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Abstract The paper discusses an experience in using
Unified Modelling Language and two complementary ver-
ification tools in the framework of SAFECAST, a project
on secured group communication systems design. AVISPA
enabled detecting and fixing security flaws. The TURTLE
toolkit enabled saving development time by eliminating
design solutions with inappropriate temporal parameters.
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1 Introduction

Secured group communication systems, or SGC for short,
implement group management functions and communication

P. de Saqui-Sannes - T. Villemur ()
CNRS; LAAS, 7 avenue du colonel Roche,
31077 Toulouse, France

e-mail: villemur @laas.fr

P. de Saqui-Sannes - T. Villemur
Université de Toulouse; UPS, INSA, INP, ISAE; LAAS,
31077 Toulouse, France

B. Fontan

THALES Research and Technology France,
Campus Polytechnique, 1 Avenue Augustin Fresnel,
91767 Palaiseau Cedex, France

S. Mota
ITESM, Campus Toluca, Eduardo Monroy Cardenas #2000,
San Antonio Buenavista, Toluca, Mexico

M. S. Bouassida
CNRS, Laboratoire Heudiasyc UMR 6599, Compiégne, France

N. Chridi - I. Chrisment - L. Vigneron
LORIA, University of Nancy, Campus Scientifique, BP 239,
54506 Vandoeuvre-lés-Nancy Cedex, France

services. The complexity level reached by SGCs has stim-
ulated research work on dedicated modelling and formal
verification techniques. The Unified Modelling Language
(UML) enables system formalization and opens new ave-
nues for formal verification of SGC models against security
flaws and timing errors.

The paper shares an experience in joint application of
UML and formal verification tools to SGC design. The SGC
is modelled using an extended UML that contains sufficient
information to derive two formal models in HLPSL (High
Level Protocol Specification Language [1]) and TURTLE
(Timed UML and RT-LOTOS Environment [2]), respectively.
The AVISPA [1] tool uses the Dolev-Yao intruder model [3]
to detect security flaws. The TURTLE toolkit, or TTool for
short,! checks TURTLE models against temporal require-
ments. The SGC protocol designed in the framework of
SAFECAST project [4] serves as running example through-
out the paper.

The paper is organized as follows. Section 2 defines a
UML method that captures requirements using SysML
requirement diagrams, and extends UML to achieve use-case
driven analysis and object-oriented design. Section 3 intro-
duces requirement, analysis and design patterns that apply
to a broad variety of SGCs. Section 4 presents the UML
model of the SAFECAST SGC. The latter is hierarchically
organized, and consequently members may be upgraded or
downgraded. Section 5 addresses the Upgrade service and
discusses the benefits of using two complementary verifica-
tion tools (AVISPA and TURTLE). Section 6 surveys related
work. Section 7 concludes the paper.

! http://labsoc.comelec.enst.fr/turtle/ttool.html.



2 UML method

The UML standard defines a notation, not a method. The
paper promotes the use of verification-centric methods that
enable early detection of design errors. The purpose is not to
cover the entire design trajectory from requirement capture
to maintenance, but to emphasize on the early stages of that
trajectory.

2.1 Overview

The OMG-based UML does not provide any diagram to cap-
ture requirements. The method depicted in Fig. 1 imports
SysML requirement diagrams. In SysML, requirements
remain informal, which hampers formal checking of design
models against user or system requirements. The solution
proposed for SGC design is to include logic formulas and
chronograms into requirement diagrams in order to formal-
ize security and temporal requirements, respectively.

Use-case driven analysis enables to specify the system
by its boundary, the set of actors it interacts with, and the
function or services it is expected to provide. Use-cases are
documented by scenarios expressed in terms of sequence dia-
grams. Analysis diagrams contain annotations that contribute
to achieve security and temporal requirement traceability.

Object-oriented design enables to model the system’s
architecture. An active class has a behaviour described by a
state-machine which contains security and real-time informa-
tion. The UML model gives sufficient information to derive
HLPSL and TURTLE codes, and therefore to cater the
AVISPA and TTool, respectively.

2.2 Security-oriented verification with AVISPA

The AVISPA [1] tool checks Internet security-sensitive proto-
cols against security flaws. AVISPA accepts a problem spec-
ification and a property specification. Both are expressed in
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Fig. 1 A UML method including formal verification

HLPSL, which describes each participant by a basic role and
composes roles to represent scenarios. A HLPSL specifica-
tion is converted to an intermediate form that is accepted
by all back-ends of AVISPA. The Constraint-Logic-based
Attack Searcher (CL-AtSe) backend verifies security proper-
ties, such as secrecy, authentication, fairness, and non-repudi-
ation. Security properties may be expressed as linear logical
formulas or algebraic properties. Rewriting and constraint
solving techniques enable attack detection.

2.3 Temporal verification with TTool

TURTLE belongs to the family of real-time UML profiles
that bridge the gap between the UML and formal methods
worlds. The TURTLE toolkit offers a user-friendly interface
to formal verification tools and supports a verification-cen-
tric method for distributed real-time system design. Formal
code generators for Real-Time LOTOS (RTL), Construction
and Analysis of Distributed Processes (CADP) and UPPAAL
allow one to access verification techniques such as timed
reachability analysis, transition system minimization and
model checking of logic formulas. A Java code generator
enables rapid prototyping of systems whose model includes
component and deployment diagrams in addition to the req-
uirement capture, analysis and design ones.

3 Patterns for SGCs

The benefits of using patterns have regularly been acknowl-
edged in the literature. This section introduces patterns dedi-
cated to a broad variety of SGCs, including situations where
groups are hierarchically organized. The patterns neverthe-
less focus on two major functions: security algorithms that
use keys and group management.

3.1 Requirement capture pattern

The requirement diagram pattern depicted in Fig. 2 catego-
rizes requirements in two groups (see the two <<derive-
Reqt>> links in the upper part of the figure). The term
“general properties” denotes a set of properties that almost
of systems should satisfy. Other properties are specific to the
studied system. Figure 2 focuses on security and temporal
requirements. For space reasons, blocks whose name ends
with an “s” (e.g. SecurityRequiments) are not refined.

3.2 Analysis pattern

Secured group communications commonly use security keys.
The pattern in Fig. 3 identifies key creation, distribution and
renewal services.
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SGCs also manage groups. The pattern in Fig. 4 presents
services that allow one person to join a group (Join), to leave
a group upon request (Leave), to leave a group after an exclu-
sion (Exclude), and to reenter the group (Reinstal).

When the group is hierarchically organized, one member
moves up and down in the hierarchy using the Upgrade and
Downgrade services, respectively.

Fig. 5 Architectural pattern

3.3 Design pattern

It is common practice in protocol design to define a three-
layer architecture where the protocol entities in the central
layer rely on some pre-existing communication service to
render in turn a value-added service to their upper users. The
pattern in Fig. 5 extends that principle to SGCs and splits
the protocol layer into two sub-layers. GMM and GCKM
respectively implement group management and group com-
munication functions.

4 SAFECAST system modelling
4.1 The SAFECAST system

The secured group communication protocol designed in the
framework of SAFECAST project manages hierarchically
organized group of policemen, firemen and military men that
work together on the same operation theatre. Each group
member owns a mobile phone, and talks to others using
the PMR technology (Private Mobile Radio). The protocol
secures communication and manages newly created groups
of Humans in a way that preserves the original hierarchies
of the original groups of policemen, firemen and military
men. The groups are not only hierarchical but also dynamic,
since receivers may join or leave groups at any time. Last but
not least, security requirements may not be dissociated from
temporal ones.

4.2 Security and temporal requirements

Security requirements essentially address integrity and con-
fidentiality issues (Table 1). On the other hand, temporal
requirements mainly relate to maximum response delays.
4.3 Key management services

The use-case diagram in Fig. 6 identifies several functions

that achieve communication key renewal. RenewHierarchi-
calKey applies to a group whose members are hierarchically
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Fig. 6 Security mechanism management services

linked. The use-case includes two use-cases named Distrib-
uteHierarchicalKey (DHK) and DistributePlaneKey (DPK).
DHK allows one chief to send his/her key to one group mem-
ber that is responsible for his/her hierarchical level. DPK
allows each responsible member to send a session key to all
members belonging to its hierarchical level. DHK and DPK
both use DistributeKey.

The keys have to be renewed on a regular basis. The dia-
gram in Fig. 6 thus contains the RenewBasePeriodKey use-
cases.

4.4 Group management services

The use-case diagram in Fig. 7 identifies a set of services that
enable changes inside one group.

e Join and Leave allow one member to enter and exit a
group, respectively.

e Upgrade and Downgrade services. A member has pro-
motion when he/she moves from his/her current class i
to an upper class ;.

<<includes>" ¢

Group

Fig. 7 Services for group dynamics

e Reconnect allows a member who formerly lost connec-

tion to connect again.

ExcludeGroupMember manages member exclusion.
e Reinstal may be invoked to reinstall a previously excluded

member.

All services but ExcludeGroupMember use the MemberCon-
nectionMgmt subservice, which manages group member con-

nections and disconnections.

The next section focuses on Upgrade, a service for which
we identified security flaws and temporal violations.

5 Upgrade service

5.1 Overview

The SAFECAST system manages a set of dynamic and hier-
archical groups. The group chief is the one who decides
which actions may be performed by his/her group members.
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Moving up in the hierarchy using the Upgrade service is an
example of such actions.

5.2 Requirement capture

The Upgrade service enables a member endowed with
responsibilities to leave his/her group (Fig. 8) and to be
replaced by another member um who occupied a lower posi-
tion in the hierarchy. The group’s administrator (not neces-
sarily the group’s chief) asks um to move up in the hierarchy.

5.3 Use-case driven analysis

The Upgrade protocol works as follows. Member um issues
a move-up request—including his/her Identity Certificate
CI—to the chief cm. Depending on the validity of the attri-
butes of um’s Identity certificate, cm decides to accept the
Upgrade request or not. In case of acceptance, um receives
the key of the leader’s class (TEK) and a new group mem-
bership certificate (CAp), both encrypted under his or her
public key pk,,,,. After successful completion, the Upgrade
service brings the upgraded member up to an upper hierar-
chical level (not necessarily the closest upper level). If the
upgrade request is refused, a message informs um, which
therefore stays at the same hierarchical level. The sequence
diagram in Fig. 9 depicts that scenario. For the sake of clarity,
only the main attributes of the certificates are represented.

5.4 Design

The design model (Fig. 10) of the SAFECAST system relies
on the architectural pattern that is depicted in Fig. 5.

Figure 11 depicts a fragment of the state machine used
to implement the Upgrade service. Of particular interest are
the fempo primitive and the security requirement starting with
secret.

The above state machine is one among the design model
elements from which formal code is derived to cater the
AVISPA and TURTLE toolkits.
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5.5 Security flaws detection using AVISPA

A security flaw was found in the scenario attack described
in Fig. 12, step (1). It conforms to the “Man in the Middle”
paradigm. It results from playing a single session between
the um and cm members. The intruder i starts executing the
protocol with um. um sends his/her identity certificate. The



(1) um > cm : SeqNumy,,, {Hashl }pk'](um), CI (um)

Hashl is the digest of the message SeqNumm,
(2) cm = um: SeqNumem, {TEK;, CAp(um) }pKum, {HashZ}pk'l(cm),
CI (um)

Hash? is the digest of the message SeqNumcm, {TEK;, CAp(um) }pKum

Fig. 12 AVISPA code derived from the model

certificate is divided into an encrypted part and a part in
clear. Therefore, the intruder can intercept the message and
get the public key of um. Then, the intruder sends the inter-
cepted message to the chief cm who gets the public key pk
and uses it to encrypt the group key TEK; as well as the
new group membership certificate CAp. Finally, the intruder
uses the encrypting key to create a message similar to the one
awaited by um. Also, it forces the participant um to take as
group key any key not coming from cm, but composed by the
intruder. None of the members is able to directly communi-
cate with the other member, but the intruder is able to decrypt
any message sent by any of them. Moreover, the intruder has
the ability to become a communication relay between the two
members.

The attack was fixed by adding a signature of the message
(Fig. 12, step (2)), using the private key of cm. Thus, um can
authenticate the source of the message and extract the valid
class key TEK ;. A sequence number is introduced in each
message in order to avoid replay attacks.

AVISPA enabled detection of other non trivial flaws, in
particular confidentiality violation. Dealing with reinstalla-
tion of a former member, AVISPA demonstrates that an
intruder was able to access to information private to the
group. The Reinstallation sub-protocol was fixed in [5].

5.6 Temporal verification using TURTLE

The reader may ask himself or herself whether the fixed
version of the Upgrade protocol verified by AVISPA meets
its expected deadlines or not. Formal verification using the
TURTLE toolkit enabled comparing two configurations with
a low-rate PMR at 6 kb/s with a 3 km range and an average-
rate PMR at 100 kb/s value with a 100 km range, respectively.

Formal verification identified four temporal requirements
met for an average-rate PMR (Table 2), but unmet for a low-
rate PMR. A concrete benefit of formal verification using
the TURTLE toolkit was to save development time: it was
decided to not develop the SAFECAST SGC over a low-rate
PMR.

For the middle-rate PMR network, all the services verified
using TURTLE meet the requirements of middle-rate PMR
network, but the Downgrade and Reinstall services. Duration
of 490 ms was computed for the two services, which exceeds
the 350 ms limit required for the “accessing to multimedia
groups.” In order not to sacrifice the entire security proce-
dure, it was decided to relax the “accessing to multimedia
groups” requirement to 500 ms.

6 Related work

6.1 Formal automated security verification of group
protocols

The benefits of applying formal verification to security pro-
tocols have first been acknowledged for two- and three-party
protocols. Nowadays, group protocols raise much more com-
plex security problems [6—9] since they involve an unbounded
number of participants and consider some complicated secu-
rity properties. Significant attacks on such protocols have
been found using automated techniques.

Taghdir and Jackson [8] modelled the multicast group key
management protocol proposed by Tanaka and Sato [10].
They exhibited several properties not satisfied by the proto-
col and proposed an “improved” protocol whose model did
not include any active attacker. Steel and Bundy [11] iden-
tified serious attacks in the so-called “improved” protocol.
They used CORAL, a tool also used to discover attacks on
the Asokan-Ginzboorg and Iolus [12] protocols.

Work on group protocol verification systematically raises
an infinite search space problem since even one legal execu-
tion of the protocol requires an unlimited number of steps.
Meadows and Syverson [13] extended the NRL protocol ana-
lyzer in order to tackle the GDOI’s protocols [7].

Several tools primarily designed for attack search have
been extended to handle group protocols. Examples include
algebraic primitives (e.g. XOR) and the exponentiation often

Table 2 Temporal requirements
and computed time for the
Upgrade service

Requirement Limit duration Upgrade protocol on average-rate network
(ms) (execution time 331 ms)

Detecting an integrity violation 10,000 Widely validated

Detecting a replay 10,000 Widely validated

Accessing to a multimedia group 350 Shortly validated

Accessing to textual message groups 60,000 Very widely validated




encountered in extensions of key agreement based upon Dif-
fie-Hellman. CL-AtSe, one of the four back-ends used in
AVISPA [1], is an example addressed in this paper.

Tools for protocol falsification (searching for attacks) have
been extended to handle group protocols and to cope with
additional requirements, such as algebraic primitives and
exponentiation (regularly encountered in extensions of Dif-
fie-Hellman-based key agreement). These tools include
CL-AtSe. Modular by its extensibility to new classes of pro-
tocols or requirements, and powerful by the number of pro-
tocol sessions that it can deal with, the tool has been applied
to a large number of Internet security protocols.

Other tools extensions are due to the fact that most group
protocols include algebraic properties (xor, exponentiation).
To our knowledge, CL-AtSe is the only tool for protocol anal-
ysis that simultaneously offers complete unification algo-
rithms for xor and exponentiation and does not limit either
terms or intruder operations.

Apart from algebraic requirements, group protocols guar-
antee security properties that do not limit to secrecy or authen-
tication properties. Unlike tools that exclusively verify these
two properties, CL-AtSe can verify any state-based secu-
rity property. Besides secrecy and authentication, it indeed
verifies additional properties such as fairness and non-repu-
diation.

6.2 Temporal requirements and verification of SGC systems

Research papers that identified security flaws in SGC sys-
tems mostly address security functions without taking tem-
poral constraints into account. Corin et al. [14] demonstrated
that protocols with secret exchanges that had been proven
robust and secure by time-independent analysis may be no
longer robust as soon as time is explicitly taken into account.

With the exponential growth of wireless networks [15],
ad-hoc networks [16,17] and peer to peer technology, SGC
have become an extremely important and active research
area. The complexity in these SGC stems from the addition of
security and temporal requirement to the dynamic evolution
of the groups.

Isis [18,19], RMP [20], Transis [21], Horus/Ensemble
[19] and Totem [22] were the first communication systems
developed with distributed group management in mind. They
offer programmers a flexible group communication model
and group protocols stacks. Auto-configuration was intro-
duced in Renesse et al. [23]. Other improvements include
auto-adaptation, integrated security, real-time and fault-tol-
erance mechanisms. Bimodal-Multicast (Gossip-based pro-
tocols) [18] and Springlass systems (Ensemble follow-up)
include new reliability, authentication and delivery services
to improve scalability and stability of secure group commu-
nication systems. Evaluation and failure identification were
proposed for these approaches, based on formal analysis.

Group communication systems with security services
were introduced at the network level by the Enclave pro-
ject [24] and at the middleware level by the Cactus envi-
ronment [25]. Another avenue was opened by policy-based
systems. For instance, the Antigone system [26] uses policies
to address membership capabilities (e.g. control access) and
security requirements (e.g. data confidentiality, integrity and
authentication).

Other recently published work simultaneously addresses
temporal requirements and security constraints. Spread [22]
is a group communication platform which offers an inte-
grated and secure architecture for distributed client—server
systems. Group communications are enhanced with security
services without sacrificing the robustness and performance
of the system. Spread’s layered architecture is based on ded-
icated servers implementing security services. Almeida [27]
proposes a set of group communication protocols to satisfy
real-time and dependability requirements, despite of some
difficulties introduced by the groups’ dynamicity. Three dif-
ferent Quality of Service properties are guaranteed: timeli-
ness, order and agreement. Gutierrez-Nolasco et al. [28] also
explore two adaptability issues—namely security and syn-
chrony of group communications systems (GCS)—to main-
tain a consistent view of dynamic groups.

6.3 UML modelling of SGC systems

Unified Modelling Language standards and extensions are
of great help for proposing methodological approaches that
embed temporal and security requirements during the system
design processes.

In [29], Jiirjens et al. apply a UML profile (UMLsec)
to a mobile communication system. The authors use analy-
sis, design and deployment diagrams. The system is verified
against security flaws. In the paper, we propose a method cen-
tred on requirement capture, analysis and design. The deploy-
ment phase is not addressed. We map UML models into their
corresponding formal representations for automated verifica-
tion using TURTLE and AVISPA. The result is that we check
the security and temporal properties of the model correspond-
ingly. This joint use of two formal verification tools enabled
eliminating design solutions that passed security tests but did
not meet the deadlines.

Like Jiirjens et al. [29], Morimoto et al. [30], Abie et al.
[31] and Woodside et al. [32] extend UML with security-
centric constructs. Morimoto et al. [30] promotes the use of
patterns. In practice they detail an “authentication pattern”
and its translation to Z, a formal language which enables for-
mal verification. The patterns proposed in this paper are more
general and take group management functions into account.

Woodside et al. [32] discusses performances issues and
therefore opens a new avenue for security modelling in UML.
To evaluate performance and scalability, the SAFECAST



project used an approach based on simulation with the NS?
tool.

7 Conclusions

Secure group communication systems capture complex
design problems in terms of group management, security
flaws and temporal violations detection. Some SGC, in par-
ticular the SAFECAST system discussed in the paper, further
manage hierarchically organized groups. The design of such
systems therefore deserves research investigations in rigor-
ous development methodologies based on modelling tech-
niques and formal verification tools.

The paper proposes a UML method which covers the
requirement capture, analysis and design steps of the design
trajectory of SGCs. The requirement, analysis and design
steps use an annotated UML to take security and temporal
requirements into account. Formal codes amenable to the
AVISPA and TURTLE toolkits are derived from the design
models in UML. They enable early checking of design mod-
els against security and temporal requirements. AVISPA and
TURTLE remain separate and so each tool explores the sys-
tem’s state space separately. Work has still to be done for
discovering problems where security and timing cannot be
verified in sequence but in parallel.

The proposed method was applied to the SAFECAST sys-
tem. The latter was checked against security flaws and tem-
poral requirements. Several security flaws were detected with
AVISPA. The problems have been fixed and the group com-
munication protocol is now more secure. On the other hand,
the system was investigated with two PMR radios, termed
as ‘low-rate’ and ‘medium-rate’ PMR radios. The TURTLE
toolkit proved that most temporal requirements are satisfied
by the version based on the medium-rate PMR. Conversely,
the configuration using a low-rate PMR violates important
temporal requirements. It was decided to not develop it.

The approach proposed in the paper is not restricted to the
SAFECAST SGC. Indeed, we plan to apply our approach to
validate the applicability of others communication architec-
tures, such as an audio—video multicast streaming application
within ad hoc networks. This kind of applications requires
a high level of security, in addition to the real-time require-
ments, to offer the best possible quality of service, within
constrained environment.
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