Dickson (1906), Stickelberger (1897), Pellet (1878), ...

Theorem. Suppose r > s > 0, r - s odd. Then $x^r + x^s + 1$ has an even number of irreducible factors over GF(2) if and only if one of the following holds:

- $r \text{ is even}, r \neq 2s, rs/2 \mod 4 \in \{0, 1\};$
- $2r \neq 0 \mod s, r = \pm 3 \mod 8;$
- $2r = 0 \mod s, r = \pm 1 \mod 8.$

Corollary 1. If r is prime, $r = \pm 3 \mod 8$, $s \notin \{2, r-2\}$, then $x^r + x^s + 1$ is reducible. \implies need to check only $x^r + x^2 + 1$.

Corollary 2. A trinomial of degree multiple of 8 cannot be irreducible.

Swan's theorem: no trinomial of degree r = 8k can be irreducible.

How to perform efficient arithmetic in $GF(2^r)$, say $GF(2^{16})$?

Workaround: use a pentanomial

$$x^{16} + x^5 + x^3 + x + 1.$$

(Richard Brent, PZ, 2003)

 $x^{19} + x^4 + 1 = (x^3 + x + 1)(x^{16} + x^{14} + x^{13} + x^{12} + x^9 + x^7 + x^6 + x^5 + x^2 + x + 1)$

Perform all arithmetic modulo $x^{19} + x^4 + 1$.

Reduce mod $x^{16} + \cdots + 1$ only when a canonical form is needed.

ALGORITHMS

The Problem

Given a degree r with $2^r - 1$ prime.

The Problem

Given a degree r with $2^r - 1$ prime.

Goal 1. Find all irreducible (thus primitive) trinomials

 $x^r + x^s + 1.$

The Problem

Given a degree r with $2^r - 1$ prime.

Goal 1. Find all irreducible (thus primitive) trinomials

 $x^r + x^s + 1.$

Goal 2. (if possible) output a *certifi cate* which can be checked faster than the time to make it.

Integer multiplication:

$395718860534 \cdot 193139816415 \Rightarrow 76429068075489748865610$

Difficult to exhibit a certificate which can be checked faster!

Integer multiplication:

 $395718860534 \cdot 193139816415 \Rightarrow 76429068075489748865610$

Difficult to exhibit a certificate which can be checked faster!

Integer factorization:

 $17943540555468154303435 \Rightarrow 22424170465 \cdot 800187484459$

One factor is a valid certificate.

Do not waste a factor of two!

One of Schönhage's golden rules.

$$x^{r} + x^{s} + 1 = a(x)b(x) \Longrightarrow 1 + x^{r-s} + x^{r} = x^{r}a(1/x)b(1/x)$$

 \implies can restrict to $s \leq r/2$.

Main Theorem

Theorem. The product of **ALL** irreducible factors of degree **dividing** k is $x^{2^k} + x$.

$$x^{2^1} + x = x(x+1)$$

$$x^{2^{2}} + x = x(x+1)(x^{2} + x + 1)$$

$$x^{2^{3}} + x = x(x+1)(x^{3} + x + 1)(x^{3} + x^{2} + 1)$$

 $x^{2^{4}} + x = x(x+1)(x^{2} + x + 1)(x^{4} + x + 1)(x^{4} + x^{3} + 1)(x^{4} + x^{3} + x^{2} + x + 1)$

1. (sieving) for k = 2 to k_0 , compute:

$$\gcd(x^{2^k} + x, x^r + x^s + 1)$$

If non trivial, output "divisible by degree k"

(When 2^k exceeds r, reduce mod $x^r + x^s + 1$.)

1. (sieving) for k = 2 to k_0 , compute:

$$gcd(x^{2^k} + x, x^r + x^s + 1)$$

If non trivial, output "divisible by degree k"

(When 2^k exceeds r, reduce mod $x^r + x^s + 1$.)

2. (full test) check whether:

$$x^{2^r} \equiv x \mod (x^r + x^s + 1).$$

If not, output the low bits from $x^{2^r} \mod (x^r + x^s + 1)$ as pseudo-certificate.

1. (sieving) for k = 2 to k_0 , compute:

$$\gcd(x^{2^k} + x, x^r + x^s + 1)$$

If non trivial, output "divisible by degree k"

(When 2^k exceeds r, reduce mod $x^r + x^s + 1$.)

2. (full test) check whether:

$$x^{2^r} \equiv x \mod (x^r + x^s + 1).$$

If not, output the low bits from $x^{2^r} \mod (x^r + x^s + 1)$ as pseudo-certificate. For r = 6972593, we used $k_0 = 26$: 236244 trinomials (7%) survived Step 1. **Complexity:** $O(r^2)$ for each full test.

The "new" algorithm

Perform a classical DDF (distinct degree factorization) with the "blocking strategy" (von zur Gathen and Shoup 1992, Kaltofen and Shoup 1998):

- 0. Partition $\{2, \ldots, \lfloor r/2 \rfloor\}$ into intervals I_1, \ldots, I_m .
- 1. for j:=1 to m do

$$a \leftarrow 1$$
; for k in I_j do
 $b \leftarrow x^{2^k} \mod (x^r + x^s + 1)$ [SQR]
 $a \leftarrow a(b + x) \mod (x^r + x^s + 1)$ [MUL]
 $g \leftarrow \gcd(a, x^r + x^s + 1)$ [GCD]
if $g \neq 1$ then output "reducible with degree in I_j "

Output "irreducible".

Complexity: O(dM(r)) if the smallest factor has degree d, assuming the GCD cost is not dominant.

Old Algorithm: we sieve up to $k \approx \log r$.

Old Algorithm: we sieve up to $k \approx \log r$.

• it remains $\approx rac{r}{\log r}$ trinomials

Old Algorithm: we sieve up to $k \approx \log r$.

• it remains $\approx \frac{r}{\log r}$ trinomials • $\cos x \approx r^2$ per full test, total $\cos x \approx \frac{r^3}{\log r}$

Old Algorithm: we sieve up to $k \approx \log r$.

• it remains $\approx \frac{r}{\log r}$ trinomials • cost $\approx r^2$ per full test, total cost $\approx \frac{r^3}{\log r}$

New Algorithm: cost O(dM(r)) if the smallest factor has degree d.

Old Algorithm: we sieve up to $k \approx \log r$.

• it remains $\approx \frac{r}{\log r}$ trinomials • cost $\approx r^2$ per full test, total cost $\approx \frac{r^3}{\log r}$

New Algorithm: cost O(dM(r)) if the smallest factor has degree d.

• $\Pr[\text{no factor of degree} < d] \approx \frac{1}{d}$

Old Algorithm: we sieve up to $k \approx \log r$.

• it remains $\approx \frac{r}{\log r}$ trinomials • cost $\approx r^2$ per full test, total cost $\approx \frac{r^3}{\log r}$

New Algorithm: cost O(dM(r)) if the smallest factor has degree d.

- $\Pr[\text{no factor of degree} < d] \approx \frac{1}{d}$
- total cost $r \sum_{d=1}^{r/2} \frac{1}{d} M(r) \approx r M(r) \log r$

Old Algorithm: we sieve up to $k \approx \log r$.

• it remains $\approx \frac{r}{\log r}$ trinomials • cost $\approx r^2$ per full test, total cost $\approx \frac{r^3}{\log r}$

New Algorithm: cost O(dM(r)) if the smallest factor has degree d.

- $\Pr[\text{no factor of degree} < d] \approx \frac{1}{d}$
- total cost $r \sum_{d=1}^{r/2} \frac{1}{d} M(r) \approx r M(r) \log r$

New algorithm faster as soon as $M(r) \ll \frac{r^2}{\log^2 r}$.

Old Algorithm: we sieve up to $k \approx \log r$.

• it remains $\approx \frac{r}{\log r}$ trinomials • cost $\approx r^2$ per full test, total cost $\approx \frac{r^3}{\log r}$

New Algorithm: cost O(dM(r)) if the smallest factor has degree d.

- $\Pr[\text{no factor of degree} < d] \approx \frac{1}{d}$
- total cost $r \sum_{d=1}^{r/2} \frac{1}{d} M(r) \approx r M(r) \log r$

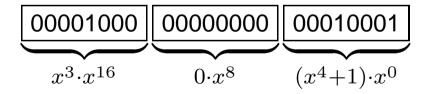
New algorithm faster as soon as $M(r) \ll \frac{r^2}{\log^2 r}$.

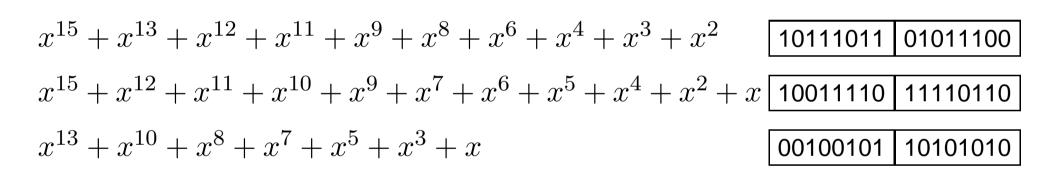
With R. Brent: a faster algorithm in $O(r^2 \log r \sqrt{M(r)/r})$, but no space in the margin...

NUMBERS

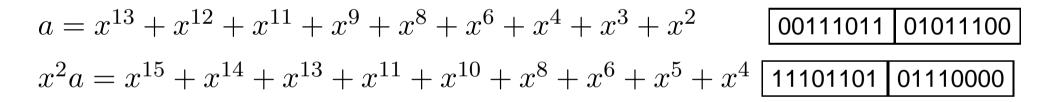
 $a(x) = a_{r-1}x^{r-1} + \dots + a_1x + a_0$ is stored in computer by the *binary polynomial* $a(2) = a_{r-1} \cdot 2^{r-1} + \dots + a_1 \cdot 2 + a_0.$

On a 8-bit computer, the trinomial $x^{19} + x^4 + 1$ is stored as:

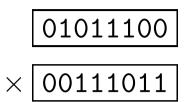




Multiplication by x^k

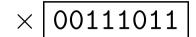


$$(x^6 + x^4 + x^3 + x^2)(x^5 + x^4 + x^3 + x + 1)$$

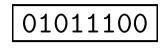


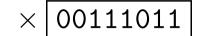
$$(x^6 + x^4 + x^3 + x^2)(x^5 + x^4 + x^3 + x + 1)$$

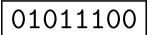




$$(x^6 + x^4 + x^3 + x^2)(x^5 + x^4 + x^3 + x + 1)$$

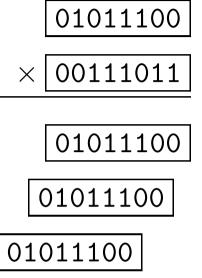




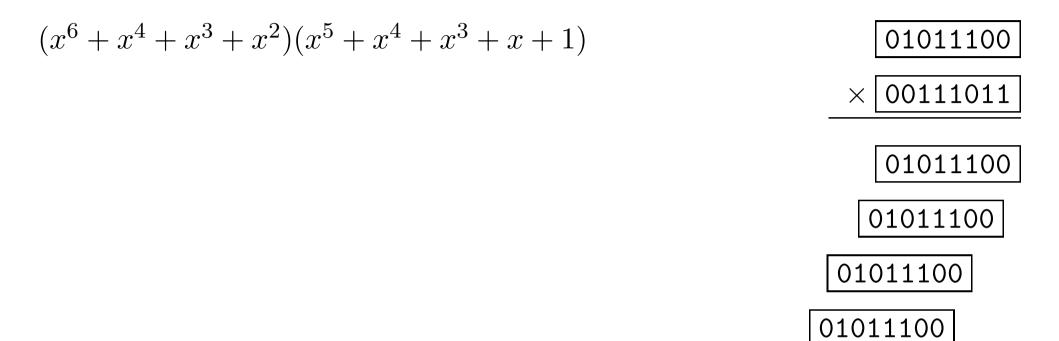




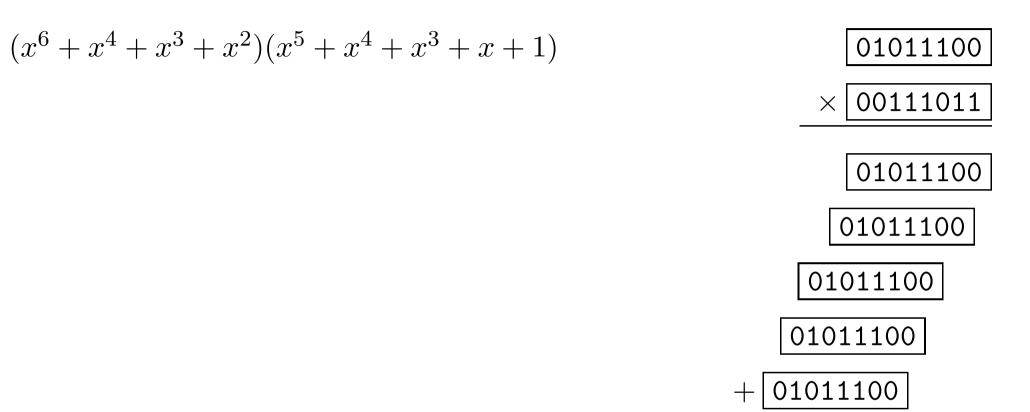
$$(x^6 + x^4 + x^3 + x^2)(x^5 + x^4 + x^3 + x + 1)$$



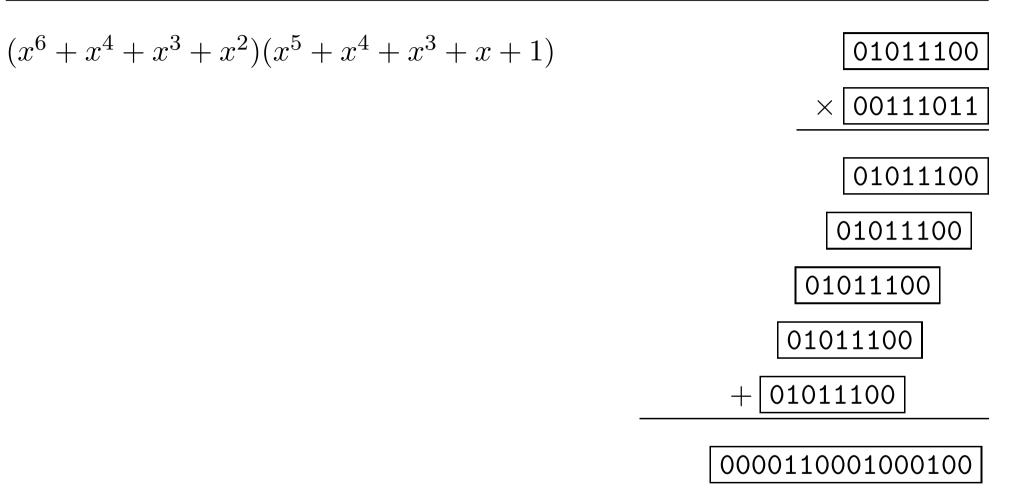
Multiplication



Multiplication



Multiplication



$$x^{11} + x^{10} + x^6 + x^2$$

Squares are easy:

$$x^t + x^u + \cdots \implies x^{2t} + x^{2u} + \cdots$$

GCDs reduce to multiplication: $O(M(r)\log r)$

 \implies We have to improve multiplications!

Multiplication over GF(2)[x]

- naive (quadratic) algorithm
- Karatsuba's algorithm
- Toom-Cook 3-way and higher order
- Fast Fourier Transform: segmentation, Cantor (BiPolAr), Schönhage

Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2, A. Schönhage, *Acta Inf.* 7 (1977), 395–398.

Complexity $O(r \log r \log \log r)$.

High-level description:

one product $mod(x^{2N} + x^N + 1) \implies 2K$ products $mod(x^{2L} + x^L + 1)$ Constraints: K power of 3, $L \ge N/K$, L multiple of K

Variant described here:

one product $\operatorname{mod}(x^N + 1) \implies K$ products $\operatorname{mod}(x^{2L} + x^L + 1)$ Constraints: K power of 3, $L \ge N/K$, L multiple of K/3Forward and backward transform: $O(K \log K)$ additions/shifts mod $x^{2L} + x^L + 1$. Pointwise products: K products mod $x^{2L} + x^L + 1$.

The Algorithm

Input: a, b polynomials of degree < N

Parameters: K power of 3 dividing N, M = N/K, $L \ge M$ multiple of K/3.

1. Decompose a, b in base x^M :

$$a(x) = \sum_{i=0}^{K-1} a_i(x) x^{iM}$$

2. Forward transform with $\omega = x^{3L/K}$:

$$\hat{a}_i = \sum_{j=0}^{K-1} a_i(x) \omega^{ij} \mod (x^{2L} + x^L + 1), 0 \le i < K$$

3. Pointwise products:

$$\hat{c}_i = \hat{a}_i \hat{b}_i, \quad 0 \le i < K$$

4. Backward transform:

$$c_{\ell} = \sum_{i=0}^{K-1} \hat{c}_i(x) \omega^{-\ell i} \mod (x^{2L} + x^L + 1), 0 \le \ell < K$$

5. Recomposition:

$$c(x) = \sum_{\ell=0}^{K-1} c_{\ell} x^{\ell M} \mod (x^N + 1).$$

An example

Compute $a(x)b(x) \mod (x^{15}+1)$: $a(x) = x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^8 + x^6 + x^5 + x^4 + x^3 + x^2 + 1,$ $b(x) = x^{13} + x^{11} + x^8 + x^7 + x^6 + x^2.$

Take K = 3, L = 5:

$$a_{2} = x^{4} + x^{3} + x^{2} + x + 1, a_{1} = x^{3} + x + 1, a_{0} = x^{4} + x^{3} + x^{2} + 1$$
$$b_{2} = x^{3} + x, b_{1} = x^{3} + x^{2} + x, b_{0} = x^{2}$$

Forward transform ($\omega = x^5$, mod $x^{10} + x^5 + 1$):

$$\hat{a}_{2} = x^{20}a_{2} + x^{10}a_{1} + a_{0} = x^{9} + x^{7} + x^{4} + x^{2} + x$$
$$\hat{a}_{1} = x^{10}a_{2} + x^{5}a_{1} + a_{0} = x^{9} + x^{7} + x$$
$$\hat{a}_{0} = a_{2} + a_{1} + a_{0} = x^{3} + 1$$

An example

Forward transform ($\omega = x^5$, mod $x^{10} + x^5 + 1$):

$$\hat{a}_2 = x^9 + x^7 + x^4 + x^2 + x, \hat{a}_1 = x^9 + x^7 + x, \hat{a}_0 = x^3 + 1$$

 $\hat{b}_2 = x^7 + x^3 + x, \hat{b}_1 = x^7 + x^3 + x^2 + x, \hat{b}_0 = 0$

Pointwise transforms:

$$\hat{c}_2 = x^6 + x^3, \hat{c}_1 = x^7 + x^6 + x^3, \hat{c}_0 = 0$$

Backward transform:

$$c_2 = x^6 + x^3, c_1 = x^7 + x^6 + x^3, c_0 = 0$$

Reconstruction:

$$c_2 x^{10} + c_1 x^5 + c_0 = x^{13} + x^{12} + x^{11} + x^8 + x^2 + x \mod (x^{15} + 1)$$

Why does it work?

Let
$$R_L := \operatorname{GF}(2)[x]/(x^{2L} + x^L + 1).$$

 $\omega = x^{3L/K} \Longrightarrow \omega^{K/3} = x^L$ thus in R_L :
 $\omega^{2K/3} + \omega^{K/3} + 1 = 0$
(1)

From Eq. (1) it follows

$$\omega^K = 1 \quad \text{and} \quad \omega^{-1} = \omega^{K-1} \tag{2}$$

$$c_{\ell} := \sum_{i=0}^{K-1} \hat{c}_{i}(x) \omega^{-\ell i} = \sum_{i=0}^{K-1} \omega^{-\ell i} \left(\sum_{j=0}^{K-1} \omega^{i j} a_{i} \right) \left(\sum_{k=0}^{K-1} \omega^{i k} b_{k} \right)$$
$$= \sum_{j=0}^{K-1} \sum_{k=0}^{K-1} a_{j} b_{k} \sum_{i=0}^{K-1} \omega^{i (j+k-\ell)}.$$

Why does it work?

$$c_{\ell} = \sum_{j=0}^{K-1} \sum_{k=0}^{K-1} a_j b_k \sum_{i=0}^{K-1} \omega^{i(j+k-\ell)}$$

We have $-K < j + k - \ell < 2K$. If $t := j + k - \ell \neq 0 \mod K$:

$$\sum_{i=0}^{K-1} \omega^{i(j+k-\ell)} = \frac{\omega^{Kt}+1}{\omega^t+1} = 0.$$

Otherwise $j + k - \ell \in \{0, K\}$, and $\omega^{i(j+k-\ell)} = 1$.

Thus $\sum_{i=0}^{K-1} \omega^{i(j+k-\ell)}$ is non-zero only when $j + k - \ell \in \{0, K\}$, in which case it equals $K = 1 \mod 2$.

It follows:

$$c_{\ell} = \sum_{j+k=\ell} a_j b_k + \sum_{j+k=K+\ell} a_j b_k \pmod{x^{2L} + x^L + 1}.$$

$$c_{\ell} = \sum_{j+k=\ell} a_j b_k + \sum_{j+k=K+\ell} a_j b_k \pmod{x^{2L} + x^L + 1}.$$

Recall $\deg(a_j), \deg(b_k) < M$: if $L \ge M$, then

$$c_{\ell} = \sum_{j+k=\ell} a_j b_k + \sum_{j+k=K+\ell} a_j b_k.$$

5. Recomposition:

$$c(x) = \sum_{\ell=0}^{K-1} c_{\ell} x^{\ell M} \mod (x^N + 1).$$

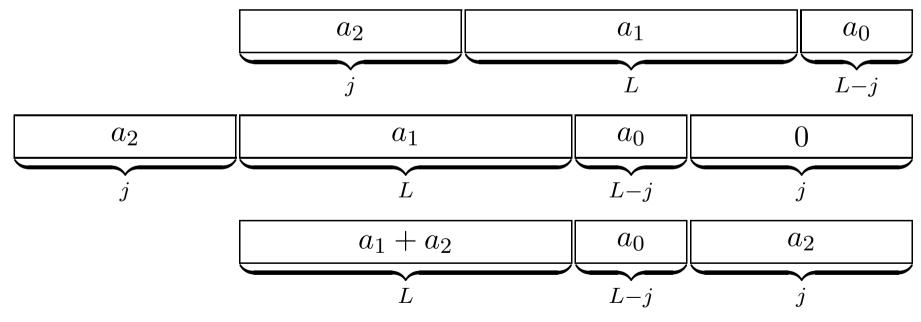
c(x) is simply the cyclic convolution of a(x) and $b(x) \mod x^N + 1$.

- addition: easy
- \bullet shift: multiplication by x^j , $0 \leq j < 3L$
- full multiplication

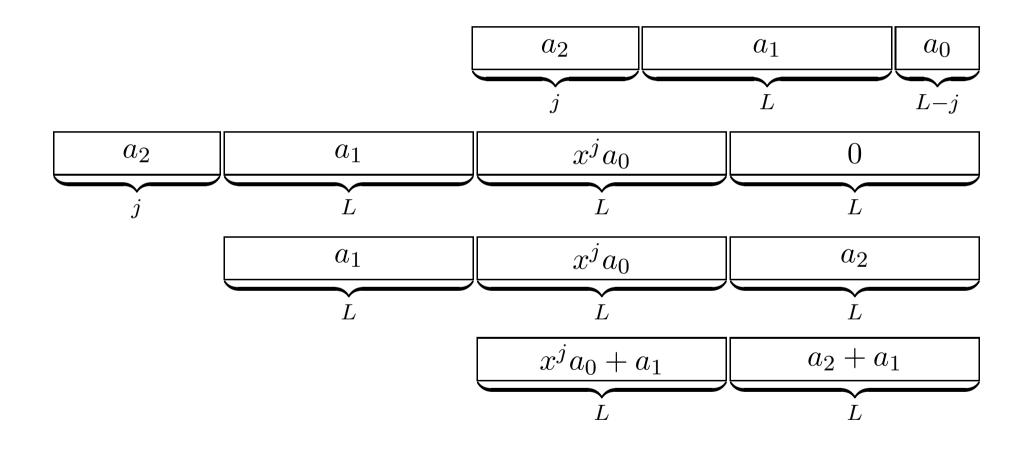
Input: a binary polynomial a(x) of degree <2L, $0\leq j<3L$

Output: $x^j a(x) \mod (x^{2L} + x^L + 1)$

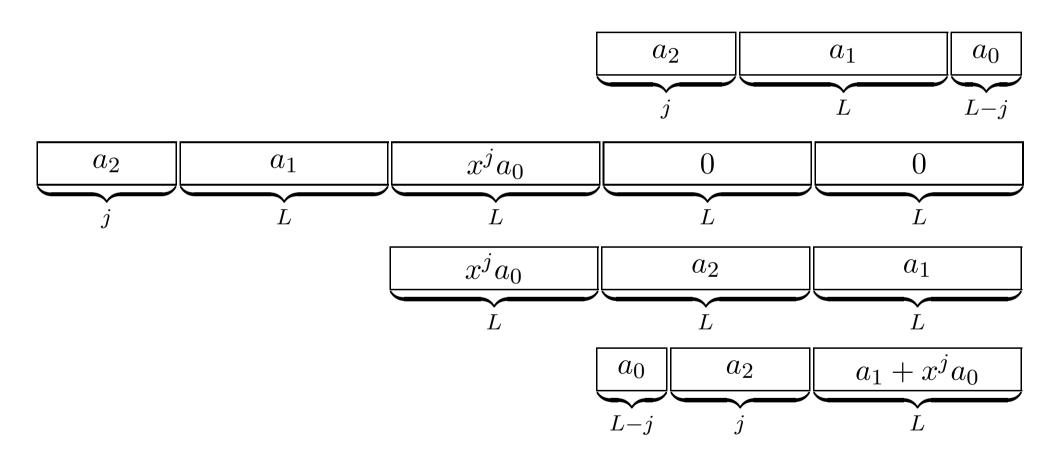
1. Shift of j, $0 \le j < L$:



Case 2: Shift of L + j, $0 \le j < L$

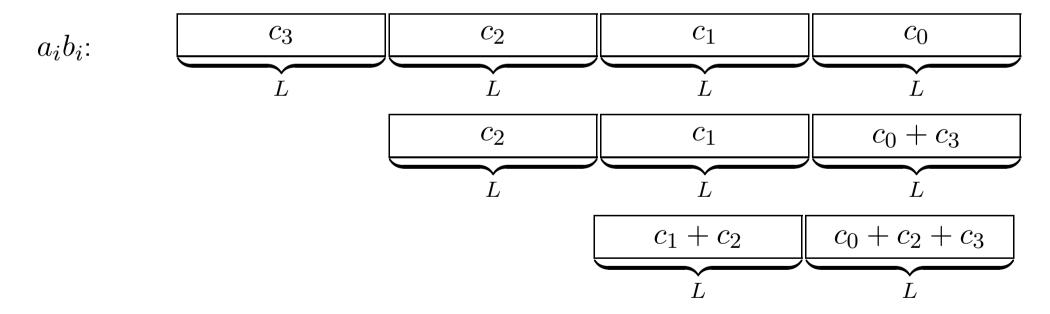


Case 3: Shift of 2L + j, $0 \le j < L$



3. Pointwise products

$$\hat{c}_i = \hat{a}_i \hat{b}_i (\text{mod}\,x^{2L} + x^L + 1)$$



Timings

Core 2 processor, 2.66Ghz, 4MB cache, 3GB memory.

r	Toom-Cook 3	Toom-Cook 4	FFTMul(K)	GCD
6972593	1.32s	1.01s	0.27s(6561)	12.1s
24036583	7.89s	6.30s	1.77s(6561)	55.3s
32582657	13.9s	8.11s	2.16s(6561)	78.4s

It took a total of about 0.44 cpu year, or about 1 GIPS-year.

It took a total of about 0.44 cpu year, or about 1 GIPS-year.

And checking all certificates took only 2 hours with Magma!

It took a total of about 0.44 cpu year, or about 1 GIPS-year.

And checking all certificates took only 2 hours with Magma!

Speedup of about 230 due to:

It took a total of about 0.44 cpu year, or about 1 GIPS-year.

And checking all certificates took only 2 hours with Magma!

Speedup of about 230 due to:

• Schönhage's multiplication (with classical DDF and blocking strategy)

6972593 again

From April 18 to April 29, 2007, we started the computation of extended logs for r = 6972593 using about 25 Opterons (2.2Ghz and 2.4Ghz).

It took a total of about 0.44 cpu year, or about 1 GIPS-year.

And checking all certificates took only 2 hours with Magma!

Speedup of about 230 due to:

- Schönhage's multiplication (with classical DDF and blocking strategy)
- new multi-level blocking DDF algorithm (with R. Brent)

It took a total of about 0.44 cpu year, or about 1 GIPS-year.

And checking all certificates took only 2 hours with Magma!

Speedup of about 230 due to:

- Schönhage's multiplication (with classical DDF and blocking strategy)
- new multi-level blocking DDF algorithm (with R. Brent)

• faster basecase multiplication (with P. Gaudry and E. Thomé): about 130 cycles for $128 \times 128 \rightarrow 256$ (Core 2)

It took a total of about 0.44 cpu year, or about 1 GIPS-year.

And checking all certificates took only 2 hours with Magma!

Speedup of about 230 due to:

- Schönhage's multiplication (with classical DDF and blocking strategy)
- new multi-level blocking DDF algorithm (with R. Brent)

• faster basecase multiplication (with P. Gaudry and E. Thomé): about 130 cycles for $128 \times 128 \rightarrow 256$ (Core 2)

• subquadratic GCD (still quite expensive)

24036583

We have started computations for r=24036583 (M41?) on April 25.

Already done more than 10%.

No primitive trinomial so far.

But already found a (smallest) factor of degree almost one million!

Help welcome (preferably Opteron/Core 2)!

slow algorithms are **slow** as expected

- **slow** algorithms are **slow** as expected
- **fast** algorithms are indeed asymptotically **faster**

- **slow** algorithms are **slow** as expected
- **fast** algorithms are indeed asymptotically **faster**
- thanks to Moore's law, the asymptotic domain is closer and closer...

- **slow** algorithms are **slow** as expected
- **fast** algorithms are indeed asymptotically **faster**
- thanks to Moore's law, the asymptotic domain is closer and closer...

Thank you for staying awake so far!