digits factor from B1/B2 sigma date who
183165598199251072799631805738859758610717629818982386167243844257989325146883490202877^337+17.6e938821276932013-Sep-07R. Propper
279230287218850527957657353501592644191394504497548357952951751379589766421112779711^306+1800e636481100212012-Aug-12S. Wagstaff
37718974159366624817405627752670504479132613571595050983959444958694223874973021N_1881e93663293892013-Jun-15S. Wagstaff
47533684202681448681641371253266567152551848723846153394578693778504847467532911^304+11e938855930152012-Aug-02S. Wagstaff
575227432689108589532754984915075774848386671439568260420754414940780761245893EM47850e622246483662012-Sep-11R. Propper
67318084223531773495645465120355125300012794812598542488604543489894510268872^1181-13e940000277792010-Mar-06J. Bos/T. Kleinjung/A. Lenstra/P. Montgomery
77310428160429418457500429522066800897944150146683298503930319104835264564872^1163-13e930000851582010-Apr-18J. Bos/T. Kleinjung/A. Lenstra/P. Montgomery
8722018991705156933308755627143166143636102292888469923265123047051651611833^713-16e816310368902012-Jan-01S. Wagstaff
9721566673573891590777656203412521732183501114352998589185992910774970255293^560-229e826778238952013-Jan-02R. Propper
10721054117896546655189879958827705741132992511483567301726119450853736814973^554-2260e69711774322013-Jan-02R. Propper
117123831310369329940284424897622931177276129265258901041211081029394362653134^134+135^1352.9e921988990522013-Feb-18R. Propper
127089956245979576891870767653151943497233481122467428881987028848898312235^421+1400e629585989512014-Jan-01B. Dodson
137055570361679448925026662858219518716008035810191930741829420215525127212^1069-1260e637256728262013-Aug-02R. Propper
14705289087042676468861217290554991265187804183644859386048140442629053859141^141+142^1427.6e912093559742013-Apr-30R. Propper
15702633079918766750130582962701074725510503525177187274307427718640470081144^144+145^145260e623511837302013-Apr-23R. Propper
167025382071298406877993352032594928704761862488966164013465000273117959832^1237-13e930000867872010-Oct-30J. Bos/T. Kleinjung/A. Lenstra/P. Montgomery
177013797984257321030503952973261636181086560886279954467996235313469732893^607+1400e628263472882012-Jun-09B. Dodson
1869778690790153396854590214216181777523646970439474630791573244864151943149^149+150^1502.9e927096097962013-Feb-15R. Propper
19695637341094896100385139395011391441838519491499210623167186680463905932^2186+1400e68194440762013-Aug-28B. Dodson
206948263203105313440389677003598124973427350630763839612326938949700692311^323+1400e641802682582013-Sep-09B. Dodson
21694749423393769674758719603217626142542908102430388804189710613422565292^1822+1400e616484708722011-Feb-20B. Dodson
22693624662300887872452037251506956081964465074167635004715575534886729733^1443+16e815740534842010-Nov-24S. Wagstaff
23693050179060632568429214948085580197338563262994125349519893032146571992^1051-12.9e98560373222013-Aug-12R. Propper
24692552909721722987531589356786418566182996052924620287429591242595788713^617+12.9e931424731802014-Apr-29R. Propper
2569109733959547779654926866874550711330198507136524383634700803540817357F(1527)11e718365179462012-Mar-20B. Kelly
26684259378334615022318697944343788216432489200846285048000813413087360364*10^341-111e719989585862009-Dec-28yoyo@home/M. Thompson
27681995590432765610622283470807591438504778985044855385007443907352030311^449-11e107132380362014-Jun-11R. Propper
2868129475608018812752124869004761220976883739752627847096567680323878332^1139-13e930000438372010-Sep-05J. Bos/T. Kleinjung/A. Lenstra/P. Montgomery
2968117705885530736592421024548248586229721633871553332979778040669443317^763+19e842516892542011-Jun-12B. Dodson
30681048355982003147941877021006738256631998437594069061564920303294570710^359-1400e628489017722013-Sep-30B. Dodson
3167444434979215670990789575255179863190894618060876873794628023807888110^381+1260e68344124112006-Aug-24B. Dodson
326733336054564524023812285094740439504209376377924059938955977537304216^415-1260e62:14997568892012-Mar-25C. Bouvier
336730433922592068709674825000822339863904242789573222588015845143343072^1151+11e910000215512011-May-06J. Bos/T. Kleinjung/A. Lenstra/P. Montgomery
3467297050274636574987681892380898971302231984893104795658785668237445710^236+9^23611e713238779382013-May-03K. Schoenberger
356728943393314734921448111136045077838594568518885822193299412211243013^850+19e829705313482014-Jun-24S. Wagstaff
36671476089794776829083186088935097008657059172428532830012025534581117Euler(130)1.1e940414279632013-Apr-09S. Wagstaff
3767116901951492961275863837267794391066135654620656366634031976107700112^350+1800e615974677522012-Nov-07S. Wagstaff
38667096016350822673209664240849557767897708647256439968854156766822973^466+111e718753778242005-Apr-06B. Dodson
39666942175353998476780484151131865777585076358222528038084736746800172^1073-13e930000006232010-May-31J. Bos/T. Kleinjung/A. Lenstra/P. Montgomery
40662962694395357472529438944680703639380944872790430192699066352716515^725-143e636657671792008-Feb-02P. Zimmermann
41661462956874728820401487697317253666601470381451767583367407563407693^792+1900e622276821662012-Feb-07B. Dodson
42661009401163421619061324327172674066689373014504982739891292137842795^463-1900e635060870222011-Oct-13B. Dodson
43657187393919567533196954543536541942109485960792211129378072527385793^128+1300e611807662008-Oct-15A. Bhargava/S. Pelissier
44656525752677264494876479921288770257339188771523598153034370350673178^129-1300e64897312592007-May-03A. Bhargava/S. Pelissier
4565576701131418082522403523111427809684922231185206228971755210347576^822+1600e62159119182011-Dec-19S. Wagstaff
46653849768706134664981729511785296829962099521828674095247139447985710^328+1900e68871276832011-Oct-09B. Dodson
47653511471504296527410116962551605409853838129285504878533424501403723773^31-1850e63114689642013-Jan-27R. Propper
48652675749552526245285841297272472892715746906195672425304537219370710^999+132.9e939633557284065642014-Oct-05D. Harrison
496521409755852155829640600817278566515575581623831146350895229829607739^83-111e712108199972012-Jan-02R. Hooft
50652040585826255103623809719892725120179532440582541319950801754636110^1110-1260e627444564062014-Feb-10K. Beschorner
eFT means eCompute Factoring Team. The notation [x^e] after the first limit bound B1 means that this factor was used with Suyama's extension, implemented up from version 3 of GMP-ECM, and that the smallest polynomial which finds this factor is x^e. a(n,k) denotes the n-th term from the sequence defined by a(1,k)=1 and a(n,k)=(1+sum(a(i,k),i=1..n-1))/(n-1). a(n,2) is sequence M0728 from the Encyclopedia of Integer Sequences, a(n,3) is sequence M1551, and a(n,4) is sequence M1957; A(n,k) denotes the k-th term of the aliquot sequence starting from n, i.e. A(n,0)=n and A(n,k+1)=sigma(A(n,k))-A(n,k) where sigma(m) is the sum of the divisors of m; AF(n) denotes the n-th alternating factorial n!-(n-1)!+(n-2)!-...; B(n) denotes the n-th Bell number, which is the numerator of the coefficient of x^n in the series expansion of exp(exp(x)-1) at x=0; Bern(n) denotes the numerator of the n-th Bernoulli number; C(n) denotes the n-th Cullen number n*2^n+1; C(n,k) denotes the binomial coefficient binomial(n,k); cp(n,k) denotes the n-th term from the concatenated primefactors sequence starting from n; E(n) is the n-th Euler number, i.e. the numerator of the coefficient of x^n in the series expansion of sec(x)+tan(x); HPnn(k) is the k-th of the Home Prime Sequence of nn; j(n) is the n-th coefficient of the elliptic modular function j(tau), i.e. the coefficient of x^n in series(jell(x),x) in Pari; J(n) is the n-th Jones number, i.e. binomial(2n-1,n)-1; L(n) is the n-th Lucas number; Mxxxx(n) represents the n-th term from sequence Mxxxx in Sloane and Plouffe Encyclopedia of Integer Sequences; M(a,n) denotes (a^n-1)^n+a^n-1; p(n) denotes the n-th partition number; RSm(n) denotes the n-th reverse Smarandache number; SC(n) denotes a term from the sigma-chain of n; SymSm(n) denotes the n-th symmetric Smarandache number, i.e. the concatenation of Sm(n) and RSm(n); T(n) is the n-th tangent number, i.e. the numerator of the coefficient of x^n in the series expansion of tan(x); V(p,q,n) is a^n+b^n where (a,b) are roots of x^2-p*x+q [sum(k^n, k=RootOf(x^2-p*x+q)) in Maple-notation]; W(n) denotes the n-th Woodall number n*2^n-1; W1(n) is the numerator of the n-th Wolstenholme number 1+1/2+...+1/n.
[*] factor found in step 1;
[s/r] George Woltman's mprime program was used for step 1, and gmp-ecm for step 2, with the -resume option.
[c/s] factor found with the client/server setup
(1) K64=1!+2!+3!+...+64!;
(2) P1*P2*...*P66+P67 where Pn denotes the nth prime;
(3) special numbers: c93 is a divisor of p118-1, where p118 is a divisor of 10^211-1.
(4) these numbers had been independently factored by Samuel S. Wagstaff, Jr in 1995;