How Fast Can We Multiply Over GF (2) $[x]$?

Paul Zimmermann
INRIA Lorraine/LORIA, Nancy, France

ITI I N R I I A A

(thanks to Richard Brent, Pierrick Gaudry, Samuli Larvala, Emmanuel Thomé)

Followup to Mika's talk (preproceedings, p. 25)

Theorem. The first digit of $F_{5 \cdot 10^{87}}$ is 1 .

Followup to Mika's talk (preproceedings, p. 25)

Theorem. The first digit of $F_{5 \cdot 10^{87}}$ is 1.

Proof:

```
bash-3.00$ time ./fib 5e87
n=5000000000000000000000000000000000000000000\
    000000000000000000000000000000000000000000000
prec=302
length of Fib(n) in base 3 is
2190089397429712060570026179560455216382019945\
    882232014510953225378415664943464622853621
first digit is 1
user 0m0.004s
```

Credits: ${ }_{\infty}$ MPFR (www .mpfr . org), MPFI.

Plan of the talk

- Theory

Plan of the talk

- Theory

- Algorithms

Plan of the talk

- Theory

- Algorithms
- Numbers

Motivation: Search for Primitive Trinomials

T. Kumada, H. Leeb, Y. Kurita and M. Matsumoto, New primitive t-nomials $(t=3,5)$ over GF (2) whose degree is a Mersenne exponent, Math. Comp., (2000):

$$
x^{859433}+x^{288477}+1
$$

Motivation: Search for Primitive Trinomials

T. Kumada, H. Leeb, Y. Kurita and M. Matsumoto, New primitive t-nomials $(t=3,5)$ over GF (2) whose degree is a Mersenne exponent, Math. Comp., (2000):

$$
x^{859433}+x^{288477}+1
$$

With Richard Brent and Samuli Larvala (Helsinki University of Technology), we started a search in 2000 ...

Motivation: Search for Primitive Trinomials

T. Kumada, H. Leeb, Y. Kurita and M. Matsumoto, New primitive t-nomials $(t=3,5)$ over GF (2) whose degree is a Mersenne exponent, Math. Comp., (2000):

$$
x^{859433}+x^{288477}+1
$$

With Richard Brent and Samuli Larvala (Helsinki University of Technology), we started a search in 2000 ...

June 26, 2000:

$$
x^{859433}+x^{170340}+1
$$

Status so far

$$
x^{r}+x^{s}+1
$$

r	s	when
756839	$215747,267428,279695$	June 2000
859433	170340,288477	June 2000
3021377	361604,1010202	July 2000 to April 2001: 13 GIPS-years
6972593	3037958	Feb 2001 to July 2003: 230 GIPS-years

Status so far

$$
x^{r}+x^{s}+1
$$

r	s	when
756839	$215747,267428,279695$	June 2000
859433	170340,288477	June 2000
3021377	361604,1010202	July 2000 to April 2001: 13 GIPS-years
6972593	3037958	Feb 2001 to July 2003: 230 GIPS-years

Largest known primitive trinomial:

$$
x^{6972593}+x^{3037958}+1
$$

(August 31, 2002, while Samuli Larvala and PZ were visiting Richard Brent in Oxford)

Status so far

$$
x^{r}+x^{s}+1
$$

r	s	when
756839	$215747,267428,279695$	June 2000
859433	170340,288477	June 2000
3021377	361604,1010202	July 2000 to April 2001: 13 GIPS-years
6972593	3037958	Feb 2001 to July 2003: 230 GIPS-years

Largest known primitive trinomial:

$$
x^{6972593}+x^{3037958}+1
$$

(August 31, 2002, while Samuli Larvala and PZ were visiting Richard Brent in Oxford)

As a comparison, RSA-155 (1999) took 8 GIPS years.

THEORY

GF(2)

Field with two elements: $\{0,1\}$.

GF(2)

Field with two elements: $\{0,1\}$.

Addition table:

+	0	1
0	0	1
1	1	0

GF(2)

Field with two elements: $\{0,1\}$.
Addition table:

+	0	1
0	0	1
1	1	0

Multiplication table:

\times	0	1
0	0	0
1	0	1

$\mathrm{GF}(2)[x]$

Polynomial ring:

$$
a(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}
$$

where $a_{i} \in\{0,1\}$.

$\mathrm{GF}(2)[x]$

Polynomial ring:

$$
a(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}
$$

where $a_{i} \in\{0,1\}$.
If $a_{d} \neq 0, d=\operatorname{deg}(a)$.

Irreducible Polynomial

Definition. $a(x) \in \mathrm{GF}(2)[x]$ is irreducible if

$$
a(x)=b(x) c(x)
$$

implies $b(x)=1$ or $c(x)=1$.

Irreducible Polynomial

Definition. $a(x) \in \mathrm{GF}(2)[x]$ is irreducible if

$$
a(x)=b(x) c(x)
$$

implies $b(x)=1$ or $c(x)=1$.
Example 1. $x^{3}+x+1$ is irreducible.

Irreducible Polynomial

Definition. $a(x) \in \mathrm{GF}(2)[x]$ is irreducible if

$$
a(x)=b(x) c(x)
$$

implies $b(x)=1$ or $c(x)=1$.
Example 1. $x^{3}+x+1$ is irreducible.
Example 2. $x^{3}+1$ is not:

$$
x^{3}+1=\left(x^{2}+x+1\right)(x+1)
$$

Irreducible Polynomial

Definition. $a(x) \in \mathrm{GF}(2)[x]$ is irreducible if

$$
a(x)=b(x) c(x)
$$

implies $b(x)=1$ or $c(x)=1$.
Example 1. $x^{3}+x+1$ is irreducible.
Example 2. $x^{3}+1$ is not:

$$
x^{3}+1=\left(x^{2}+x+1\right)(x+1)
$$

Example 3. $x^{4}+x^{2}+x+1$ is not either (irreducible over \mathbb{Q}):

$$
x^{4}+x^{2}+x+1=\left(x^{3}+x^{2}+1\right)(x+1)
$$

Why trinomials?

We search simple irreducible polynomials over GF(2).
\Longrightarrow efficient way to implement arithmetic over GF $\left(2^{r}\right)$.

Why trinomials?

We search simple irreducible polynomials over GF(2).
\Longrightarrow efficient way to implement arithmetic over GF $\left(2^{r}\right)$.
First try monomials: x^{r} is divisible by $x \ldots$

Why trinomials?

We search simple irreducible polynomials over GF(2).
\Longrightarrow efficient way to implement arithmetic over GF $\left(2^{r}\right)$.
First try monomials: x^{r} is divisible by $x \ldots$
Next try binomials: $x^{r}+1$ is divisible by $x+1$:

$$
x^{r}+1=(x+1)\left(x^{r-1}+x^{r-2}+\cdots+x+1\right)
$$

Why trinomials?

We search simple irreducible polynomials over GF(2).
\Longrightarrow efficient way to implement arithmetic over GF $\left(2^{r}\right)$.
First try monomials: x^{r} is divisible by $x \ldots$
Next try binomials: $x^{r}+1$ is divisible by $x+1$:

$$
x^{r}+1=(x+1)\left(x^{r-1}+x^{r-2}+\cdots+x+1\right)
$$

Then try trinomials:

$$
x^{r}+x^{s}+1 \quad \text { with } r>s>0 .
$$

Primitive Trinomials

Definition. A polynomial $f(x) \in \operatorname{GF}(2)[x]$ is said primitive iff:
(1) $f(x)$ is irreducible;
(2a) x has order $2^{r}-1$ modulo $f(x)$, where $r:=\operatorname{deg}(f)$;
Cf Lucas test (Nitin's talk).

Primitive Trinomials

Definition. A polynomial $f(x) \in \operatorname{GF}(2)[x]$ is said primitive iff:
(1) $f(x)$ is irreducible;
(2a) x has order $2^{r}-1$ modulo $f(x)$, where $r:=\operatorname{deg}(f)$;
Cf Lucas test (Nitin's talk).
Example 1. $x^{4}+x+1$ is primitive:
$x, x^{2}, x^{3}, x+1, x^{2}+x, x^{3}+x^{2}, x^{3}+x+1, x^{2}+1, x^{3}+x, x^{2}+x+1, x^{3}+x^{2}+x$,

$$
x^{3}+x^{2}+x+1, x^{3}+x^{2}+1, x^{3}+1, x^{15} \equiv 1 .
$$

Primitive Trinomials

Definition. A polynomial $f(x) \in \operatorname{GF}(2)[x]$ is said primitive iff:
(1) $f(x)$ is irreducible;
(2a) x has order $2^{r}-1$ modulo $f(x)$, where $r:=\operatorname{deg}(f)$;
Cf Lucas test (Nitin's talk).
Example 1. $x^{4}+x+1$ is primitive:
$x, x^{2}, x^{3}, x+1, x^{2}+x, x^{3}+x^{2}, x^{3}+x+1, x^{2}+1, x^{3}+x, x^{2}+x+1, x^{3}+x^{2}+x$,

$$
x^{3}+x^{2}+x+1, x^{3}+x^{2}+1, x^{3}+1, x^{15} \equiv 1 .
$$

Example 2. $x^{6}+x^{3}+1$ is irreducible but not primitive:

$$
x^{9} \equiv 1 \bmod \left(x^{6}+x^{3}+1\right) .
$$

How to Check Primitivity?

Follow the definition:

1. Check $f(x)$ is irreducible.

How to Check Primitivity?

Follow the definition:

1. Check $f(x)$ is irreducible.
2. Check $x^{2^{r}-1}=1 \bmod f(x)$.

How to Check Primitivity?

Follow the definition:

1. Check $f(x)$ is irreducible.
2. Check $x^{2^{r}-1}=1 \bmod f(x)$.
3. For each prime divisor p of $2^{r}-1$, check

$$
x^{\left(2^{r}-1\right) / p} \neq 1 \bmod f(x)
$$

How to Check Primitivity?

Follow the definition:

1. Check $f(x)$ is irreducible.
2. Check $x^{2^{r}-1}=1 \bmod f(x)$.
3. For each prime divisor p of $2^{r}-1$, check

$$
x^{\left(2^{r}-1\right) / p} \neq 1 \bmod f(x)
$$

Need to factor $2^{r}-1 \ldots$

How to Check Primitivity?

Follow the definition:

1. Check $f(x)$ is irreducible.
2. Check $x^{2^{r}-1}=1 \bmod f(x)$.
3. For each prime divisor p of $2^{r}-1$, check

$$
x^{\left(2^{r}-1\right) / p} \neq 1 \bmod f(x)
$$

Need to factor $2^{r}-1 \ldots$
Easy if $2^{r}-1$ is known to be prime:
$f(x)$ irreducible $\Longrightarrow f(x)$ primitive

Use Mersenne primes $2^{r}-1$

Great Internet Mersenne Prime Search (GIMPS, www . mersenne. org).

		r	date	$r \bmod 8$
George	M35	1398269	Nov 1996	5
Woltman	M36	2976221	Aug 1997	5
	M39	13466917	Nov 2001	5
	M40?	20996011	Nov 2003	3
	M41?	24036583	May 2004	7
	M43?	25964951	Feb 2005	7

Do such trinomials always exist?

Does an irreducible/primitive trinomial exist for all degree r ?

Do such trinomials always exist?

Does an irreducible/primitive trinomial exist for all degree r ?
No!

Do such trinomials always exist?

Does an irreducible/primitive trinomial exist for all degree r ?

No!

Example. No irreducible trinomial of degree 8:

$$
\begin{gathered}
x^{8}+x+1=\left(x^{6}+x^{5}+x^{3}+x^{2}+1\right)\left(x^{2}+x+1\right) \\
x^{8}+x^{2}+1=\left(x^{4}+x+1\right)^{2} \\
x^{8}+x^{3}+1=\left(x^{3}+x+1\right)\left(x^{5}+x^{3}+x^{2}+x+1\right) \\
x^{8}+x^{4}+1=\left(x^{2}+x+1\right)^{4}
\end{gathered}
$$

Do such trinomials always exist?

Does an irreducible/primitive trinomial exist for all degree r ?

No!

Example. No irreducible trinomial of degree 8:

$$
\begin{gathered}
x^{8}+x+1=\left(x^{6}+x^{5}+x^{3}+x^{2}+1\right)\left(x^{2}+x+1\right) \\
x^{8}+x^{2}+1=\left(x^{4}+x+1\right)^{2} \\
x^{8}+x^{3}+1=\left(x^{3}+x+1\right)\left(x^{5}+x^{3}+x^{2}+x+1\right) \\
x^{8}+x^{4}+1=\left(x^{2}+x+1\right)^{4}
\end{gathered}
$$

In general, no irreducible trinomial of degree $r=8 k$.

Swan's Theorem (1962)

Previous work by von zur Gathen (2002), Dalen (1955), Dickson (1906), Stickelberger (1897), Pellet (1878), ...

Theorem. Suppose $r>s>0, r-s$ odd. Then $x^{r}+x^{s}+1$ has an even number of irreducible factors over $\mathrm{GF}(2)$ if and only if one of the following holds:

- r is even, $r \neq 2 s, r s / 2 \bmod 4 \in\{0,1\}$;
- $2 r \neq 0 \bmod s, r= \pm 3 \bmod 8$;
- $2 r=0 \bmod s, r= \pm 1 \bmod 8$.

Swan's Theorem (1962)

Previous work by von zur Gathen (2002), Dalen (1955), Dickson (1906), Stickelberger (1897), Pellet (1878), ...

Theorem. Suppose $r>s>0, r-s$ odd. Then $x^{r}+x^{s}+1$ has an even number of irreducible factors over $\mathrm{GF}(2)$ if and only if one of the following holds:

- r is even, $r \neq 2 s, r s / 2 \bmod 4 \in\{0,1\}$;
- $2 r \neq 0 \bmod s, r= \pm 3 \bmod 8$;
- $2 r=0 \bmod s, r= \pm 1 \bmod 8$.

Corollary 1. If r is prime, $r= \pm 3 \bmod 8, s \notin\{2, r-2\}$, then $x^{r}+x^{s}+1$ is reducible.
\Longrightarrow need to check only $x^{r}+x^{2}+1$.

Swan's Theorem (1962)

Previous work by von zur Gathen (2002), Dalen (1955), Dickson (1906), Stickelberger (1897), Pellet (1878), ...

Theorem. Suppose $r>s>0, r-s$ odd. Then $x^{r}+x^{s}+1$ has an even number of irreducible factors over $\mathrm{GF}(2)$ if and only if one of the following holds:

- r is even, $r \neq 2 s, r s / 2 \bmod 4 \in\{0,1\}$;
- $2 r \neq 0 \bmod s, r= \pm 3 \bmod 8$;
- $2 r=0 \bmod s, r= \pm 1 \bmod 8$.

Corollary 1. If r is prime, $r= \pm 3 \bmod 8, s \notin\{2, r-2\}$, then $x^{r}+x^{s}+1$ is reducible.
\Longrightarrow need to check only $x^{r}+x^{2}+1$.
Corollary 2. A trinomial of degree multiple of 8 cannot be irreducible.

$r=8 k$: pentanomials

Swan's theorem: no trinomial of degree $r=8 k$ can be irreducible.
How to perform efficient arithmetic in $\operatorname{GF}\left(2^{r}\right)$, say $\operatorname{GF}\left(2^{16}\right)$?
Workaround: use a pentanomial

$$
x^{16}+x^{5}+x^{3}+x+1
$$

$r=8 k:$ almost irreducible trinomials

(Richard Brent, PZ, 2003)
$x^{19}+x^{4}+1=\left(x^{3}+x+1\right)\left(x^{16}+x^{14}+x^{13}+x^{12}+x^{9}+x^{7}+x^{6}+x^{5}+x^{2}+x+1\right)$
Perform all arithmetic modulo $x^{19}+x^{4}+1$.
Reduce $\bmod x^{16}+\cdots+1$ only when a canonical form is needed.

ALGORITHMS

The Problem

Given a degree r with $2^{r}-1$ prime.

The Problem

Given a degree r with $2^{r}-1$ prime.
Goal 1. Find all irreducible (thus primitive) trinomials

$$
x^{r}+x^{s}+1
$$

The Problem

Given a degree r with $2^{r}-1$ prime.
Goal 1. Find all irreducible (thus primitive) trinomials

$$
x^{r}+x^{s}+1 .
$$

Goal 2. (if possible) output a certifi cate which can be checked faster than the time to make it.

Certifi cates

Integer multiplication:

$$
395718860534 \cdot 193139816415 \Rightarrow 76429068075489748865610
$$

Difficult to exhibit a certificate which can be checked faster!

Certifi cates

Integer multiplication:

$$
395718860534 \cdot 193139816415 \Rightarrow 76429068075489748865610
$$

Difficult to exhibit a certificate which can be checked faster!

Integer factorization:

$$
17943540555468154303435 \Rightarrow 22424170465 \cdot 800187484459
$$

One factor is a valid certificate.

Do not waste a factor of two!

One of Schönhage's golden rules.

$$
x^{r}+x^{s}+1=a(x) b(x) \Longrightarrow 1+x^{r-s}+x^{r}=x^{r} a(1 / x) b(1 / x)
$$

\Longrightarrow can restrict to $s \leq r / 2$.

Main Theorem

Theorem. The product of $\mathbf{A L L}$ irreducible factors of degree dividing k is $x^{2^{k}}+x$.

$$
\begin{gathered}
x^{2^{1}}+x=x(x+1) \\
x^{2^{2}}+x=x(x+1)\left(x^{2}+x+1\right) \\
x^{2^{3}}+x=x(x+1)\left(x^{3}+x+1\right)\left(x^{3}+x^{2}+1\right) \\
x^{2^{4}}+x=x(x+1)\left(x^{2}+x+1\right)\left(x^{4}+x+1\right)\left(x^{4}+x^{3}+1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right)
\end{gathered}
$$

The old algorithm

1. (sieving) for $k=2$ to k_{0}, compute:

$$
\operatorname{gcd}\left(x^{2^{k}}+x, x^{r}+x^{s}+1\right)
$$

If non trivial, output "divisible by degree k "
(When 2^{k} exceeds r, reduce $\bmod x^{r}+x^{s}+1$.)

The old algorithm

1. (sieving) for $k=2$ to k_{0}, compute:

$$
\operatorname{gcd}\left(x^{2^{k}}+x, x^{r}+x^{s}+1\right)
$$

If non trivial, output "divisible by degree k "
(When 2^{k} exceeds r, reduce $\bmod x^{r}+x^{s}+1$.)
2. (full test) check whether:

$$
x^{2^{r}} \equiv x \bmod \left(x^{r}+x^{s}+1\right)
$$

If not, output the low bits from $x^{2^{r}} \bmod \left(x^{r}+x^{s}+1\right)$ as pseudo-certificate.

The old algorithm

1. (sieving) for $k=2$ to k_{0}, compute:

$$
\operatorname{gcd}\left(x^{2^{k}}+x, x^{r}+x^{s}+1\right)
$$

If non trivial, output "divisible by degree k "
(When 2^{k} exceeds r, reduce $\bmod x^{r}+x^{s}+1$.)
2. (full test) check whether:

$$
x^{2^{r}} \equiv x \bmod \left(x^{r}+x^{s}+1\right)
$$

If not, output the low bits from $x^{2^{r}} \bmod \left(x^{r}+x^{s}+1\right)$ as pseudo-certificate.
For $r=6972593$, we used $k_{0}=26: 236244$ trinomials (7\%) survived Step 1.
Complexity: $O\left(r^{2}\right)$ for each full test.

The "new" algorithm

Perform a classical DDF (distinct degree factorization) with the "blocking strategy" (von zur Gathen and Shoup 1992, Kaltofen and Shoup 1998):

0 . Partition $\{2, \ldots,\lfloor r / 2\rfloor\}$ into intervals I_{1}, \ldots, I_{m}.

1. for $j:=1$ to m do

$$
\begin{aligned}
a & \leftarrow 1 ; \text { for } k \text { in } I_{j} \text { do } \\
& b \leftarrow x^{2^{k}} \bmod \left(x^{r}+x^{s}+1\right) \quad[\text { SQR] } \\
& a \leftarrow a(b+x) \bmod \left(x^{r}+x^{s}+1\right) \quad \text { [MUL] } \\
g & \leftarrow \operatorname{gcd}\left(a, x^{r}+x^{s}+1\right) \quad[\text { GCD }]
\end{aligned}
$$

if $g \neq 1$ then output "reducible with degree in I_{j} "
Output "irreducible".
Complexity: $O(d M(r))$ if the smallest factor has degree d, assuming the GCD cost is not dominant.

Complexity Analysis (sketch)

Old Algorithm: we sieve up to $k \approx \log r$.

Complexity Analysis (sketch)

Old Algorithm: we sieve up to $k \approx \log r$.

- it remains $\approx \frac{r}{\log r}$ trinomials

Complexity Analysis (sketch)

Old Algorithm: we sieve up to $k \approx \log r$.

- it remains $\approx \frac{r}{\log r}$ trinomials
- cost $\approx r^{2}$ per full test, total cost $\approx \frac{r^{3}}{\log r}$

Complexity Analysis (sketch)

Old Algorithm: we sieve up to $k \approx \log r$.

- it remains $\approx \frac{r}{\log r}$ trinomials
- cost $\approx r^{2}$ per full test, total cost $\approx \frac{r^{3}}{\log r}$

New Algorithm: cost $O(d M(r))$ if the smallest factor has degree d.

Complexity Analysis (sketch)

Old Algorithm: we sieve up to $k \approx \log r$.

- it remains $\approx \frac{r}{\log r}$ trinomials
- cost $\approx r^{2}$ per full test, total cost $\approx \frac{r^{3}}{\log r}$

New Algorithm: cost $O(d M(r))$ if the smallest factor has degree d.

- $\operatorname{Pr}[$ no factor of degree $<d] \approx \frac{1}{d}$

Complexity Analysis (sketch)

Old Algorithm: we sieve up to $k \approx \log r$.

- it remains $\approx \frac{r}{\log r}$ trinomials
- cost $\approx r^{2}$ per full test, total cost $\approx \frac{r^{3}}{\log r}$

New Algorithm: cost $O(d M(r))$ if the smallest factor has degree d.

- $\operatorname{Pr}[$ no factor of degree $<d] \approx \frac{1}{d}$
- total cost $r \sum_{d=1}^{r / 2} \frac{1}{d} M(r) \approx r M(r) \log r$

Complexity Analysis (sketch)

Old Algorithm: we sieve up to $k \approx \log r$.

- it remains $\approx \frac{r}{\log r}$ trinomials
- cost $\approx r^{2}$ per full test, total cost $\approx \frac{r^{3}}{\log r}$

New Algorithm: cost $O(d M(r))$ if the smallest factor has degree d.

- $\operatorname{Pr}[$ no factor of degree $<d] \approx \frac{1}{d}$
- total cost $r \sum_{d=1}^{r / 2} \frac{1}{d} M(r) \approx r M(r) \log r$

New algorithm faster as soon as $M(r) \ll \frac{r^{2}}{\log ^{2} r}$.

Complexity Analysis (sketch)

Old Algorithm: we sieve up to $k \approx \log r$.

- it remains $\approx \frac{r}{\log r}$ trinomials
- cost $\approx r^{2}$ per full test, total cost $\approx \frac{r^{3}}{\log r}$

New Algorithm: cost $O(d M(r))$ if the smallest factor has degree d.

- $\operatorname{Pr}[$ no factor of degree $<d] \approx \frac{1}{d}$
- total cost $r \sum_{d=1}^{r / 2} \frac{1}{d} M(r) \approx r M(r) \log r$

New algorithm faster as soon as $M(r) \ll \frac{r^{2}}{\log ^{2} r}$.

With R. Brent: a faster algorithm in $O\left(r^{2} \log r \sqrt{M(r) / r}\right)$, but no space in the margin...

NUMBERS

Binary Polynomials

$a(x)=a_{r-1} x^{r-1}+\cdots+a_{1} x+a_{0}$ is stored in computer by the binary polynomial

$$
a(2)=a_{r-1} \cdot 2^{r-1}+\cdots+a_{1} \cdot 2+a_{0}
$$

On a 8 -bit computer, the trinomial $x^{19}+x^{4}+1$ is stored as:
$\underbrace{00001000}_{x^{3} \cdot x^{16}} \underbrace{00000000}_{0 \cdot x^{8}} \underbrace{00010001}_{\left(x^{4}+1\right) \cdot x^{0}}$

Addition of Binary Polynomials

$$
\begin{array}{lr}
x^{15}+x^{13}+x^{12}+x^{11}+x^{9}+x^{8}+x^{6}+x^{4}+x^{3}+x^{2} & \begin{array}{|c|c|c|}
10111011 & 01011100 \\
x^{15}+x^{12}+x^{11}+x^{10}+x^{9}+x^{7}+x^{6}+x^{5}+x^{4}+x^{2}+x & 10011110 & 11110110 \\
x^{13}+x^{10}+x^{8}+x^{7}+x^{5}+x^{3}+x & 00100101 & 10101010 \\
\hline
\end{array}
\end{array}
$$

Multiplication by x^{k}

$$
\begin{array}{ll}
a=x^{13}+x^{12}+x^{11}+x^{9}+x^{8}+x^{6}+x^{4}+x^{3}+x^{2} & 00111011 \\
x^{2} a=x^{15}+x^{14}+x^{13}+x^{11}+x^{10}+x^{8}+x^{6}+x^{5}+x^{4} & \boxed{11101101} \\
\end{array}
$$

Multiplication

$$
\begin{array}{ll}
\left(x^{6}+x^{4}+x^{3}+x^{2}\right)\left(x^{5}+x^{4}+x^{3}+x+1\right) & 01011100 \\
\times 00111011 \\
\hline
\end{array}
$$

Multiplication

$$
\left(x^{6}+x^{4}+x^{3}+x^{2}\right)\left(x^{5}+x^{4}+x^{3}+x+1\right)
$$

$$
\begin{array}{r}
01011100 \\
\times 00111011 \\
\hline
\end{array}
$$

01011100

Multiplication

$$
\left(x^{6}+x^{4}+x^{3}+x^{2}\right)\left(x^{5}+x^{4}+x^{3}+x+1\right) \quad 001011100
$$

Multiplication

$$
\begin{array}{lr}
\left(x^{6}+x^{4}+x^{3}+x^{2}\right)\left(x^{5}+x^{4}+x^{3}+x+1\right) & 01011100 \\
\times 00111011 \\
\hline 01011100 \\
01011100 \\
01011100
\end{array}
$$

Multiplication

$$
\left(x^{6}+x^{4}+x^{3}+x^{2}\right)\left(x^{5}+x^{4}+x^{3}+x+1\right) \quad 01011100
$$

Multiplication

$$
\left(x^{6}+x^{4}+x^{3}+x^{2}\right)\left(x^{5}+x^{4}+x^{3}+x+1\right)
$$

Multiplication

$$
\left(x^{6}+x^{4}+x^{3}+x^{2}\right)\left(x^{5}+x^{4}+x^{3}+x+1\right)
$$

01011100

\times| 00111011 |
| :---: |
| 01011100 |
| 01011100 |
| 01011100 |
| 01011100 |
| 01011100 |

0000110001000100

$$
x^{11}+x^{10}+x^{6}+x^{2}
$$

Squares are easy:

$$
x^{t}+x^{u}+\cdots \quad \Longrightarrow \quad x^{2 t}+x^{2 u}+\cdots
$$

GCDs reduce to multiplication: $O(M(r) \log r)$
\Longrightarrow We have to improve multiplications!

Multiplication over $\mathrm{GF}(2)[x]$

- naive (quadratic) algorithm
- Karatsuba's algorithm
- Toom-Cook 3-way and higher order
- Fast Fourier Transform: segmentation, Cantor (BiPolAr), Schönhage

Schönhage's Algorithm

Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2, A. Schönhage, Acta Inf. 7 (1977), 395-398.

Complexity $O(r \log r \log \log r)$.
High-level description:
one product $\bmod \left(x^{2 N}+x^{N}+1\right) \quad \Longrightarrow \quad 2 K$ products $\bmod \left(x^{2 L}+x^{L}+1\right)$
Constraints: K power of $3, L \geq N / K, L$ multiple of K
Variant described here:
one product $\bmod \left(x^{N}+1\right) \quad \Longrightarrow \quad K$ products $\bmod \left(x^{2 L}+x^{L}+1\right)$
Constraints: K power of $3, L \geq N / K, L$ multiple of $K / 3$
Forward and backward transform: $O(K \log K)$ additions/shifts mod $x^{2 L}+x^{L}+1$.
Pointwise products: K products $\bmod x^{2 L}+x^{L}+1$.

The Algorithm

Input: a, b polynomials of degree $<N$
Parameters: K power of 3 dividing $N, M=N / K, L \geq M$ multiple of $K / 3$.

1. Decompose a, b in base x^{M} :

$$
a(x)=\sum_{i=0}^{K-1} a_{i}(x) x^{i M}
$$

2. Forward transform with $\omega=x^{3 L / K}$:

$$
\hat{a}_{i}=\sum_{j=0}^{K-1} a_{i}(x) \omega^{i j} \bmod \left(x^{2 L}+x^{L}+1\right), 0 \leq i<K
$$

3. Pointwise products:

$$
\hat{c}_{i}=\hat{a}_{i} \hat{b}_{i}, \quad 0 \leq i<K
$$

4. Backward transform:

$$
c_{\ell}=\sum_{i=0}^{K-1} \hat{c}_{i}(x) \omega^{-\ell i} \bmod \left(x^{2 L}+x^{L}+1\right), 0 \leq \ell<K
$$

5. Recomposition:

$$
c(x)=\sum_{\ell=0}^{K-1} c_{\ell} x^{\ell M} \bmod \left(x^{N}+1\right)
$$

An example

Compute $a(x) b(x) \bmod \left(x^{15}+1\right)$:

$$
a(x)=x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+1
$$

$$
b(x)=x^{13}+x^{11}+x^{8}+x^{7}+x^{6}+x^{2}
$$

Take $K=3, L=5$:

$$
\begin{gathered}
a_{2}=x^{4}+x^{3}+x^{2}+x+1, a_{1}=x^{3}+x+1, a_{0}=x^{4}+x^{3}+x^{2}+1 \\
b_{2}=x^{3}+x, b_{1}=x^{3}+x^{2}+x, b_{0}=x^{2}
\end{gathered}
$$

Forward transform $\left(\omega=x^{5}, \bmod x^{10}+x^{5}+1\right)$:

$$
\begin{gathered}
\hat{a}_{2}=x^{20} a_{2}+x^{10} a_{1}+a_{0}=x^{9}+x^{7}+x^{4}+x^{2}+x \\
\hat{a}_{1}=x^{10} a_{2}+x^{5} a_{1}+a_{0}=x^{9}+x^{7}+x \\
\hat{a}_{0}=a_{2}+a_{1}+a_{0}=x^{3}+1
\end{gathered}
$$

An example

Forward transform $\left(\omega=x^{5}, \bmod x^{10}+x^{5}+1\right)$:

$$
\begin{gathered}
\hat{a}_{2}=x^{9}+x^{7}+x^{4}+x^{2}+x, \hat{a}_{1}=x^{9}+x^{7}+x, \hat{a}_{0}=x^{3}+1 \\
\hat{b}_{2}=x^{7}+x^{3}+x, \hat{b}_{1}=x^{7}+x^{3}+x^{2}+x, \hat{b}_{0}=0
\end{gathered}
$$

Pointwise transforms:

$$
\hat{c}_{2}=x^{6}+x^{3}, \hat{c}_{1}=x^{7}+x^{6}+x^{3}, \hat{c}_{0}=0
$$

Backward transform:

$$
c_{2}=x^{6}+x^{3}, c_{1}=x^{7}+x^{6}+x^{3}, c_{0}=0
$$

Reconstruction:

$$
c_{2} x^{10}+c_{1} x^{5}+c_{0}=x^{13}+x^{12}+x^{11}+x^{8}+x^{2}+x \bmod \left(x^{15}+1\right)
$$

Why does it work?

Let $R_{L}:=\mathrm{GF}(2)[x] /\left(x^{2 L}+x^{L}+1\right)$.
$\omega=x^{3 L / K} \Longrightarrow \omega^{K / 3}=x^{L}$ thus in R_{L} :

$$
\begin{equation*}
\omega^{2 K / 3}+\omega^{K / 3}+1=0 \tag{1}
\end{equation*}
$$

From Eq. (1) it follows

$$
\begin{align*}
& \omega^{K}=1 \quad \text { and } \quad \omega^{-1}=\omega^{K-1} \tag{2}\\
& c_{\ell}:=\sum_{i=0}^{K-1} \hat{c}_{i}(x) \omega^{-\ell i}=\sum_{i=0}^{K-1} \omega^{-\ell i}\left(\sum_{j=0}^{K-1} \omega^{i j} a_{i}\right)\left(\sum_{k=0}^{K-1} \omega^{i k} b_{k}\right) \\
&=\sum_{j=0}^{K-1} \sum_{k=0}^{K-1} a_{j} b_{k} \sum_{i=0}^{K-1} \omega^{i(j+k-\ell)} .
\end{align*}
$$

Why does it work?

$$
c_{\ell}=\sum_{j=0}^{K-1} \sum_{k=0}^{K-1} a_{j} b_{k} \sum_{i=0}^{K-1} \omega^{i(j+k-\ell)}
$$

We have $-K<j+k-\ell<2 K$. If $t:=j+k-\ell \neq 0 \bmod K$:

$$
\sum_{i=0}^{K-1} \omega^{i(j+k-\ell)}=\frac{\omega^{K t}+1}{\omega^{t}+1}=0
$$

Otherwise $j+k-\ell \in\{0, K\}$, and $\omega^{i(j+k-\ell)}=1$.
Thus $\sum_{i=0}^{K-1} \omega^{i(j+k-\ell)}$ is non-zero only when $j+k-\ell \in\{0, K\}$, in which case it equals $K=1 \bmod 2$.

It follows:

$$
c_{\ell}=\sum_{j+k=\ell} a_{j} b_{k}+\sum_{j+k=K+\ell} a_{j} b_{k}\left(\bmod x^{2 L}+x^{L}+1\right)
$$

Why does it work?

$$
c_{\ell}=\sum_{j+k=\ell} a_{j} b_{k}+\sum_{j+k=K+\ell} a_{j} b_{k}\left(\bmod x^{2 L}+x^{L}+1\right)
$$

Recall $\operatorname{deg}\left(a_{j}\right), \operatorname{deg}\left(b_{k}\right)<M$: if $L \geq M$, then

$$
c_{\ell}=\sum_{j+k=\ell} a_{j} b_{k}+\sum_{j+k=K+\ell} a_{j} b_{k}
$$

5. Recomposition:

$$
c(x)=\sum_{\ell=0}^{K-1} c_{\ell} x^{\ell M} \bmod \left(x^{N}+1\right)
$$

$c(x)$ is simply the cyclic convolution of $a(x)$ and $b(x) \bmod x^{N}+1$.

Arithmetic Modulo $x^{2 L}+x^{L}+1$

- addition: easy
- shift: multiplication by $x^{j}, 0 \leq j<3 L$
- full multiplication

Shifts Modulo $x^{2 L}+x^{L}+1$

Input: a binary polynomial $a(x)$ of degree $<2 L, 0 \leq j<3 L$
Output: $x^{j} a(x) \bmod \left(x^{2 L}+x^{L}+1\right)$

1. Shift of $j, 0 \leq j<L$:

Case 2: Shift of $L+j, 0 \leq j<L$

Numbers - p. 43/49

Case 3: Shift of $2 L+j, 0 \leq j<L$

Numbers - p. 44/49

Multiplication $\bmod x^{2 L}+x^{L}+1$
3. Pointwise products

$$
\hat{c}_{i}=\hat{a}_{i} \hat{b}_{i}\left(\bmod x^{2 L}+x^{L}+1\right)
$$

$a_{i} b_{i}$:

Timings

Core 2 processor, 2.66Ghz, 4MB cache, 3GB memory.

r	Toom-Cook 3	Toom-Cook 4	FFTMul (K)	GCD
6972593	1.32 s	1.01 s	$0.27 \mathrm{~s}(6561)$	12.1 s
24036583	7.89 s	6.30 s	$1.77 \mathrm{~s}(6561)$	55.3 s
32582657	13.9 s	8.11 s	$2.16 \mathrm{~s}(6561)$	78.4 s

6972593 again

From April 18 to April 29, 2007, we started the computation of extended logs for $r=6972593$ using about 25 Opterons (2.2Ghz and 2.4Ghz).

6972593 again

From April 18 to April 29, 2007, we started the computation of extended logs for $r=6972593$ using about 25 Opterons (2.2Ghz and 2.4Ghz).

It took a total of about 0.44 cpu year, or about 1 GIPS-year.

6972593 again

From April 18 to April 29, 2007, we started the computation of extended logs for $r=6972593$ using about 25 Opterons (2.2Ghz and 2.4Ghz).

It took a total of about 0.44 cpu year, or about 1 GIPS-year.
And checking all certificates took only 2 hours with Magma!

6972593 again

From April 18 to April 29, 2007, we started the computation of extended logs for $r=6972593$ using about 25 Opterons (2.2Ghz and 2.4Ghz).

It took a total of about 0.44 cpu year, or about 1 GIPS-year.
And checking all certificates took only 2 hours with Magma!
Speedup of about 230 due to:

6972593 again

From April 18 to April 29, 2007, we started the computation of extended logs for $r=6972593$ using about 25 Opterons (2.2Ghz and 2.4Ghz).

It took a total of about 0.44 cpu year, or about 1 GIPS-year.
And checking all certificates took only 2 hours with Magma!
Speedup of about 230 due to:

- Schönhage's multiplication (with classical DDF and blocking strategy)

6972593 again

From April 18 to April 29, 2007, we started the computation of extended logs for $r=6972593$ using about 25 Opterons (2.2Ghz and 2.4Ghz).

It took a total of about 0.44 cpu year, or about 1 GIPS-year.
And checking all certificates took only 2 hours with Magma!
Speedup of about 230 due to:

- Schönhage's multiplication (with classical DDF and blocking strategy)
- new multi-level blocking DDF algorithm (with R. Brent)

6972593 again

From April 18 to April 29, 2007, we started the computation of extended logs for $r=6972593$ using about 25 Opterons (2.2Ghz and 2.4Ghz).

It took a total of about 0.44 cpu year, or about 1 GIPS-year.
And checking all certificates took only 2 hours with Magma!
Speedup of about 230 due to:

- Schönhage's multiplication (with classical DDF and blocking strategy)
- new multi-level blocking DDF algorithm (with R. Brent)
- faster basecase multiplication (with P. Gaudry and E. Thomé): about 130 cycles for $128 \times 128 \rightarrow 256$ (Core 2)

6972593 again

From April 18 to April 29, 2007, we started the computation of extended logs for $r=6972593$ using about 25 Opterons (2.2Ghz and 2.4Ghz).

It took a total of about 0.44 cpu year, or about 1 GIPS-year.
And checking all certificates took only 2 hours with Magma!
Speedup of about 230 due to:

- Schönhage's multiplication (with classical DDF and blocking strategy)
- new multi-level blocking DDF algorithm (with R. Brent)
- faster basecase multiplication (with P. Gaudry and E. Thomé): about 130 cycles for $128 \times 128 \rightarrow 256$ (Core 2)
- subquadratic GCD (still quite expensive)

24036583

We have started computations for $r=24036583$ (M41?) on April 25.
Already done more than 10%.
No primitive trinomial so far.
But already found a (smallest) factor of degree almost one million!
Help welcome (preferably Opteron/Core 2)!

Some Conclusions

Some Conclusions

- slow algorithms are slow as expected

Some Conclusions

- slow algorithms are slow as expected
- fast algorithms are indeed asymptotically faster

Some Conclusions

- slow algorithms are slow as expected
- fast algorithms are indeed asymptotically faster
- thanks to Moore's law, the asymptotic domain is closer and closer...

Some Conclusions

- slow algorithms are slow as expected
- fast algorithms are indeed asymptotically faster
- thanks to Moore's law, the asymptotic domain is closer and closer...

Thank you for staying awake so far!

