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Abstract

This paper presents new classes of tree automata combining automata with equality test and automata modulo equational theories.
We believe that these classes have a good potential for application in e.g. software verification. These tree automata are obtained
by extending the standard Horn clause representations with equational conditions and rewrite systems. We show in particular that
a generalized membership problem (extending the emptiness problem) is decidable by proving that the saturation of tree automata
presentations with suitable paramodulation strategies terminates. Alternatively our results can be viewed as new decidable classes
of first-order formula.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Combining tree automata and term rewriting systems (TRS) has been successful in domains like automated theorem
proving [6] and verification of infinite state systems e.g. [12,18,16].

A problem with such approaches is to extend the decidability results on tree automata languages to equivalence
classes of terms modulo an equational theory. Some authors, e.g. [26,20], have investigated the problem of emptiness
decision for tree automata modulo specific equational theories, e.g. A, AC, ACU . . . Moreover, it is also shown in [20]
that emptiness is decidable for any linear equational theory, and results about regularity preservation under rewriting
have been established for several general classes of TRS (see e.g. [23, Section 2.3]).

Another important difficulty stems from the non linear variables (variables with multiple occurrences) in the rewrite
rules, which impose in general some over-approximations of the rewrite relation. Tree automata with constraints have
been proposed earlier in order to deal with non-linear rewrite systems (see [6]). They are an extension of classical
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Fig. 1. Presentation of the decision results in the paper.

tree recognizers where syntactic equality and disequality tests between subterms are performed during the automata
computations. The emptiness of the recognized language is undecidable without restriction, and two remarkable
subclasses with decidable emptiness problem are tree automata with equality and disequality constraints restricted to
brother positions of [3] and the reduction automata of [7]. This second class captures in particular languages of terms
(ir)reducible by non linear rewrite systems.

Following [11], it is classical to represent tree automata by Horn clause sets. In this setting, a recognized language
is defined as a least Herbrand model and it is possible to use classical first-order theorem proving techniques in order
to establish decision results [26,13].

In this paper, we follow this approach in order to unify the two problems mentioned above: we show how techniques
of basic ordered paramodulation with selection and a variant of splitting without backtracking solve some decision
problems on languages of tree automata with equality constraints, transformed by rewriting. More precisely, we
show that the so called Generalized Intersection Problem, GIP (whether there exists a ground instance of a given
term tuple in a given language tuple) is decidable by saturation with a standard calculus presented in Section 3.
Note that GIP generalizes the emptiness problem. Alternatively our results can be viewed as new decidable classes
of first-order formula. Both classes of standard tree automata (TA) and tree automata with equality constraints
(TAC) generalizing those of [7], where the equality tests are presented by arbitrary equations, are studied in these
settings, as well as their respective generalisations (TAE and TACE) modulo an equational theory E presented as a
convergent term rewriting system (monadic TRS in the case of TAE and restricted collapsing TRS in the case of
TACE).

Fig. 1 summarizes the presentation of the decision results in the paper. The last result (lower right corner of the
table in Fig. 1) is to our knowledge one of the first decision results (after [14]) concerning tree automata with equality
constraints modulo equational theories. We show that emptiness is undecidable for TA extended with non-linear facts,
even with only one state. Unlike stated in [7,6], we prove also that this problem is undecidable for non-deterministic
reduction automata (see Section 6.1). Therefore, we have introduced for the definition of TAC a refinement on the
restriction for the automata of [7] in order to make emptiness and, more generally, GIP decidable. The idea is roughly
to bound the number of equality tests that can be performed along a whole computation (and not only along each
computation path). The representation of constrained automata as Horn clauses permits us to use state of the art
first-order theorem proving techniques to provide an effective (implementable) decision procedure for GIP (hence
emptiness), instead of the complicated pumping lemmas used so far which hardly lead to effective algorithms. A
key-ingredient for the termination of our saturation-based decision procedure was the application of recently proposed
splitting rules.

As illustrated by two examples of authentication protocols (one with recursion) the class of automata of Section 7
permits a sharper modeling of verification problems (avoiding approximation as it is often required with more standard
tree automata).

1.1. Related work

A comparison with the reduction automata of [7] is detailed in Sections 6 and 7. The closely related works [18,13]
propose a different extension H1 of standard TA defined as Horn clause sets for which satisfiability is decidable. In the
version [13] of H1 Horn clauses have a head whose argument is at most of height one and linear (without duplicated
variables), or are purely negative (goals). None of the classes TAC and H1 contains the other. However, H1 becomes
undecidable when allowing variable duplication in the heads. Our TAC class allows this under the previously mentioned
restrictions.
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2. Preliminaries

2.1. Term algebra

Let F be a signature of function symbols with arity, denoted by lowercase letters f , g . . . and let X be an infinite
set of variables. The term algebra is denoted T (F, X ), and T (F) for ground terms. A term is called linear if every
variable occurs at most once in it and sublinear if all its strict subterms are linear. We denote vars(t) as the set of
variables occurring in a term t ∈ T (F, X ). A substitution σ is a mapping from X to T (F, X ) such that {x|σ(x) �= x},
the support of σ , is a finite set. The application of a substitution σ to a term t is denoted by tσ and is equal to the
term t where all variables x have been replaced by the term σ(x). A substitution σ is grounding for t if tσ ∈ T (F).
The positions Pos(t) in a term t are represented as sequence of positive integers (�, the empty sequence, denotes the
root position). A subterm of t at position p is denoted t |p, and the replacement in t of the subterm at position p by u

denoted t[u]p.

2.2. Rewriting

We assume standard definitions and notations for term rewriting [9]. A term rewriting system (TRS) is a finite set
of rewrite rules �→ r , where � ∈ T (F, X ) and r ∈ T (F, vars(�)). A term t ∈ T (F, X ) rewrites to s by a TRS R,
denoted by t →R s, if there is a rewrite rule �→ r ∈ R, a position p of t and a substitution σ such that t |p = �σ and
s = t[rσ ]p. A TRS is terminating if there is no infinite chain of terms si , i ∈ N, such that si rewrites to si+1. A TRS

R is confluent if for all terms t , s1, s2 such that s1
∗←−R t

∗−→R s2 (
∗−→R denotes the reflexive and transitive closure of

the rewrite relation→R defined by R) there exists a term t ′ such that s1
∗−→R t ′ ∗←−R s2. A TRS is convergent if it is

both terminating and confluent.

2.3. Clauses

Let P be a finite set of predicate symbols which contains an equality predicate =. The other predicate symbols are
denoted by uppercase letter P , Q, . . . and are assumed unary. We shall later use a partition P \ {=} = P0 � P1, where
P0 and P1 are sets of predicate symbols. Let Q be a finite set of nullary predicate symbols disjoint from P and that we
call splitting predicates, denoted by lowercase letters q . . . Constrained Horn clauses are constrained disjunctions of
literals denoted � ⇒ H [[θ ]] where � is a set of negative literals called antecedents, H is a positive literal called head
of the clause and the constraint θ is a set of equations between terms of T (F, X ). A clause with a splitting literal as
head or with no head at all is called a goal. The constraint is omitted when θ is empty. For the sake of notation, we
shall sometimes make no distinction between the constraint and its most general solution (when it exists). When θ is
satisfiable, we call the expansion of the above clause the unconstrained clause �θ ⇒ Hθ .

Atoms of the form P(s), resp. q, where P ∈ P and s ∈ T (F, X ), resp. q ∈ Q, are represented for uniformity as
equations P(s) = true, resp. q = true, where true is a distinguished function symbol (in F). An atom of the latter form
is called non-equational and can be denoted simply P(s), resp. q. We assume in the following that predicate symbols
can only occur at the root of the terms that we consider.

2.4. Orderings

We assume we are given a precedence ordering 
 on F ∪ P ∪Q, and denote by ∼ the relation 
 ∩ 
 and � the
relation
 \ ∼. We assume that� is total on P1 and moreover that for all predicates P0, P

′
0 ∈ P0, P1 ∈ P1, q ∈ Q and

every function symbol f ∈ F , P0 ∼ P ′0 and P1 � P0 � q � f . We assume the symbol true to be the minimal one.
Assume that P1 = {P1, . . . , Pn} with P1 � · · · � Pn. We call i the index of Pi , denoted ind(Pi), and let ind(Q) = 0
for all Q ∈ P0. We shall also use the constant∞ = max(ind(P )|P ∈ P)+ 1, which is bigger than the index of every
predicate in P1.

A reduction ordering > is a well-founded ordering on T (F ∪ P ∪Q, X ) stable under substitutions and such that
for all g ∈ F ∪ P ∪Q, for all s, t ∈ T (F, X ) we have s > t implies g(. . . , s, . . . ) > g(. . . , t, . . . ). The multiset
extension >mul of an ordering > is defined as the smallest ordering relation on multisets such that M ∪ {t} >mul



F. Jacquemard et al. / Journal of Logic and Algebraic Programming 75 (2008) 182–208 185

M ∪ {s1, . . . , sn} whenever t > si for all i ≤ n. The lexicographic extension (>1, . . . , >n)
lex of n orderings to n-

tuples is defined as (s1, s2, . . . , sn)(>1, . . . , >n)
lex(t1, t2, . . . , tn) if s1 = t1, . . . , sk−1 = tk−1, and sk >k tk for some

k ∈ 1 . . . n.
We can define a reduction ordering on T (F ∪ P ∪Q, X ) total on ground terms by extending the precedence � to

a lexicographic path ordering [9] denoted �lpo with: s = f (s1, s2, . . . , sm) �lpo g(t1, t2, . . . , tn) = t iff
1. f � g and s �lpo ti for all 1 ≤ i ≤ n; or
2. f ∼ g and, for some j , we have (s1, . . . , sj−1) = (t1, . . . , tj−1), sj �lpo tj and s �lpo tk , for all k with j < k ≤ n;

or
3. sj �lpo t , for some j with 1 ≤ j ≤ m.

Then as in [2] we identify a positive literal s = t with the multiset {{s}, {t}}, and a negative literal s /= t with the
multiset {{s, t}}. Then we extend the ordering �lpo (resp. �lpo) to literals by taking the twofold multiset ordering
((�lpo)

mul)mul (resp. ((�lpo)
mul)mul).

2.5. Tree automata

Tree automata are finite state recognizers of ground terms. We consider here a definition à la Frühwirth et al. [11]
of tree automata as finite sets of Horn clauses on P and F with equality. Every non-equational predicate sym-
bol occurring in a given tree automaton A is called a state of A. Given a tree automaton A and a state Q ∈ P
of A, the language of A in Q, denoted by L(A, Q), is the set of terms t ∈ T (F) such that Q(t) is a logical
consequence of A.

2.6. General Intersection Problem (GIP)

We focus on one decision problem, GIP, which generalizes many important problems concerning tree automata (in
particular membership and emptiness decision).

INSTANCE: a tree automaton A, some states Q1, . . . , Qn of A and some terms t1, . . . , tn ∈ T (F, X ),
QUESTION: is there a substitution σ grounding for t1, . . . , tn such that for all i ≥ n, tiσ ∈ L(A, Qi)?

When t1 = · · · = tn = x (a variable), GIP is equivalent to the problem of non-emptiness of intersection of tree
automata, which is known to be EXPTIME-complete [22]. An inclusion problem L(A, P ) ⊆ L(B, Q) is a particular
case of GIP when B belong to a class of TA closed under complementation: in this case, inclusion can be expressed
as GIP for P , Q and t1 = t2 = x, where Q is a state of a tree automata B such that L(B, Q) is the complement of
L(B, Q) in T (F).

The General Membership Problem (GMP, [15]) is the particular case of GIP where n = 1. This problem was
shown EXPTIME-complete in [24] for standard tree automata. When t1 is a ground term, GMP is equivalent to a
membership problem for A: t ∈ L(A, Q)? When t is a variable, GMP is equivalent to a non-emptiness problem for
A: L(A, Q) /= ∅?

Lemma 1. GIP is satisfied by A, Q and t iff A ∪ {Q1(t1), . . . , Qn(tn)⇒ } is inconsistent.

3. Basic ordered paramodulation with selection

We shall establish the decidability of GIP for several classes of tree automata (with equations), using techniques of
saturation under paramodulation, based on Lemma 1 and the calculus described in this section.

3.1. Basic ordered paramodulation with selection

The following set of inference rules, parametrized by a reduction ordering �, which we assume total on ground
terms, and a selection function which assigns to each clause a set of selected negative literals1, forms a sound and

1 We shall sometimes underline literals to indicate that they are selected.
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refutationally complete (i.e. for every unsatisfiable set of clauses the inference system will generate, with a fair strategy,
the empty clause) calculus for Horn clauses called basic ordered paramodulation with selection [2,19].

� ⇒ � = r [[θ ]] �′ ⇒ u[�′]p = v [[θ ′]]
RP

�, �′ ⇒ u[x]p = v [[θ, θ ′, �′ = �, x = r]]
if x is fresh, and (i) �′ /∈ X , (ii) no literal is
selected in � and �′, (iii) and (v) hold.

� ⇒ � = r [[θ ]] �′, u[�′]p = v ⇒ A [[θ ′]]
LP

�, �′, u[x]p = v ⇒ A [[θ, θ ′, �′ = �, x = r]]
if x is fresh, (i) �′ /∈ X , (ii) no literal is selected
in �, (iii) holds, (iv) u = v is selected or (v’)
holds.

�, s = t ⇒ A [[θ ]]
Eq

� ⇒ A [[θ, s = t]]
if (vi) s = t is selected or (vii) sσ �≺ tσ

and sσ = tσ is maximal in �σ, sσ = tσ, Aσ ,
where σ is the mgu of θ, s = t .

The conditions missing above are: (iii) �σ �
 rσ and �σ = rσ is strictly maximal in �σ, �σ = rσ , (v) uσ = vσ is
maximal in �′σ, uσ = vσ , where σ is the most general unifier (mgu) of θ, θ ′, �′ = �, x = r , (v’) uσ = vσ is maximal
in �′σ, uσ = vσ, Aσ (σ is as in (v)).

Concerning RP and LP, we shall talk of paramodulation of the first clause (called first premise) into the second clause
(second premise). The clause returned by the above inferences is called the conclusion. If after every step the constraints
are eagerly propagated in the clauses (i.e. each clause is expanded) the calculus is called ordered paramodulation with
selection.

3.2. Resolution

The application of LP at the root of non-equational atoms followed by Eq is called basic resolution.

� ⇒ P(�) = true [[θ ]] �′, P (�′) = true⇒ A [[θ ′]]
R

�, �′ ⇒ A [[θ, θ ′, �′ = �]]
Note that the clause generated by the LP step is deleted, subsumed by the clause generated by the Eq step.

When the non-basic version of LP and Eq are used, this inference is simply called ordered resolution.
Note that when the unconstrained part of a clause only contains variables (no function symbols), only the resolution rule
applies into this clause, and the clause obtained also contains only variables (i.e. every application of LP is performed
at the root position of an atom). Therefore, for the sake of presentation, we shall eagerly apply the constraint when
describing the application of R in this case. The application of RP to clauses whose heads are non-equational returns
a tautology, and hence this case will be ignored in the following proofs.

3.3. Deletion of redundant clauses

We assume that the deletion of tautologies and subsumed clauses (these notions are considered after clause expansion)
and the simplification under rewriting by orientable positive equational clauses are applied as in [2].

3.4. Splitting

We shall use ε-splitting [13], a variant of splitting without backtracking [21].

B, � ⇒ H [[θ ]]
εsplit

B ⇒ qB [[θ ]] qB, � ⇒ H [[θ ]]
where the literals of � ∪H are not equational, Bθ is an ε-block, i.e. a set of literals of the form Q1(x), . . . , Qn(x),
with Q1, . . . , Qn ∈ P , x is a variable which does not occur in � and H , and where qB ∈ Q is uniquely associated
with B, modulo variable renaming.
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Note that the above splitting rule replaces a clause by two split clauses. Using this rule eagerly (as soon as possible)
preserves correctness and completeness of the calculus. Indeed, since every splitting predicate qB is smaller than
any predicate of P , the original clause is redundant (wrt the general redundancy criterion of [2]) because its reduced
instances are implied by smaller reduced instances of the split clauses. Another important point is that the number of
splitting literals that can be introduced is bounded. We will assume that the set Q is large enough to cover all ε-blocks.

4. Standard tree automata

The transitions of standard tree automata are classically encoded into Horn clauses of the following form:

Q1(x1), . . . , Qn(xn)⇒ Q
(
f (x1, . . . , xn)

)
(s)

where n ≥ 0 (when n = 0, by convention, the set of antecedents of the clause is empty), x1, . . . ,xn are distinct variables
and Q1, . . . , Qn, Q ∈ P0.

Definition 2. A standard bottom-up tree automaton (TA) is a finite set of clauses of type (s).

The language of a TA is called a regular language.

Example 3. The language of the following TA in Q1 is the set of binary trees with inner nodes labelled by f and leaves
labelled by 0 or 1, such that at least a leaf is labeled by 1: ⇒ Q0(0), ⇒ Q1(1),

Q0(x1), Q0(x2)⇒ Q0(f(x1, x2)), Q1(x1), Q0(x2)⇒ Q1(f(x1, x2)),

Q0(x1), Q1(x2)⇒ Q1(f(x1, x2)), Q1(x1), Q1(x2)⇒ Q1(f(x1, x2))

4.1. Decision of GIP

The emptiness and membership problems for TA can be solved in deterministic time, respectively linear and
quadratic. GMP for a linear term can be decided by a procedure of the same quadratic time complexity. For a non-
linear term, the problem is EXPTIME-complete [10]. We sketch below a slight variation of a DEXPTIME procedure
of [13] in our framework, in order to introduce the principles of the proofs in the next sections. It is based on the
function sel1 which selects in a Horn clause � ⇒ H [[θ ]]:
• every splitting negative literal, if any,
• and otherwise every non-equational literal Q(t) of � such that tθ is not a variable.

Proposition 4 [13]. Ordered resolution with selection and ε-splitting saturates the union of a TA A and a goal clause
P1(t1), . . . , Pn(tn)⇒.

Proof. We assume wlog that P1, . . . , Pn ∈ P0, otherwise the problem is trivial by definition of (s). We show that the
saturation of a TA and the goal P1(t1), . . . , Pn(tn)⇒ under ordered resolution wrt �lpo and the selection function
sel1, with eager application of the εsplit rule of Section 3.4, produce only clauses of one of the following form (gs),
for goal-subterm, or (gf), for goal-flat.

q1, . . . , qk, P1(s1), . . . , Pm(sm)⇒ [ q ] (gs)

where m, k ≥ 0, s1, . . . , sm are subterms of t , P1, . . . , Pm ∈ P0, and q1, . . . , qk, q are splitting literals (the q in the
head is optional, as indicated by the square brackets).

P1(yi1), . . . , Pk(yik ), P
′
1(f (y1, . . . , yn)), . . . , P ′m(f (y1, . . . , yn))⇒ [ q ] (gf)

where k, m ≥ 0, i1, . . . , ik ≤ n, y1, . . . , yn are distinct variables, P1, . . . , Pk, P
′
1, . . . .P ′m ∈ P0, and q is a splitting

literal (optional in the clause).
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The particular subtype of (gf) of positive clauses with a splitting literal as head (i.e. (gf) with k = m = 0) is
denoted (sp) below:

⇒ [q] (sp)

where q ∈ Q (note that this type contains the empty clause).
Note that the initial goal P1(t1), . . . , Pn(tn)⇒ belongs to the type (gs) and also belongs to (gf) if t is a variable.

The cases of resolution are listed in Appendix A. Since the number of clauses of type (gs) and (gf) is exponential, the
saturation terminates. �

Corollary 5. GIP is decidable for TA.

4.2. Undecidable extension

Let us call a fact a Horn clause⇒ H with no antecedents at all. We define a clause to be of type (s+) if it is of type
(s) or a fact. Note that we allow non-linear variables in facts. We can show that GMP for this slight extension of TA
is undecidable (even with only one predicate):

Proposition 6. GMP for sets of clauses of type (s+) is undecidable.

Proof. We reduce the halting problem of 2 counter machines to GMP for (s+). Let us consider a deterministic 2-counter
machine such that q0 is the initial state and qf the final one (from where no transition is possible). A configuration of
the machine can be represented by a term q(sn(0), sm(0)) where q is the state, and n (resp. m) the value of the first
(resp. second) counter. We encode every transition q(s, t)→ q ′(s′, t ′) of the machine by a fact, as described in Fig. 2
for three examples. We will need for this purpose a predicate symbol Q, some binary functions g, h, k and a constant
symbol c. See also Fig. 4 for a tree representation of these three examples.

We add two facts to detect the halting state:⇒ Q(g(qf(x, y), c)) and⇒ Q(c). We also introduce two auxiliary (s)

clauses:

Q(x1), Q(x2)⇒ Q(h(x1, x2)) (h)

Q(x1), Q(x2)⇒ Q(k(x1, x2)) (k)

and finally we introduce a goal clause: Q(k(y, g(q0(0, 0), y)))⇒. We shall employ a resolution strategy with the
selection function sel1. A first resolution step of (k) into the initial goal clause generates: Q(y), Q(g(q0(0, 0), y))⇒.
Then a resolution with a fact encoding a transition q0(0, 0)→ st , for some term st , generates: Q(h(g(st, u), u))⇒,
which is resolved by (h) to produce Q(u), Q(g(st, u))⇒. This process can be iterated. The halting state can be
reached iff some goal clause is derived that can be resolved with⇒ Q(g(qf(x, y), c)), producing Q(c)⇒ which in
turn generates the empty clause with⇒ Q(c). Hence the set of clauses encoding the machine is unsatisfiable iff the
machine halts. �

Note that GMP with clauses of type (s) and linear facts is reducible to emptiness for standard TA [6], hence
decidable.

Fig. 2. Representation of the transitions of the 2 counter machine as facts. (see Fig. 4 for definition of T1, T2, and T3).
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5. Tree automata modulo monadic theories

There have been many works to identify some classes of rewrite systems preserving the regularity of sets of terms,
like for instance ground TRS, right-linear monadic TRS, linear semi-monadic TRS . . . (see [23, Section 2.3] for a
summary of some recent results). These results often rely on a procedure of completion of TA wrt some TRS, which
adds new TA transitions without adding new states. As observed in [14], such a TA completion can be simulated by
saturation under paramodulation. The next results show that this method is effective (i.e. terminates) in the case of
monadic theories.

Definition 7. A rewrite rule �→ r is called sublinear if � is sublinear, collapsing if r is either a ground term or a
variable, and monadic if r is either a variable occurring in � or a term g(z1, . . . , zk) for some g ∈ F , k ≥ 0 and some
distinct variables z1, . . . , zk occurring in �.

Example 8. The following axiom for integer equality: eq(s(x), s(y))→ eq(x, y) as well as this rule for the
elimination of stuttering in lists: cons(x, cons(x, y))→ cons(x, y) are monadic rewrite rules. Sublinear and col-
lapsing rewrite rules permit to describe cryptographic functions [1], like decryption in a symmetric cryptosystem
dec

(
enc(x, y), y

)→ x (the symbols enc and dec stand for encryption and decryption and the variables x and
y correspond respectively to the encrypted plaintext and the encryption key), or, in the case of public (asymmet-
ric) key cryptography: adec

(
aenc(x, pub(y)), inv(pub(y))

)→ x and adec
(
aenc(x, inv(pub(y))), pub(y)

)→ x

where inv is an idempotent operator, following the rule inv(inv(y))→ y, which associates to a public encryption
key its corresponding private key (for decryption), and conversely. We will also consider below projections on pairs:
fst(pair(x, y))→ x and snd(pair(x, y))→ y.

We call an equational theory a set of positive clauses of the form:
⇒ � = r (eq)

An equational theory E is called �-convergent if for each clause of E , the equation � = r is orientable by �lpo, i.e.
� �lpo r , and the rewrite system R = {�→ r

∣∣⇒ � = r ∈ E and � �lpo r} is confluent. Moreover, the theory E is
called sublinear (resp. collapsing, monadic) if all the rules of R are sublinear (resp. collapsing, monadic).

Definition 9. A tree automaton modulo an equational theory (TAE) is the union of an equational theory and of a finite
set of clauses of type (s).

Example 10. The language of the following simple TAE in state Qe is the set of expressions equivalent to non-negative
even integers:

⇒ p(s(x)) = x ⇒ s(p(x)) = x

⇒ Qe(0) Qe(x)⇒ Qo(s(x)) Qo(x)⇒ Qe(s(x))

If, instead of the above equational theory for successor and predecessor we consider the following monadic equational
theory for a partial subtraction on natural numbers: s(x)− s(y) = x − y, x − 0 = x, 0− x = 0, the language is the
set of ground terms equivalent to non-negative even integers.

Proposition 11. Basic ordered paramodulation with selection and ε-splitting saturates the union of a TAE A modulo
a �-convergent monadic equational theory and a goal clause P1(t1), . . . , Pn(tn)⇒.

Proof. We show the termination of the saturation of A ∪ {P1(t1), . . . , Pn(tn)⇒} under basic ordered paramodulation
wrt the ordering �lpo and the selection function sel1 (defined before Proposition 4) and with eager ε-splitting.

The main difference with the situation of Proposition 4 is that some rule of the equational theory (i.e. a clause of
type (eq)) may be applied to a clause of type (s) by right paramodulation RP.

⇒ f (�1, . . . , �n) = r Q1(x1), . . . , Q1(xn)⇒ Q
(
f (x1, . . . , xn)

)

RP
Q1(x1), . . . , Qn(xn)⇒ Q(y) [[x1 = �1, . . . , xn = �n, y = r]]
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Fig. 3. Case analysis in the proof of Proposition 11.

Also, LP with an equational clause (eq) is possible into the initial goal clause P(t)⇒. We introduce below a new
clause type (l) to characterize the (expansions of) clauses obtained this way, and show by a case analysis that all the
clauses obtained during the saturation are of type (l) or of a type (f) which generalizes (gf) (proof of Proposition 4).

Let S be the smallest set of goal clauses containing the initial goal P(t)⇒ and closed by application of basic
left-paramodulation with an equational clause (eq) of A, i.e.:

⇒ � = r P (s[�′]p)⇒ [[θ ]] ∈ S
LP

P(s[x]p)⇒ [[θ, �′ = �, x = r]] ∈ S

The set S is finite (of cardinal linear in the size of t and A) because every application of basic left-paramodulation
strictly decreases the number of function symbols in the unconstrained part of the goal clause.

The clause type (l) is defined as follows:

q1, . . . , qk, Q1(s1), . . . , Qn(sn)⇒ [H ] (l)

where k, n ≥ 0, for every i ≤ n, either si is a subterm of a left hand side of a rule of R, or Qi(si) ∈ S, q1, . . . , qk ∈ Q,
Q1, . . . , Qn ∈ P0, and H is Q(r) for some Q ∈ P0 where r is either a variable x ∈ vars(s1, . . . , sn), a flat term
g(z1, . . . , zm) (k ≥ 0) whose variables z1, . . . , zm belong to vars(s1, . . . , sn) and are pairwise distinct, or H is a
splitting literal or else there is no H . Note that (sp) is a subcase of (l).

The following type (f) generalizes the type (gf) defined in the proof of Proposition 4:

Q1(yi1), . . . , Qk(yik ), Q
′
1

(
f (y1, . . . , yn)

)
, . . . , Q′m

(
f (y1, . . . , yn)

)⇒ [H ] (f)

where k, m ≥ 0, i1, . . . , ik ≤ n, y1, . . . , yn are distinct variables, P1, . . . , Pk, P
′
1, . . . .P ′m ∈ P , and H is of the form

Q(yi) or Q
(
f (y1, . . . , yn)

)
with Q ∈ P , or H is a splitting literal or else there is no H , i.e. the clause is a goal.

The initial goal P1(t1), . . . , Pn(tn)⇒ belongs to type (l) and also belongs to (f) if t is a variable. The different
cases of saturation are summarized in Fig. 3 and detailed in Appendix B. Since the number of clauses of type (l)
and (f) is finite, this proves that the saturation of A ∪ {P1(t1), . . . , Pn(tn)⇒} under basic ordered paramodulation
terminates. �

Note that the expanded form of the above clause Q1(�1), . . . , Qn(�n)⇒ Q(y) is related to the push clauses of
two-ways automata [26] or selecting theories [25]. We will come back to this remark in Section 7.5 showing how the
approach for protocol verification of this last paper can be carry on by TACE.

Corollary 12. GIP is decidable for TAE modulo a �-convergent monadic equational theory.

6. Tree automata with syntactic equational constraints

6.1. Reduction automata

The original reduction automata (RA) of [7] can be defined as finite sets of constrained Horn clauses of the following
form:
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Q1(x1), . . . , Qn(xn)⇒ Q(f (x1, . . . , xn))[[c]] (red)

where n � 0, x1, . . . , xn are distinct variables, c is a conjunction of constraints of the form xi |p = xi′ |p′ (equality
constraint) or xi |p /= xi′ |p′ (disequality constraint) for some positions p and p′ (sequences of integers), Q is maximal
in {Q, Q1, . . . , Qn} (here, we do not assume that the ordering on predicates is total) and it is moreover strictly maximal
if c contains at least one equality constraint. An equality constraint as above (resp. disequality constraint) is satisfied by
every two ground terms t, t ′ ∈ T (F) such that p ∈ Pos(t), p′ ∈ Pos(t ′) and t |p = t ′|p′ (resp. p ∈ Pos(t), p′ ∈ Pos(t ′)
and t |p /= t ′|p′ ). Given an RA A and a state Q of A, the language L(A, Q) is defined as in page 185 (extending the
definition from Horn clause to constrained Horn clauses). The definitions of GIP, GMP and emptiness problems for
RA follow.

We prove that the emptiness problem is undecidable for non-deterministic reduction automata, contradicting a claim
in [7,6].

Proposition 13. The emptiness problem is undecidable for non-deterministic RA.

Proof. As in the proof of Proposition 6, we reduce the halting problem of a 2-counter machine M. We consider
the same representation of the configurations of M as in Proposition 6, using in particular the same signature. The
respective initial and final states of M are q0 and qf. We construct below a non-deterministic reduction automaton A
with states Q0 (for 0) and Q1 (for strictly positive integers), a universal state Q∀, some states Qc, Qd , Qgd , Qhd , and
T for every transition T : c→ d of M, a state Q for chaining the transitions of M and a final state Qf.

This reduction automaton A is such that the language L(A, Qf) is the set of the term representations of halting
computations of M, starting with the configuration q0(0, 0) and ending with qf(i1, i2) for some i1 and i2.

We have in A the transitions:⇒ Q0(0), Q0(x)⇒ Q1(s(x)), Q1(x)⇒ Q1(s(x)). Below, Q01 is an abbreviation
for either Q0 or Q1.

The transition T1 = c1 → d1 of M, with c1 = q(x, y), d1 = q ′(s(x), y) (it corresponds to the machine instruction
q: ADD 1 TO COUNTER 1; GOTO q ′) is represented by the term T1 = g(q(x, y)), h(g(q ′(s(x), y), u), u)) where u

is the rest of the computation (the term is displayed in Fig. 4 for sake of readability). We use the following states and
clauses for the recognition of this term T1:
• Q01(x1), Q01(x2)⇒ Qc1(q(x1, x2)) and Q1(x1), Q01(x2)⇒ Qd1(q

′(x1, x2)) where the states Qc1 Qd1 are
respectively associated to the left and right members of the transition,
• Qd1(x1), Q∀(x2)⇒ Qgd1(g(x1, x2)),
• Q∀ is a “universal” state, ⇒ Q∀(0), Q∀(x)⇒ Q∀(s(x)), Q∀(x1), Q∀(x2)⇒ Q∀(f (x1, x2)) for every binary

function symbol f among g, h, k or any state q of M.
• Qgd1(x1), Q∀(x2)⇒ Qhd1(h(x1, x2)),
• and this last clause which permits to accept the term T1 in Fig. 4 into a state also called T1 (i.e. in L(A, T1)), and

performs equality tests:

Qc1(x1), Qhd1(x2)⇒ T1(g(x1, x2))[[x1|1 = x2|1111, x1|2 = x2|112, x2|2 = x2|12]]

Fig. 4. Representation of the transitions of the 2 counter machine as trees.
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The transition T2 = c2 → d2 of M, with c2 = q(s(x), y), d2 = q ′(x, y) (it corresponds to the machine instruction
q: IF COUNTER 1 /= 0 DEC 1; GOTO q ′) is represented by the term g(q(s(x), y), h(g(q ′(x, y), u), u)) (see Fig. 4).
We use the following states and clauses for the recognition of this term T2:
• Q1(x1), Q01(x2)⇒ Qc2(q(x1, x2)) and Q01(x1), Q01(x2)⇒ Qd2(q

′(x1, x2)),
• Qd2(x1), Q∀(x2)⇒ Qgd2(g(x1, x2)), Qgd2(x1), Q∀(x2)⇒ Qhd2(h(x1, x2)),
• and the last clause (for the recognition of the term T2, Fig. 4) which performs equality tests:

Qc2(x1), Qhd2(x2)⇒ T2(g(x1, x2))[[x1|11 = x2|111, x1|2 = x2|112, x2|2 = x2|12]]
The transition T3 = c3 → d3 of M, with c3 = q(0, y), d3 = q ′(0, y) (it corresponds to the machine instruction

q: IF COUNTER 1 = 0; GOTO q ′) is represented by the term g(q(0, y), h(g(q ′(0, y), u), u)) (see Fig. 4). We use
the following states and clauses for the recognition of this term T3:
• Q0(x1), Q01(x2)⇒ Qc3(q(x1, x2)) and Q0(x1), Q01(x2)⇒ Qd3(q

′(x1, x2)),
• Qd3(x1), Q∀(x2)⇒ Qgd3(g(x1, x2)), Qgd3(x1), Q∀(x2)⇒ Qhd3(h(x1, x2)),
• and the last clause (for the recognition of the term T3, Fig. 4) which performs equality tests:

Qc3(x1), Qhd3(x2)⇒ T3(g(x1, x2))[[x1|2 = x2|112, x2|2 = x2|12]]
To model the chaining of transitions, we use a new state Q and, for each transition T of M and associated state

T , we introduce the following unconstrained clauses (recall that T is the state symbol associated to the transition as
above):

T (x1), Q(x2)⇒ Q(h(x1, x2))

We have a special constrained clause, associated to the unique transition T0 of M starting from the initial configuration
c0 = q0(0, 0) (M is assumed deterministic). Note that in this clause we have a symbol k in the head, instead of a h:

T0(x1), Q(x2)⇒ Qf(k(x1, x2))[[x1|2 = x2]]
Finally, we consider three unconstrained clauses to initiate the bottom-up computation of the automaton with a final
configuration qf(i1, i2) of M. We assume wlog that the state qf can not be reentered by M. These clauses aim at
accepting the term h(g(qf(i1, i2), c), c) in the language L(A, Q):

⇒ Qc(c), Q01(x1), Q01(x2)⇒ Qcf(qf(x1, x2)),

Qcf(x1), Qc(x2)⇒ Qgcf(g(x1, x2)), Qgcf(x1), Qc(x2)⇒ Q(h(x1, x2))

An example of a computation of A is described in Fig. 5. In this figure, the nodes of a recognized term are decorated
with the states of A in which they are accepted. Note that equality test are performed by A only at nodes labelled with
the symbol g.

Fig. 5. A computation of A (proof of Proposition 13).
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We can show that M halts on some qf(i1, i2) starting from q0(0, 0) iff L(A, Qf) /= ∅.
For the only if direction, we associate to a halting computation of M a tree of L(A, Qf) as in Fig. 5.
For the if direction, we use the following fact:

Fact 14. If (i) t ∈ L(A, Q) and t = h(t1, t2) or t = k(t1, t2), (ii) t1 ∈ L(A, T ) for some transition T , and (iii) t1|2 = t2,
then either the state of the right-hand side of T is qf and t2 = h(g(qf(0, 0), c), c), or, (i’) t2 = h(t ′1, t ′2) ∈ L(A, Q),
(ii’) t1 ∈ L(A, T ′) for a transition T ′, and (iii’) t ′1|2 = t ′2. Moreover, in this last case, the term t1|1 is rewritten to t ′1|1
by T (seen as a rewrite rule).

Now, observe that by construction of A, if t ∈ L(A, Qf) then t = k(t1, t2) and t1 = g(q0(0, 0), t2) and t2 ∈ L(A, Q).
Hence, every term t ∈ L(A, Qf) satisfies the hypotheses (i)–(iii) of Fact 14, and with this fact, this ensures that t

represents a halting computation of M. �

6.2. Tree automata with equational constraints

We propose here the definition of a new class of tree automata where the constraints are generalized (compared to
[7]) to equations between arbitrary terms and where the transitions comply to stronger ordering conditions, based on
the ordering � on states, in order to obtain a decidable GIP. We call below test predicates2 the elements of P1. The
constrained transitions of our automata have the following form:

Q1(x1), . . . , Qn(xn), u1 = v1, . . . , uk = vk ⇒ Q∗(x) (d)

where n, k ≥ 0, x1, . . . , xn, x are distinct variables, u1, v1, . . . , uk, vk ∈ T
(
F, {x1, . . . , xn, x}

)
, Q1, . . . , Qn, Q ∈ P ,

Q∗ is a test predicate, and for all i ≤ n, if Qi is a test predicate then Q∗ � Qi .
The unconstrained transitions are restricted to clauses of type (s) which contain no more test predicates symbols in

their antecedents than in their heads

Q1(x1), . . . , Qn(xn)⇒ Q
(
f (x1, . . . , xn)

)
(t)

where n > 0, x1, . . . ,xn are distinct variables, and either Q1, . . . , Qn, Q ∈ P0 or Q is a test predicate and at most
one of Q1, . . . , Qn is equal to Q, and the others belong to P0.

Definition 15. A tree automaton with equational constraints or TAC is a finite set of clauses of type (t) or (d).

Note that every TA is a particular case of TAC (without test predicates).

Example 16. The language of the following TAC in state Q2 is the set of stuttering lists of natural numbers built with
the symbols cons and empty:

⇒ Q0(0) Q0(x1)⇒ Q0(s(x1))

⇒ Q1(empty) Q0(x1), Q1(x2)⇒ Q1(cons(x1, x2))

Q0(x1), Q2(x2)⇒ Q2(cons(x1, x2))

Q0(x1), Q1(x2), x2 = cons(x1, y), x = cons(x1, x2)⇒ Q2(x)

Proposition 17. Ordered paramodulation with selection and ε-splitting saturates the union of a TAC A and a goal
clause P1(t1), . . . , Pn(tn)⇒.

Proof. Let sel2 be a selection function which generalizes sel1, by selecting every equational negative literals, if any,
and otherwise is defined just like sel1; this means that sel2 selects in a Horn clause C[[θ ]]:
• every splitting negative literal, if any,

2 And we shall sometimes mark a predicate Q with an asterisk like in Q∗ to indicate that it is a test predicate.
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• otherwise, the equational negative literals of C, if C contains any,
• otherwise, every (non-equational and non-splitting) negative literal Q(t) of C such that tθ is not a variable (if any).

We consider saturation under ordered paramodulation wrt �lpo with selection by sel2 and ε-splitting. The principle
of the proof of termination (detailed in Appendix C) is to show that, starting with A ∪ {P1(t1), . . . , Pn(tn)⇒ }, every
step of ordered paramodulation wrt the ordering �lpo and the selection function sel2, with eager ε-splitting returns
either a clause smaller than all its premises (wrt to a well founded ordering�) or a clause of type (gf). Two key points
ensure this result. First, because of the selection strategy, the clauses of A of type (d) containing equations can only be
involved in an equality resolution (Eq). Hence, equations in such clauses will be eliminated first, before these clauses
can be involved in resolution. The type of clauses obtained (when all equations have been eliminated) is called (d+)
below and their predicates satisfy the same ordering condition as for (d). Second, thanks to the ordering conditions on
predicates for (t) and (d+), the application of such clauses in resolution makes clauses decrease (wrt�).

Let us now give a formal definition of the type (d+) of clauses obtained by equation elimination:

q1, . . . , qk, Q1(s1), . . . , Qn(sn)⇒ Q∗(s) (d+)

where k, n ≥ 0, q1, . . . , qk ∈ Q, Q1, . . . , Qn, Q
∗ ∈ P , s1, . . . , sn, s ∈ T (F, X ), Q∗ is a test predicate, and for all

i ≤ n, if Qi is a test predicate then Q∗ � Qi .

Fig. 6. Case analysis in the proof of Proposition 17. > (resp. ≥, =) means that the measure’s component for the premise is strictly greater than
(resp. greater or equal to, equal to) the conclusion.



F. Jacquemard et al. / Journal of Logic and Algebraic Programming 75 (2008) 182–208 195

The transformation, by equation elimination, of clauses of type (d) into clauses of type (d+) (first keypoint above)
is summarized in Fig. 6 and detailed in Appendix C.

It order to analyse the type of clauses obtained by resolution, we shall consider the clause types (gf) and (sp) defined
in the proof of Proposition 4, and the type (g+) of arbitrary goals:

q1, . . . , qk, P1(s1), . . . , Pm(sm)⇒ [ q ] (g+)

where k, m ≥ 0, P1, . . . , Pm ∈ P , q1, . . . , qk, q ∈ Q and s1, . . . , sm ∈ T (F, X ).
The head is optional in the clause, as indicated by the brackets, and can only be a splitting literal (hence we abusively

call such a clause a goal). Note also that the initial goal P1(t1), . . . , Pn(tn)⇒ has type (g+).
The following Fact 18 states formally the above second key point. It is based on the following measure of a clause

C = �, �⇒ H [[θ ]], where � is a multiset of non-equational atoms and � is a multiset of equations. This measure is
the tuple made of the following components:
• m1(C) = ind(Q) (see page 184 for the definition of ind) if H = Q(t) with Q ∈ P , or m1(C) = ∞ if C has type (sp),

m1(C) = 0 if C is a goal not of type (sp), i.e. if � is not empty and H is a splitting literal or there is no H ,
• m2(C) is the number of equations in �,
• m4(C) is the multiset of test predicate symbols occurring in �,
• m6(C) is the multiset of the negative non-equational literals of �θ .

The strict ordering� on measures, extended as expected to clauses, is defined as the lexicographic extension
(
>, >,

�mul,�mul
lpo

)lex , where > denotes the ordering on natural numbers. The proof of Fact 18, based on a case analysis, is
summarized in Fig. 6 and detailed in Appendix C.

Fact 18. Starting with A ∪ {P1(t1), . . . , Pn(tn)⇒}, every step of ordered paramodulation with selection by sel2 and
ε-splitting returns either a clause smaller than all its premises (wrt�) or a clause of type (gf).

Fact 18 permits us to show that ordered paramodulation with selection and ε-splitting saturates A and the goal, hence to
conclude the proof of the proposition. Indeed, the number of clauses of type (gf) is finite up to variable renaming, hence
an infinite deduction path would contain an infinite decreasing chain, wrt�, whereas this order is well-founded. �

Corollary 19. GIP is decidable for TAC.

7. Tree automata with equational constraints modulo a theory

It is shown in [14] that the class of languages of terms recognized by tree automata of [3] (tree automata with
equality constraints between brother positions) is not closed under rewriting with shallow theories (rewrite systems
whose left and right members of rules have depth 1). The reason is that these tree automata test syntactic equalities
whereas we want to consider languages of terms modulo an equational theory. The problem is the same with the tree
automata of [7]. Our definition based on Horn clauses and our saturation method solve this problem by considering
a class of tree automata which combines both equality constraints like TAC and equational theories like TAE. The
tree automata defined this way test equality constraints modulo an equational theory and recognize languages of terms
modulo the same theory.

Definition 20. A tree automaton with equational constraints modulo an equational theory (TACE) is the union of an
equational theory and of a TAC.

7.1. Relating RA and TACE

We show in this section that every reduction automaton with equality constraints only is equivalent to a TACE of
the same size, as long as its transitions fulfill the restrictions on predicates introduced in the definition of (t) and (d) in
order to make emptiness decidable.
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Let us consider a reduction automaton A, as defined in Section 6.1, with equality constraints only, and assume
moreover that the transitions of A fulfill the restrictions on predicates introduced in the definition of TAC. More
precisely, it means that for every clause (red) of A of the form

Q1(x1), . . . , Qn(xn)⇒ Q(f (x1, . . . , xn))[[c]]

• c contains no disequality constraint,
• if c contains equality constraints, then Q is a test predicate, and for all i ≤ n such that Qi is a test predicate, Q � Qi ,
• if c is empty, either Q1, . . . , Qn, Q ∈ P0 or Q is a test predicate and at most one of Q1, . . . , Qn is equal to Q,

and the others belong to P0.
We show how to construct a TACE B of the same size as A and which recognizes the same language. Let us first

consider a�-convergent sublinear-collapsing theory suitable for that purpose. Let a be the maximal arity of a function
symbol of F and let us add new function symbols π1, . . . , πa to F . Consider the rewrite system R containing all rules
of the form πi(f (x1, . . . , xn))→ xi for f ∈ F , i ≤ n. This system is convergent, sublinear and collapsing. We add
to B every clause⇒ � = x such that �→ x ∈ R.
Every clause (red) of A as above with an empty constraint c has actually the type (t), and is added to B.
To a clause (red) of A as above with c = xi1 |p1 = xi′1 |p′1 , . . . , xik |pk

= xi′k |p′k we associate the following clause of
type (d):

Q1(x1), . . . , Qn(xn), πp1(xi1) = πp′1(xi′1), . . . , πpk
(xik ) = πp′k (xi′k ), x = f (x1, . . . , xn)⇒ Q(x)

where πp(x) denotes πp1(. . . πpk
(x)) given a position p = p1 . . . pk . For every state Q of A, L(B, Q) = L(A, Q).

Note that a reduction automaton of the above kind can also be transformed into an equivalent TAC, but at the cost
of an exponential explosion, in order to fill with function symbols the positions prefix of p and p′ associated to each
constraint xi |p = xi′ |p′ .

7.2. Example: modeling a security protocol

We illustrate in the following example how TACE can be used to characterize the behaviour of security protocols
running in an insecure environment, following a model with explicit destructors [1] specified with the rewrite rules
of Example 8. It is known [17] that such model with rewrite rules is more expressive than a standard model of
cryptosystems based on free algebras. For instance, the attack mentioned in Section 7.4 cannot be captured by free
algebras based approach like e.g. [12]. Our representation is such that a state of the protocol is reachable (from an
initial state) iff it is in the TACE language.

Example 21. The protocol of Denning and Sacco [8] permits two agents A and B to exchange a new symmetric key
using an asymmetric cryptosystem. The respective behaviour of the agents can be represented by the two following
clauses of type (d)3:

Q0j (x)⇒ Q1j (pair(A, aenc(aenc(K, inv(pub(A))), pub(B)))) j = 0, 1
Qi0(x)⇒ Qi1(enc(S, adec(adec(snd(x), inv(pub(B))), pub(fst(x))))) i = 0, 1

The predicate Qij represents the content of the channel Q when agents A and B are in respective states i, j , which
are either 0 (initial state) or 1 (final state). In the first clause, A initiates the protocol, sending B a freshly chosen
symmetric key K for further secure communications (A, B, K , S are constant function symbols). This key is K signed,
for authentication purpose, with the secret key inv(pub(A)) of A and encrypted with the public key pub(B) of B.
Moreover, A appends its name at the beginning of the message. In the second clause, B answers with a secret value S

encrypted with K , which has been extracted from the received message (using the destructor symbols and the rules of
Example 8). Note that in this setting, equations in clauses (d) permit to model conditionals for the agents of protocols.

3 For the sake of simplicity we denote Q1(x1), x = u⇒ Q(x) by Q1(x1)⇒ Q(u).
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We add some clauses of type (t) and (d) in order to model the control of an attacker over the public communication
channel Q, namely the ability to read, analyze, recompose (by application of any public function f, possibly a destructor
symbol) and to resend messages:

Q00(x1), Q00(x2)⇒ Q00(f(x1, x2)) Q00(x1), Q01(x2)⇒ Q01(f(x1, x2))

Q00(x1), Q10(x2)⇒ Q10(f(x1, x2)) Q00(x1), Q11(x2)⇒ Q11(f(x1, x2))

symmetric of the above clauses: Q01(x1), Q00(x2)⇒ Q01(f(x1, x2)) . . .

Q01(x1), Q10(x2)⇒ Q11(f(x1, x2)) Q10(x1), Q01(x2)⇒ Q11(f(x1, x2))

Note that in the above clauses we allow several combinations of the agent’s states in the antecedents, but not every
combination. The principle is that if A (resp. B) is in State 1 in the first antecedent, it must be in State 0 in the second one
(and conversely), because we assume that each agent can run only once. This way, we ensure an exact representation
(as ground terms) of the executions of an instance of the protocol, whereas many other Horn clauses or tree automata
models are approximating [12,18,26]. Note that these conditions fit well with the ordering restrictions on clauses of
type (t) and (d).

We also add some clauses (t) ensuring that some ground terms are initially known to the attacker, e.g.⇒ Q00(A).

7.3. GIP and TACE

Proposition 22. Basic ordered paramodulation with selection and ε-splitting saturates the union of a TACE A modulo
a �-convergent sublinear and collapsing equational theory and a goal clause P1(t1), . . . , Pn(tn)⇒.

Proof. We consider saturation of the given TACE A and the goal clause P1(t1), . . . , Pn(tn)⇒ under basic ordered
paramodulation wrt the ordering �lpo and the selection function sel2 (defined in the proof of Proposition 17) and
with eager ε-splitting. Following the same proof schema as for Proposition 17 (TAC) we show that, starting with
A ∪ P1(t1), . . . , Pn(tn)⇒, every step of paramodulation returns either a clause smaller than all its premises (wrt to
a well founded ordering �) or a clause of type (gf) or (df), where this latter clause type is similar to (gf) and also
contains only a finite number of clauses (up to variable renaming).

The proof is nevertheless much more complicated than in the case of TAC (see Fig. 7). Indeed, like for TAC
(Proposition 17), we obtain clauses of type (d+) generalizing (d), in this case using basic narrowing. However, these
clauses (d+) can be combined, by resolution, with clauses of a type similar to (l) in Proposition 11. Clause decreasing,
wrt�, is obtained for such resolution steps thanks to the restrictions on the equational theory considered.

Before we start the detailed proof of Proposition 22, let us introduce the following measure on terms: m5(u) =
(mvar(u), |u|) where mvar(u) is the multiset of the numbers of occurrences for each variable in u and |u| is the size of
u, that is the number of symbols in u. The measure of terms are compared using a lexicographic extension of orderings
for each component. We denote by |u|z the number of occurrence of symbol z in term u. The following lemma will be
used in the proof of saturation.

Lemma 23. We consider terms s, t and a variable x such that vars(s) ∩ vars(t) = ∅, s is not a variable, t is linear,
x ∈ vars(t), x /= t , and σ is an mgu of s and t . Then m5(xσ ) is strictly less than m5(s).

Proof. If s is linear then xσ has at most the same number of variables than s and has size smaller than s. Assume now that
s is not linear. By applying eagerly Decompose, Orient (and Trivial) rules of unification algorithm to the system {s = t}
we get the following equivalent system: X ∪ Y where X = {x1 = s1, . . . , xn = sn} and Y = {y1 = t1, . . . , ym = tm}
with {x1, . . . , xn} ⊆ vars(t) and {y1, . . . , ym} ⊆ vars(s). The variables x1, . . . , xn have a unique occurrence in the
whole system. Let us note too that every variable in ti’s is in vars(t) and therefore occurs only once in the system. As
a consequence if we consider the system of equations T = {ti = tj | yi = yj , 1 ≤ i, j ≤ m}. We can check that it has
a most general solution σ with support D included in vars(t) \ {x1, . . . , xn} and for each variable z in this support,
zσ is a subterm of t and the variables in zσ occurs only once in X ∪ Y ∪ T . Applying some replacements the initial
system gets equivalent to (by abuse of notation σ is identified with the subsystem {z = zσ | z ∈ D})

X ∪ {y1 = t1σ, . . . , ym = tmσ } ∪ σ.
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Then from this step all possible Replacement rule applications are performed using some equations of type
yi = tiσ .

If x does not occur in a left-hand side in X, then mvar(xσ ) is a multiset of 1 and therefore strictly less than
mvar(s).

Assume now wlog that x is the variable x1. If no Replacement is applied on s1, since s1 is a strict subterm of s,
m5(xσ ) < m5(s). If a nonempty sequence of Replacements is applied to s1, then we get a sequence of right-hand sides:
s1

1 , . . . , s
q

1 and we can show by induction that mvar(sj
i ) < mvar(s):

Applying the replacement yj+1 = tj+1 on s
j

1 has effect to replace |sj

1 |yj+1 occurrences of variable yj+1 by

|sj

1 |yj+1 occurrences of each of the (linear) variables from tj+1. Since |s1|yj+1 = |sj

1 |yj+1 < |s|yj+1 , then mvar(tj+1) <

mvar(s). �

The measure of a clause C = �, �⇒ H [[θ ]], where � is a multiset of non-equational atoms and � is a multiset of
equations, is the tuple (m1(C), . . . , m6(C)) where:
• m1(C) = ∞ if H is an equation, and is defined like in the proof of Proposition 17 otherwise,
• m2(C) is the number of equations in �,
• m3(C) is the number of function symbols in �, � and H . Note that we consider here the number of function

symbols without applying the constraint θ . It means in particular that this m3 is unchanged by resolution, only left-
and right-paramodulation on non variable terms may change m3,
• m4(C) is the multiset of test predicate symbols occurring in �,
• m5(C) = m5(s) if H = Q(s), and m5(C) = ({}, 0) is the other cases,
• m6(C) is the multiset of the negative non-equational literals of �θ .

The strict ordering� on measures is defined as the lexicographic extension:

(
>, >, >,�mul, (>mul, >),�mul

lpo

)lex

where > denotes the ordering on N.
Fact 24 below permits to conclude the proof of Proposition 22. It refers to the following clause type (df) similar to
(gf):

Q1(yi1), . . . , Qk(yik ), Q
′
1(f (y1, . . . , yn)), . . . , Q′m(f (y1, . . . , yn))⇒ Q(r) (df)

where m ≥ 0, n > 0, y1, . . . , yn are distinct variables, i1, . . . , ik ≤ n, r is either one of the yi , with i ≤ n, or
f (y1, . . . , yn), and if Q is a test predicate then every test predicate among Q1, . . . , Qk, Q

′
1, . . . , Q′m is strictly

smaller than Q (wrt �), otherwise, Q1, . . . , Qk, Q
′
1, . . . , Q′m ∈ P0.

Fact 24. Starting from A ∪ {P1(t1), . . . , Pn(tn)⇒ }, every step of basic ordered paramodulation and ε-splitting
returns either a clause smaller than all its premises (wrt�) or a clause of type (df) or (gf).

Fact 24 is proved by a case analysis summarized in Fig. 7 and detailed in Appendix D. In this analysis, we need to
consider a new type of clauses (l+) appearing during the saturation. Right paramodulation RP with an equational clause
⇒ f (�1, . . . , �n)→ r into a clause of type (t) returns indeed a clause expanded into the following form4:

q1, . . . , qk, Q1(�1), . . . , Qn(�n)⇒ Q(r) (l+)

where n ≥ 0, �1, . . . , �n are linear, r is either ground or a variable x, q1, . . . , qk ∈ Q, and either Q1, . . . , Qn, Q ∈ P0
or Q is a test predicate and at most one of Q1, . . . , Qn is equal to Q, and the others belong to P0. �

Corollary 25. GIP is decidable for TACE modulo a �-convergent sublinear and collapsing equational theory.

4 Note that no further applications of RP or LP other than resolution is possible into the clause obtained, because of the basic strategy.
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Fig. 7. Case analysis in the proof of Proposition 22.

7.4. Example: Denning and Sacco’s protocol

Several security properties of the Denning & Sacco’s protocol may be expressed as GIP wrt the TACE of Example 21:
Q01(x)⇒ expresses for instance that B has answered to a message not originating from A (authentication flaw) and
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Q01(S)⇒ that the secret is revealed (confidentiality flaw). Both instances of GIP can be solved with the method of
Proposition 22, revealing a known attack which involves only the agent B (and an attacker), and reveals the secret S.

Assume that the attacker initially knows A, pub(A), pub(B). This situation can be modeled adding
some clauses of type (t) to A, as explained in Example 21. With the attacker clauses of Example 21,
the attacker is able to construct and send the message m0 = pair(A, aenc(A, pub(B))) on the public chan-
nel Q, because this term is made of terms of its initial knowledge and public function symbols pair
and aenc. It means that m0 ∈ L(A, Q00). When the agent B reads m0, he replies (in channel Q) with
enc(S, adec(adec(snd(m0), inv(pub(B))), pub(fst(m0)))). Using the rewrite rules for projection (Example 8),
this term is reduced to enc(S, adec(adec(aenc(A, pub(B)), inv(pub(B))), pub(A))) and with one of the
rewrite rules for asymmetric decryption, applied to the underlined redex, this term is further reduced to m1 =
enc(S, adec(A, pub(A))). It means that m1 ∈ L(A, Q01). The attacker is then able to construct the “key”
adec(A, pub(A)), which belongs to L(A, Q00), and can recover S by decryption. Indeed, thanks to the clause
Q01(x1), Q00(x2)⇒ Q01(dec(x1, x2)), we have S ∈ L(A, Q01). It means that the secret S is revealed on the channel
Q.

The protocol can be patched in order to avoid such an attack, by requiring A to send the names A and B along with
the symmetric key K (j = 0, 1):

Q0j (x) ⇒ Q1j (pair(A, aenc(aenc(pair(pair(A, B), K), inv(pub(A))), pub(B))))

and by requiring the agent B to make some preliminary verifications on the message received before sending his
answer, namely that the names match. This latter feature can be modeled in TAC by adding equations in the clause of
type (d) representing B (with i = 0, 1 and t = adec(adec(snd(x), inv(pub(B))), pub(fst(x)))):

Qi0(x), snd(fst(t)) = xB, fst(fst(t)) = fst(x)⇒ Qi1(enc(S, snd(t)))

7.5. Example: Recursive authentication protocol

The recursive authentication protocol [4] ensures the distribution of certified session keys to a group of clients
by a server which process recursively an unbounded list of requests. The automated verification of such group
protocols has been studied in [16,25]. We shall follow below the presentation of [16], showing that it fits in
our formalism. The server receives a sequence of requests for keys represented by a term of the form nil or5:〈
hash(m(a), a, b, na, y), 〈a, b, na, y〉

〉
, denoted below by hma (a, b, na, y), where hash is a unary one-way function, a

is the name of the principal requesting a certificate, b is the name of the principal with whom a is willing to share a key,
na is a random number generated by a (nonce), m(a) is a mac key shared by the server and a and y is a subsequence of
the other requests, which (if not nil) has the form hmc (c, a, nc, y

′) (c is the name of another principal). The behaviour
of the server, when receiving a request sequence, is defined by the following clauses of type (d) (where a, b, c, na , nc

are variables):

Q0(x), x = hma (a, b, na, nil)⇒ Q1
(
aenc(pub(a), 〈k(a, b, na), b, na〉)

)

Q0(x), x = hma (a, b, na, hmc (c, a, nc, y
′))⇒ Q1

(
aenc(pub(a), 〈k(a, b, na), b, na〉)

)

Q1
(
aenc(pub(a), 〈k(c, a, nc), c, na〉)

)

It means that the server sends to a one or two certificates encrypted with his public key, where k is a secret function
used for the generation of session keys. Note the two occurrences of a in the equation of the second clause, which
implicitly express an equality between the name of the requester of a query and the receiver in the next one. It is
assumed that for the first element of the sequence, the receiver is actually the server himself (hence it is not necessary
to send him a certificate). Moreover, we have a clause of type (t) for the enumeration of the requests by the server:
Q0(x)⇒ Q0(next(x)), where next is an operator which pops the first element of a request’s sequence, defined by the
following collapsing equation (m is a variable): next(hash(m, x1, x2, x3, y), 〈x1, x2, x3, y〉) = y.

5 We abbreviate pair(t1, pair(t2, . . . , pair(tn−1, tn))) by 〈t1, . . . , tn〉 (n ≥ 2).
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8. Conclusion and further works

We have introduced new classes of tree automata with constraints and shown that the General Intersection Problem
is decidable for them with a uniform theorem-proving technique. Potential extensions are numerous.

As future work we plan to extend the tree automata classes defined in this paper to disequality tests as in [7]. This
would permit us to characterize languages of normal form wrt a TRS which are useful in particular in inductive theorem
proving [6].

Equality tests between brother positions à la [3] can be easily incorporated into the Horn clauses representation of tree
automata (see e.g. [14]). Equations are not necessary for this purpose, since multiple occurrences of a variable suffice, as
in: Q1(x), Q2(x)⇒ Q

(
f (x, x)

)
. The combination of TA classes of [3,7] preserves emptiness decidability [5]. Hence

the combination of the above class of TA with equality test modulo and unrestricted test between brother positions is
interesting to study.

It would also be interesting to extend the above saturation results (in particular for classes modulo monadic
or collapsing theories) to term algebra modulo AC, using AC-paramodulation techniques. This combination
(AC + sublinear− collapsing) permits us to axiomatize primitives like the exclusive-or.
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Appendix

A. Proof of Proposition 4 (TA)

We show that all the clauses generated by saturation of A and the goal clause P1(t1), . . . , Pn(tn)⇒ under ordered
resolution wrt �lpo and the selection function sel1 with eager application of the εsplit rule of Section 3.4 have the
type (gs) (goal-subterm), or (gf), (goal-flat),

The different cases of resolution steps between clauses of type (s), (gs) and (gf) are listed below:
R(_, s): no resolution step is possible into a clause of type (s) because of the maximality condition (v) in LP.

Indeed, no literal is selected by sel1 in any clause of the form Q1(x1), . . . , Qn(xn)⇒ Q
(
f (x1, . . . , xn)

)

and, for all i ≤ n, we have Q
(
f (x1, . . . , xn)

) �lpo Qi(xi). Hence, for all substitution σ , Qi(xiσ ) cannot be
maximal among Q1(x1σ), . . . , Qn(xnσ), Q

(
f (x1, . . . , xn)σ

)
.

R(s, gs) returns a clause of type (gs) when one non-splitting negative literal P1(s1) in the premise (gs) is selected
by sel1, i.e. when s1 = f (s′1, . . . , s′n) (note that in this case the premise does not contain splitting literals by
definition of sel1):

Q1(x1), . . . , Qn(xn)⇒ P1
(
f (x1, . . . , xn)

)
P1(s1), . . . , Pm(sm)⇒ [ q ]

R
Q1(s

′
1), . . . , Qn(s

′
n), P2(s2), . . . , Pm(sm)⇒ [ q ]

R(s, gs) returns a clause of type (gf) when no negative literal is selected by sel1 in the premise (gs). Note that in
this case, this premise contains only one variable, otherwise it would be split. The tuple x1, . . . , xn is denoted x

below:

Q1(x1), . . . , Qn(xn)⇒ P1
(
f (x1, . . . , xn)

)
P1(y), . . . , Pk(y)⇒ [ q ]

R
Q1(x1), . . . , Qn(xn), P2(f (x)), . . . , Pk(f (x))⇒ [ q ]

R(s, gf) returns a clause of type (gf) when one non-splitting negative literal at least is selected by sel1 in the
premise (gf) – the tuple y1, . . . , yn is denoted y:

Q1(x1), . . . , Qn(xn)⇒ P ′1
(
f (x1, . . . , xn)

)

P1(yi1), . . . , Pk(yik ), P
′
1(f (y)), . . . , P ′m(f (y))⇒ [ q ]

R
P1(yi1), . . . , Pk(yik ), Q1(y1), . . . , Qn(yn), P

′
2(f (y)), . . . , P ′m(f (y))⇒ [ q ]
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R(s, gf) returns a clause of type (gf) when no negative literal is selected by sel1 in the premise (gf). This case in
embedded R(s, gs) when the second premise has type (gs) and no selected literals, which has been treated
above.

R(sp, gs) returns a clause of type (gs).

⇒ q1 q1, . . . , qk, P1(s1), . . . , Pn(mm)⇒ [ q ]
R

q2, . . . , qk, P1(s1), . . . , Pm(sm)⇒ [ q ]

Note that this is the only case where a clause of type (gs) or (gf) can be involved as first premise in a resolution
step.

Since the number of clauses of type (gs) and (gf) is exponential, the saturation terminates and GIP is solvable in
deterministic exponential time.

B. Proof of Proposition 11 (TAE)

We detail below the different cases of saturation of A ∪ {P1(t1), . . . , Pn(tn)⇒} under basic ordered paramodulation
wrt the ordering �lpo and the selection function sel1 and with eager ε-splitting.

RP(eq, eq) returns a clause of type (eq) which is deleted after simplification by rewriting by R, because by
hypothesis, the equational theory of A is �-convergent.

RP(eq, s) returns a clause which is expanded into a clause of type (l).

⇒ f (�1, . . . , �n) = r Q1(x1), . . . , Q1(xn)⇒ Q
(
f (x1, . . . , xn)

)

RP
Q1(x1), . . . , Qn(xn)⇒ Q(y) [[x1 = �1, . . . , xn = �n, y = r]]

Note that no further basic paramodulation step other than resolution is possible into the clauses obtained,
because there are no function symbols in its unconstrained part.

LP(eq, s) is not possible because the antecedents of clauses of type (s) contain only variables.
R(_, s): no resolution step is possible into a clause of type (s) because of the maximality condition (v) in LP (see

the proof of Proposition 4).
R(s, l) return a clause of type (l) when one non-splitting negative literal P1(s1) is selected in the premise of type

(l), i.e. when s1 = f (s′1, . . . , s′n) (the tuple x1, . . . , xn is denoted x below):

Q1(x1), . . . , Qn(xn)⇒ P1
(
f (x)

)
P1(s1), . . . , Pm(sm)⇒ [H ]

R
Q1(s

′
1), . . . , Qn(s

′
n), P2(s2), . . . , Pm(sm)⇒ [H ]

R(s, l) return a clause of type (f) when no negative literal is selected in the premise of type (l). Indeed, a clause of type
(l) without a selected literal can have one of the following forms: P1(y1), . . . , Pm(ym)⇒ P

(
g(y1, . . . , ym)

)

which is a particular case of (s), hence the resolution is not possible as seen above, or P1(y), . . . , Pm(y)⇒
P(y) where P1, . . . , Pm, P ∈ P0 P1(y), . . . , Pm(y)⇒ [ q ] where q ∈ Q is a splitting literal or else there is
no head. In these two latter cases, the variable in the antecedent is unique, otherwise the clause would be split
by ε-splitting. The corresponding resolution steps are the following:

Q1(x1), . . . , Qn(xn)⇒ P1
(
f (x)

)
P1(y), . . . , Pm(y)⇒ P(y)

R
Q1(x1), . . . , Qn(xn), P2

(
f (x)

)
, . . . , Pm

(
f (x)

)⇒ P
(
f (x)

)

Q1(x1), . . . , Qn(xn)⇒ P1
(
f (x)

)
P1(y), . . . , Pm(y)⇒ [ q ]

R
Q1(x1), . . . , Qn(xn), P2

(
f (x)

)
, . . . , Pm

(
f (x)

)⇒ [ q ]
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R(s, f) returns a clause of type (f) when one non-splitting literal at least is selected in the premise of type (f) (the
tuples x1, . . . , xn and y1, . . . , ym are denoted resp. x and y below):

Q1(x1), . . . , Qn(xn)⇒ P ′1
(
f (x)

)

P1(yi1), . . . , Pk(yik ), P
′
1(f (y)), . . . , P ′m(f (y))⇒ [H ]

R
P1(yi1), . . . , Pk(yik ), Q1(y1), . . . , Qn(yn), P

′
2(f (y)), . . . , P ′m(f (y))⇒ [H ]

R(s, f) returns a clause of type (f) when no literal is selected in the premise of type (f); it is a subcase of R(s, l)
(with (l) unselected) above.

R(l, _), R(f, _): no resolution step can involve as first premise a clause of type (l) or (f) which is neither of type
(s) nor of type (sp). Indeed, as we have seen above, a clause of this kind and without a selected literal must
have the form: P1(y), . . . , Pm(y)⇒ P(y) or P1(y), . . . , Pm(y)⇒ [ q ] In both cases, the head of the clause
cannot be strictly maximal w.r.t. �lpo, contradicting the condition (iii) of LP.

R(sp, l) returns a clause of type (l).

⇒ q1 q1, . . . , qk, Q1(s1), . . . , Qn(sn)⇒ [H ]
R

q2, . . . , qk, Q1(s1), . . . , Qn(sn)⇒ [H ]
Altogether, all the clauses in saturation have type (l) or (f), and since there are only a finite number of clauses of these
types, the saturation of A ∪ {P(t)⇒} under basic ordered paramodulation terminates.

C. Proof of Proposition 17 (TAC) and Fact 18

We detail below the proof Fact 18 by a case analysis of all the instances of Eq, LP (R) and εsplit involving as
premises some clauses of type (t), (d), (d+), (gf), (sp) or (g+). We show that for each case, the conclusion of each
such an instance is either of type (gf) (or (sp)) or either is smaller than all its premises wrt�.

Eq(d): equality resolution (Eq) is possible with the equations in clauses of type (d) (each of these equations
is selected by sel2) and every such application of (Eq) makes m2 decrease. Recall that we defined (d+) at
page 194 as the type of clauses obtained from clauses (d) and which contain no more equations.

R(_, t): no resolution step is possible into a clause of type (t) because of the maximality condition (v) in LP. Indeed,
for any clause of the form Q1(x1), . . . , Qn(xn)⇒ Q

(
f (x1, . . . , xn)

)
no negative literal is selected by sel2

and, for all i ≤ n, Q
(
f (x1, . . . , xn)

) �lpo Qi(xi) by definition of �lpo and (t).
R(_, d+): no resolution step is neither possible into a clause of type (d+) for the same reason as above.
R(_, d): with the definition of the selection function sel2, a clause of type (d) and not of type (d+) has selected

equations (which are the only selected literals). Therefore, no inference other than equality resolution (Eq) (in
particular no resolution) is possible into such a clause.

R(d, _): because of the definition of sel2 also, no resolution of a clause containing an equation into another clause
is possible.

R(t, g+) returns a clause of type (sp) or a clause of type (g+) smaller than both premises when the premise (g+)
has no negative splitting literal and one negative literal P1(s1) selected by sel2, i.e. when s1 = f (s′1, . . . , s′n). If
n > 0 or the premise (g+) has strictly more than one antecedent we obtain a clause (g+) (the tuple x1, . . . , xn

is denoted x below):

Q1(x1), . . . , Qn(xn)⇒ P1
(
f (x)

)
P1(s1), . . . , Pm(sm)⇒ [ q ]

R
Q1(s

′
1), . . . , Qn(s

′
n), P2(s2), . . . , Pm(sm)⇒ [ q ]

Note that in this case, by definition of (t), the measure m4 for the conclusion is at most equal to m4 for the
premise (g+).
If n = 0 (f is a constant function symbol) and m = 1, we obtain a clause (sp):

⇒ P1(f ) P1(s1)⇒ [ q ]
R⇒ [ q ]
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R(t, g+) returns a clause of type (gf) when no literal is selected by sel2 in the premise (g+) (note that it implies that
(g+) has no negative splitting literal). In this case, because of the eager application of ε-splitting, the premise
(g+) contains only one variable x.

Q1(x1), . . . , Qn(xn)⇒ P1
(
f (x)

)
P1(x), . . . , Pm(x)⇒ [ q ]

R
Q1(x1), . . . , Qn(xn), P1(f (x)), . . . , Pm(f (x))⇒ [ q ]

R(t, gf) returns a clause of type (gf) when the premise of type (gf) has at least one literal selected (the tuples of
variables x0, . . . , xn and y1, . . . , yn are respectively denoted x and y below):

Q1(x1), . . . , Qn(xn)⇒ P ′1
(
f (x)

)

P1(yi1), . . . , Pk(yik ), P
′
1

(
f (y)

)
, . . . , P ′m

(
f (y)

)⇒ [ q ]
R

P1(yi1), . . . , Pk(yik ), Q1(y1), . . . , Qn(yn), P
′
2

(
f (y)

)
, . . . , P ′m

(
f (y)

)⇒ [ q ]

The cases where no literal is selected by sel2 in the premise of type (gf) is included in the case R(t, g+), with

(g+) unselected, treated above.
R(d+, g+) returns a clause of type (sp) or a clause of type (g+) smaller than both premises:

Q1(s1), . . . , Qn(sn)⇒ P1(s) P1(t1), . . . , Pm(tm)⇒ [ q ]
R

Q1(s1θ), . . . , Qn(snθ), P2(t2θ), . . . , Pm(tmθ)⇒ [ q ]
where θ = mgu(s, t1). When n = 0 and m = 1, we obtain a clause of type (sp) or the empty clause.

R(d+, gf) returns a clause of type (sp) or (g+) smaller than both premises: this case is included in the above case
R(d+, g+).

R(sp, d+) returns a clause of type (d+) smaller than both premises.

⇒ q1 q1, . . . , qk, Q1(s1), . . . , Qn(sn)⇒ Q(s)
R

q2, . . . , qk, Q1(s1), . . . , Qn(sn)⇒ Q(s)

R(sp, g+) returns either a clause of type (sp) or a clause of type (g+) smaller than both premises.

⇒ q1 q1, [ q2, . . . , qk, P1(s1), . . . , Pm(sm) ] ⇒ [ q ]
R[ q2, . . . , qk, P1(s1), . . . , Pm(sm) ] ⇒ [ q ]

Note that the conclusion, when not of type (sp), is indeed smaller than the premise (sp) because m1(sp) = ∞.

εsplit(t) is not possible by definition.
εsplit(d+): such a step pf ε-splitting replaces a clause of type (d+) by a clause of type (gf) and a clause of type (d+)

smaller than the premise (B is an ε-block):

q1, . . . , qk, B, Q1(s1), . . . , Qn(sn)⇒ Q(s)
εsplit

B ⇒ qB q1, . . . , qk, qB, Q1(s1), . . . , Qn(sn)⇒ Q(s)

εsplit(g+): this ε-splitting replaces a clause of type (g+) by a clause of type (gf) and a clause of type (g+) smaller
than the premise (B is an ε-block):

q1, . . . , qk, B, P1(s1), . . . , Pm(sm)⇒ [ q ]
εsplit

B ⇒ qB q1, . . . , qk, qB, P1(s1), . . . , Pm(sm)⇒ [ q ]
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D. Proof of Proposition 22 (TACE) and Fact 24

Let us detail in this Appendix the case analysis described in Fig. 7, for the proof of Fact 24 and Proposition 22.
Eq(d): equality resolution (Eq) is possible in the equations in clauses of type (d) (each of these equations is

selected) and every such application of (Eq) return a clause of the following type (d′) with smaller m2.

Q1(x1), . . . , Qn(xn), u1 = v1, . . . , uk = vk ⇒ Q(x)[[θ ]] (d′)

where n, k ≥ 0, x1, . . . , xn, x are distinct variables, u1, v1, . . . , uk, vk ∈ T
(
F, {x1, . . . , xn, x}

)
, and Q >

Q1, . . . , Qn. The type (d′) with k = 0 (no equation) is just a subcase of (d+). Recall that the clauses obtained
from clauses of type (d) which contain no more equations have type (d+).

Eq(d′) also returns a clause of type (d′) smaller than the premise.
RP(eq, eq) returns a clause of type (eq) which is deleted after simplification by rewriting by R, because by

hypothesis, the equational theory of A is presented as a convergent TRS (hence all critical pairs can be joined).
RP(eq, t) returns a clause expanded into type (l+), smaller than both premises.

⇒ f (�1, . . . , �n)→ r Q1(x1), . . . , Qn(xn)⇒ Q
(
f (x1, . . . , xn)

R
Q1(x1), . . . , Qn(xn)⇒ Q(x)[[x1 = �1, . . . , xn = �n, x = r]]

Note that no further applications of RP or LP other than resolution is possible into such a clause, because of
the basic strategy.

LP(eq, t) is not possible with the basic strategy.
LP(eq, d) and LP(eq, d′) (into the equations selected by sel2) return constrained clauses of type (d′) smaller than

both premises. Indeed, every such step suppresses some symbols in the equations hence makes the measure
m3 decrease.
Therefore, the calculus saturates on clauses of type (d) with equations, and terminates either with clauses of
type (d+) (without equations) or with clauses of type (d′) with equations which cannot be involved in any
paramodulation step. Note that the clauses of type (d+) can only be involved in resolution steps.

LP(eq, g+) return a clause of type (g+) smaller than both premises.
R(_, t): no resolution step is possible into a clause of type (t) because of the maximality condition (v) in LP (see

the proof of Proposition 17).
R(t, l+) returns a clause of type (l+) smaller than both premises, when one non-splitting literal of the second

premise (l+) is selected, i.e. when �1 = f (�′1, . . . , �′n).

Q1(x1), . . . , Qn(xn)⇒ Q′1
(
f (x1, . . . , xn)

)
Q′1(�1), . . . , Q′m(�m)⇒ Q′(r)

R
Q1(�

′
1), . . . , Qn(�

′
n), Q

′
2(�2), . . . , Q′m(�m)⇒ Q′(r)

Note that with the definition of (t), the multiset of test predicates in (l+) is unchanged or reduced during this
resolution step.

R(t, l+) returns a clause of type (df) when the premise (l+) has no selected negative literals. Indeed, this latter
clause must have the form P1(x), . . . , Pm(x)⇒ P(x) where x is a variable, otherwise, it would be split by
ε-splitting. Moreover, P is distinct from P1, . . . , Pm, otherwise the clause would be a tautology.

Q1(x1), . . . , Qn(xn)⇒ P1
(
f (x)

)
P1(x), . . . , Pm(x)⇒ P(x)

R
Q1(x1), . . . , Qn(xn), P2

(
f (x)

)
, . . . , Pm

(
f (x)

)⇒ P
(
f (x)

)

R(t, d+) returns a clause of type (d+) smaller than both premises when a negative literal P1(s1) is selected in the
premise (d+) i.e. when s1 = f (s′1, . . . , s′n) (the tuple x1, . . . , xn is denoted x below):

Q1(x1), . . . , Qn(xn)⇒ P1
(
f (x)

)
P1(s1), . . . , Pm(sm)⇒ P ∗(s)

R
Q1(s

′
1), . . . , Qn(s

′
n), P2(s2), . . . , Pm(sm)⇒ P ∗(s)

Note that with the restriction in the definition of (t) concerning the test predicates, the multiset of test predicates
in (d+) is unchanged or reduced during this resolution step.
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R(t, d+) is not possible when no negative literal is selected in the second premise (d+), by definition of type (d+)
and because of the ordering strategy.

R(t, df) returns a clause of type (df) when the premise (df) has at least one negative literal selected (the tuples of
variables x1, . . . , xn and y1, . . . , yn are respectively denoted x and y below):

Q1(x1), . . . , Qn(xn)⇒ Q′1
(
f (x)

)

P1(yi1), . . . , Pk(yik ), Q
′
1

(
f (y)

)
, . . . , Q′m

(
f (y)

)⇒ Q(r)
R

P1(yi1), . . . , Pk(yik ), Q1(y1), . . . , Qn(yn), Q
′
2

(
f (y)

)
, . . . , Q′m

(
f (y)

)⇒ Q(r)

where r is either yi or f (y).
R(t, df) returns a clause of type (df) when no negative literal is selected in the second premise (df): this case is

similar to R(t, d+) when (d+) is not selected, which has been treated above.
R(t, g+) returns a clause of type (g+) smaller than both premises when a negative literal P1(s1) in the premise

(g+) is selected (i.e. when s1 = f (s′1, . . . , s′n)):

Q1(x1), . . . , Qn(xn)⇒ P1
(
f (x)

)
P1(s1), . . . , Pm(sm)⇒ [q]

R
Q1(s

′
1), . . . , Qn(s

′
n), P2(s2), . . . , Pm(sm)⇒ [q]

R(t, g+) returns a clause of type (gf) when no negative literal is selected in the premise (g+). In this case, by
ε-splitting, the premise (g+) contains only one variable x:

Q1(x1), . . . , Qn(xn)⇒ P1
(
f (x)

)
P1(x), . . . , Pm(x)⇒ [q]

R
Q1(x1), . . . , Qn(xn), P2(f (x)), . . . , Pm(f (x))⇒ [q]

R(t, gf) returns a clause of type (gf) when the premise (gf) has at least one literal selected:

Q1(x1), . . . , Qn(xn)⇒ Q′1
(
f (x)

)

P1(yi1), . . . , Pk(yik ), Q
′
1

(
f (y)

)
, . . . , Q′m

(
f (y)

)⇒ [q]
R

P1(yi1), . . . , Pk(yik ), Q1(y1), . . . , Qn(yn), Q
′
2

(
f (y)

)
, . . . , Q′m

(
f (y)

)⇒ [q]
R(t, gf) returns a clause of type (gf) when the premise (gf) has no negative literal selected. This is a subcase of the

above step R(t, g+) with (g+) unselected.
R(l+, _) is not possible. Indeed, let us consider a clause (l+) not in (d+) and without selected negative literals. It

must have the (expanded) form Q1(x1), . . . , Qn(xn)⇒ Q(r) where x1, . . . , xn are variables and r is either
a ground term or a variable. If r is ground, the clause would be split by ε-splitting. If r is a variable, we must
have x1 = · · · = xn = r (because of the ε-splitting) and the resolution is not possible because the head of the
clause cannot be strictly maximal, contradicting the condition (iii) in LP.

R(d+, l+) returns a clause of type (d+) smaller than both premises.

P1(x1), . . . , Pm(xm)⇒ Q∗1(s) Q∗1(�1), Q2(�2), . . . , Qn(�n)⇒ Q∗1(r)
R

P1(x1θ), . . . , Pn(xnθ), Q2(�2θ), . . . , Qn(�mθ)⇒ Q∗1(rθ)

where θ = mgu(s, �1). Note that all the terms in the antecedents of the premise (d+) are variables. Otherwise,
some literal in this clause would be selected.
By definition of (l+), Q2, . . . , Qn are not test predicates and for every Pi (i ≤ m) which is a test predicate
Q∗1 � Pi . Hence m4 is strictly smaller for the conclusion than for the premise (l+).
Moreover, m5 is strictly smaller for the conclusion than for the first premise (d+). We have the following cases:
If s is a variable, then, by splitting, we have x1 = · · · ,= xn = s. This would make the application of LP
impossible, because of the ordering condition (iii) of this rule, and definition of the ordering �lpo.
Hence, we assume that s is not a variable. Moreover, all the variables x1, . . . , xn occur in s, otherwise, the
clause (d+) would be split.
If r is a ground term, or if r is a variable which does not occur in �1, then rθ = r .
If r is a variable which occurs in �1, then r /= �1, otherwise the premise (l+) is a tautology. We can apply
Lemma 23 to s, �1 (which is linear by hypothesis) and r , and if follows that m5(s) > m5(rθ).



F. Jacquemard et al. / Journal of Logic and Algebraic Programming 75 (2008) 182–208 207

R(d+, d+) and R(d+, df) both return a clause of type (d+) smaller than both premises.

Q1(x1), . . . , Qn(xn)⇒ P1(s) P1(t1), . . . , Pm(tm)⇒ P(t)
R

Q1(x1θ), . . . , Qn(xnθ), P2(t2θ), . . . , Pm(tmθ)⇒ P(tθ)

where θ = mgu(s, t1).
R(d+, g+) returns a clause of type (g+) smaller than both premises:

Q1(s1), . . . , Qn(sn)⇒ P1(s) P1(t1), . . . , Pm(tm)⇒ [q]
R

Q1(s1θ), . . . , Qn(snθ), P2(t2θ), . . . , Pm(tmθ)⇒ [q]
where θ = mgu(s, t1) and P1 > Q1, . . . , Qn.

R(d+, gf) is included in R(d+, g+).
R(df, l+), R(df, d+), R(df, df), and R(df, g+): there are two cases of clause (df) without selected negative

literal. Either such a clause has type (t), and the resolution steps have been treated above, or it has the
form Q1(x), . . . , Qn(x)⇒ Q(x), after ε-splitting. In the latter case, Q must be a test predicate. Indeed,
otherwise, Q1, . . . , Qn, Q all belong to P0 and it contradicts the condition (iii) of LP. Hence, the above clause
has type (d+) and the resolution cases are subcases of R(d+, l+), R(d+, d+), R(d+, df), and R(d+, g+)

respectively.
R(sp, l+) returns a clause of type (l+) smaller than both premises (note that m1(sp) = ∞).

⇒ q1 q1, . . . , qk, Q1(�1), . . . , Qn(�n)⇒ Q(r)
R

q2, . . . , qk, Q1(�1), . . . , Qn(�n)⇒ Q(r)

R(sp, d+) returns a clause of type (d+) smaller than both premises.

⇒ q1 q1, . . . , qk, Q1(s1), . . . , Qn(sn)⇒ Q(s)
R

q2, . . . , qk, Q1(s1), . . . , Qn(sn)⇒ Q(s)

R(sp, g+) returns a clause of type (sp) or a clause of type (g+) smaller than both premises.

⇒ q1 q1, [ q2, . . . , qk, P1(s1), . . . , Pm(sm) ] ⇒ [ q ]
R[ q2, . . . , qk, P1(s1), . . . , Pm(sm) ] ⇒ [ q ]

Note that the conclusion is indeed smaller than the premise (sp) because m1(sp) = ∞.
εsplit(l+): the ε-splitting of such clauses returns a clause of type (gf) and a clause of type (l+) smaller than the

premise (B is an ε-block):

q1, . . . , qk, B, Q1(�1), . . . , Qn(�n)⇒ Q(r)
εsplit

B ⇒ qB q1, . . . , qk, qB, Q1(�1), . . . , Qn(�n)⇒ Q(r)

εsplit(d+): the ε-splitting of a clause of type (d+) returns a clause of type (gf) and a clause of type (d+) smaller
than the premise (B is an ε-block):

q1, . . . , qk, B, Q1(s1), . . . , Qn(sn)⇒ Q(s)
εsplit

B ⇒ qB q1, . . . , qk, qB, Q1(s1), . . . , Qn(sn)⇒ Q(s)

εsplit(g+): the ε-splitting of a clause of type (g+) returns a clause of type (gf) and a clause of type (g+) smaller
than the premise (B is an ε-block):

q1, . . . , qk, B, P1(s1), . . . , Pm(sm)⇒ [ q ]
εsplit

B ⇒ qB q1, . . . , qk, qB, P1(s1), . . . , Pm(sm)⇒ [ q ]
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