RECOVERING HIDDEN SNFS POLYNOMIALS

PAUL ZIMMERMANN

Abstract. Given an integer N constructed with an SNFS trapdoor, i.e., such that $N=|\operatorname{Res}(f, g)|$ with $f=a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots+a_{0}$ having small coefficients $a_{i}=O(B)$, and $g=\ell x-m$, we can recover f and g in $O(B F(\ell))$ arithmetic operations, assuming $B^{2} \ell^{2} \ll a_{d} m$, where $F(\ell)$ is the number of arithmetic operations to extract a prime factor of same size as ℓ. This partially answers an open problem from [1].

We use the following algorithm, where the transform $N^{\prime} \leftarrow d^{d} a_{d}^{d-1} N$ and the translation $x \rightarrow$ $x-a_{d-1} /\left(d a_{d}\right)$ are inherited from [3].

```
Algorithm 1
Input: an integer \(N\), a degree \(d\), a leading coefficient \(a_{d}\), a bound \(L\)
Output: \(f=a_{d} x^{d}+\cdots+a_{0}, g=\ell x-m\) such that \(N=|\operatorname{Res}(f, g)|\) and \(\ell<L\), or FAIL
    \(N^{\prime} \leftarrow d^{d} a_{d}^{d-1} N\)
    \(m^{\prime} \leftarrow\left\lfloor N^{\prime 1 / d}\right\rceil\)
    \(r \leftarrow N^{\prime}-m^{\prime d}\)
    search using ECM prime factors of \(r\) smaller than \(L\)
    for \(\ell\) in known divisors \((r)\) do
        if \(r \bmod \ell^{2}=0\) then
            decompose \(N=a_{d} m^{d}+a_{d-1} m^{d-1} \ell+\cdots+a_{0} \ell^{d}\) where \(m, a_{d-1}\) satisfy \(m^{\prime}=d a_{d} m+a_{d-1} \ell\)
            return \(f=a_{d} x^{d}+\cdots+a_{0}, g=\ell x-m\)
    return FAIL
```

Lemma 1. If $N=a_{d} m^{d}+a_{d-1} m^{d-1} \ell+\cdots+a_{1} m \ell^{d-1}+a_{0} \ell^{d}$, with $a_{i}=O(B)$ and $B^{2} \ell^{2} \ll a_{d} m$, then Algorithm 1 unveils $f=a_{d} x^{d}+\cdots+a_{0}$ and $g=\ell x-m$ in $O(F(\ell))$ arithmetic operations.

Proof. We have $N=a_{d} m^{d}+a_{d-1} m^{d-1} \ell+R$ with $R=O\left(B m^{d-2} \ell^{2}\right)$. Then:

$$
\begin{aligned}
N^{\prime} & =d^{d} a_{d}^{d-1}\left(a_{d} m^{d}+a_{d-1} m^{d-1} \ell+R\right) \\
& =\left(d a_{d} m+a_{d-1} \ell\right)^{d}-S+d^{d} a_{d}^{d-1} R,
\end{aligned}
$$

where $S=\sum_{i=0}^{d-2}\binom{d}{i}\left(d a_{d} m\right)^{i}\left(a_{d-1} \ell\right)^{d-i}=O\left(d^{d} a_{d}^{d-2} B^{2} m^{d-2} \ell^{2}\right)$, and $d^{d} a_{d}^{d-1} R=O\left(d^{d} a_{d}^{d-1} B m^{d-2} \ell^{2}\right)$, thus $N^{\prime}=m^{\prime d}+O\left(d^{d} a_{d}^{d-2} B^{2} m^{d-2} \ell^{2}\right)$ with $m^{\prime}=d a_{d} m+a_{d-1} \ell$. Since $B^{2} \ell^{2} \ll a_{d} m$ and $m^{\prime} \approx d a_{d} m$, we get $N^{\prime}-m^{\prime d} \ll d m^{\prime d-1}$, which ensures that the rounded d-th root of N^{\prime} is m^{\prime}. Now both R and S are divisible by ℓ^{2}, thus the divisor ℓ of r will be found in time $O(F(\ell)$), and the rest follows from Lemma 2.1 of [2].

Example. Consider this innocent-looking 1024-bit prime produced by Emmanuel Thomé:

$$
\begin{aligned}
N= & 10125975488959488438636448139388738111384370034580126872774623167983065095763618 \\
& 44716875429364100448228034431031042649131921103572845443219053574589128101877982 \\
& 01444275956478694551535584037776691110761982172617916831503906052571224968894093 \\
& 331711339997796469044311233642191451302290245121528058995397476887083 .
\end{aligned}
$$

We search for f of degree 6 , with coefficients bounded by 1000 in absolute value. This search will in particular consider $a_{6}=883$. We then get

$$
\begin{aligned}
m^{\prime}= & 3692818662892237319633959730548796198786083711157940498, \\
r= & 82879887764694366348912168791836341837049570452618174403026264656774533779857170 \\
& 37239452504338734757522396248499672667034561347930357160942512349898884824251878 \\
& 72235920062471226328786567796505070700605282371914362200427993013634248968829556 \\
& 011673078229487543202175808000 .
\end{aligned}
$$

Dividing out primes less than one million we get:

$$
r=2^{9} \cdot 3^{13} \cdot 5^{3} \cdot 17^{2} \cdot 71 \cdot 137^{2} \cdot q_{251}
$$

where q_{251} is a 251 -digit composite number. With GMP-ECM [4] we find the following prime factors of q_{251} :

$$
q_{251}=3513299 \cdot 2258358157748717 \cdot 36004635722054299^{2} \cdot q_{196} .
$$

Among the divisors of r we try $\ell=13584477048659642904102=2 \cdot 3^{4} \cdot 17 \cdot 137 \cdot 36004635722054299$, which yields the polynomials:

$$
\begin{aligned}
& f=883 x^{6}-202 x^{5}+779 x^{4}-990 x^{3}+374 x^{2}-886 x+316 \\
& g=13584477048659642904102 x-697021265174072729262733055974243160277446764632799 .
\end{aligned}
$$

A full search for $1 \leq a_{6} \leq 1000$ takes about 280 minutes of cpu time on an Intel Xeon CPU E7-4850 running at 2.2 GHz .

References

[1] Fried, J., Gaudry, P., Heninger, N., and Thomé, E. A kilobit hidden SNFS discrete logarithm computation. In 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques - Eurocrypt 2017 (Paris, France, Apr. 2017), J.-S. Coron and J. B. Nielsen, Eds., vol. 10210 of Advances in Cryptology EUROCRYPT 2017, Springer.
[2] Kleinuung, T. On polynomial selection for the general number field sieve. Mathematics of Computation 75 (2006), 2037-2047.
[3] Kleinjung, T. Polynomial selection. slides presented at the CADO workshop on integer factorization, 2008.
[4] Zimmermann, P. GMP-ECM: yet another implementation of the Elliptic Curve Method (or how to find a 40-digit prime factor within $2 \cdot 10^{11}$ modular multiplications). In Workshop Computational Number Theory of FoCM'g9 (Foundations of Computational Mathematics) (Oxford, United Kingdom, 1999).

