
Automatic Methods

for Analyzing Non-repudiation Protocols
with an Active Intruder

Francis Klay1 and Laurent Vigneron2,�

1 France Telecom R&D, Lannion, France
francis.klay@orange-ftgroup.com

2 LORIA - Nancy Université, Vandoeuvre-lès-Nancy, France
laurent.vigneron@loria.fr

Abstract. Non-repudiation protocols have an important role in many ar-
eas where secured transactions with proofs of participation are necessary.
Formal methods are clever and without error, therefore using them for ver-
ifying such protocols is crucial. In this purpose, we show how to partially
represent non-repudiation as a combination of authentications on the Fair
Zhou-Gollmann protocol. After discussing the limitations of this method,
we define a new one, based on the handling of the knowledge of protocol
participants. This second method is general and of natural use, as it con-
sists in adding simple annotations in the protocol specification. It is very
easy to implement in tools able to handle participants knowledge. We have
implemented it in the AVISPA Tool and analyzed the Fair Zhou-Gollmann
protocol and the optimistic Cederquist-Corin-Dashti protocol, discover-
ing attacks in each. This extension of the AVISPA Tool for handling non-
repudiation opens a highway to the specification of many other properties,
without any more change in the tool itself.

Keywords: Cryptographic protocols, non-repudiation, fairness, authen-
tication, automatic analysis, AVISPA Tool.

1 Introduction

Authentication and secrecy properties of security protocols have been intensively
studied for years [23], but the interest of other properties such as non-repudiation
and fairness has been raised only in the 1990s with the explosion of Internet
services and electronic transactions.1

Non-repudiation protocols are designed for verifying that, when two parties
exchange information over a network, neither one nor the other can deny having
participated to this communication. Such a protocol must therefore generate

� This work is supported by the ANR AVOTÉ, http://www.lsv.ens-cachan.fr/

anr-avote/
1 See [1] for a detailed list of publications related to the analysis of non-repudiation

protocols.

P. Degano, J. Guttman, and F. Martinelli (Eds.): FAST 2008, LNCS 5491, pp. 192–209, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Automatic Methods for Analyzing Non-repudiation Protocols 193

evidences of participation to be used in case of a dispute. The basic tools for non-
repudiation services have been digital signatures and public key cryptography.
Indeed, a signed message is an evidence of participation and identity of the other
party [14].

The majority of the non-repudiation property analysis efforts in the literature
are manually driven though. One of the first efforts to apply formal methods
to the verification of non-repudiation protocols has been presented by Zhou
et al. in [31], where they have used SVO logic. In [25] Schneider uses process
algebra CSP to prove the correctness of a non-repudiation protocol, the well-
known Fair Zhou-Gollmann protocol. With the same goal, Bella et al. have
used the theorem prover Isabelle [4]. Schneider has defined a rank function for
encoding that in an execution trace, an event happens before another event.
The verification is done by analyzing traces in the stable failures models of CSP.
Among the automatic analysis attempts, we can cite Shmatikov and Mitchell [26]
with Murϕ, a finite state model-checker, to analyze a fair exchange and two
contract signing protocols, Kremer and Raskin [15] with a game-based model,
Armando et al. [3] using LTL for encoding resilient channels in particular, the
work of Gürgens and Rudolph [9] based on the asynchronous product automata
(APA) and the simple homomorphism verification tool (SHVT) [19], raising flaws
in three variants of the Fair Zhou-Gollmann protocol and in two other optimistic
fair non-repudiation protocols [13,29]. Wei and Heather [27] have used FDR,
with an approach similar to Schneider, for a variant of the Fair Zhou-Gollmann
protocol with timestamps.

The common point between all those works is that they use rich logics, with
a classical bad consequence for model checkers, the difficulty to consider large
protocols. For avoiding this problem, Wei and Heather [28] have used PVS [22],
but some of the proofs still had to be done by hand.

Fairness is a property that is more difficult to achieve: no party should be able
to reach a point where he has the evidence or the message he requires, without
the other party also having his required evidence. Fairness is not always required
for non-repudiation protocols, but it is usually desirable.

A variety of protocols has been proposed in the literature to solve the problem
of fair message exchange with non-repudiation. The first solutions were based on
a gradual exchange of the expected information [14]. However this simultaneous
secret exchange is troublesome for actual implementations because fairness is
based on the assumption of equal computational power for both parties, which
is very unlikely in a real world scenario. A possible solution to this problem is
the use of a trusted third party (TTP), and in fact it has been shown that this
is impossible to achieve fair exchange without a TTP [18,20]. The TTP can be
used as a delivery agent to provide simultaneous share of evidences. The Fair
Zhou-Gollmann protocol [30] is a well known example using a TTP as a delivery
agent; a significant amount of work has been done over this protocol and its
derivations [4,10,21,25,31]. However, instead of passing the complete message
through the TTP and thus creating a possible bottleneck, recent evolution of
protocols resulted in efficient, optimistic versions, in which the TTP is only

194 F. Klay and L. Vigneron

involved in case something goes wrong. Resolve and abort sub-protocols must
guarantee that every party can complete the protocol in a fair manner and
without waiting for actions of the other party.

One of these recent protocols is the optimistic Cederquist-Corin-Dashti (CCD)
non-repudiation protocol [6]. The CCD protocol has the advantage of not using
session labels, unlike many others in the literature [14,17,30,25]. A session label
typically consists of a hash of all message components. Gürgens et al. [10] have
shown a number of vulnerabilities associated to the use of session labels and, to
our knowledge, the CCD protocol is the only optimistic non-repudiation protocol
that avoids altogether the use of session labels.

This paper presents a method for automatically verifying non-repudiation
protocols in presence of an active intruder. Our method has been implemented
in the AVISPA Tool [2]2 and we illustrate it with examples. This tool, intensively
used for defining Internet security protocols and automatically analyzing their
authentication and secrecy properties, did not provide any help for considering
non-repudiation properties.

We first consider non-repudiation analysis as a combination of authentication
problems, applied to the Fair Zhou-Gollmann protocol. We show the limitations
of this representation and the difficulties for proving non-repudiation properties
using only authentications. Then, we define a method based on the analysis of
agents knowledge, permitting to handle non-repudiation and fairness properties
in a uniform framework. Our approach allows one to specify the logical prop-
erties in a natural way: they correspond to state invariants that are convincing
properties for the user. This method is easy to integrate in lazy verification
systems, such as the AVISPA Tool, and can also be integrated in any system
able to handle agents (or intruder) knowledge. This should permit, contrarily to
more complex logics like LTL, to set up abstractions more easily for considering
unbounded cases. This should also permit to get a more efficient verification
for bounded cases. We illustrate this fact with the analysis of the optimistic
Cederquist-Corin-Dashti protocol.

In this paper, the defined techniques are based on the formal semantics pre-
sented in [7,8] for the AVISPA Tool.

2 Non-repudiation Properties

Non-repudiation (NR) is a general property that is usually not clearly defined.
It is described by protocols designers as a set of required services, depending
on the protocol and the required security level. In particular, non-repudiation
properties may differ whether a trusted third party (TTP) is used or not in the
protocol.

In the following, we recall the classical model independent definitions of non-
repudiation services required by most of the existing security applications (for
e-commerce for example). All these services are defined for a message sent by an
originator agent to a recipient agent, possibly via a delivery agent, a TTP.

2 http://www.avispa-project.org

Automatic Methods for Analyzing Non-repudiation Protocols 195

Definition 1. The service of non-repudiation of origin, denoted NROB(A),
provides the recipient B with a set of evidences which ensures that the originator
A has sent the message. The evidence of origin is generated by the originator
and held by the recipient. This property protects the recipient against a dishonest
originator.

Definition 2. The service of non-repudiation of receipt, denoted NRRA(B),
provides the originator A a set of evidences which ensures that the recipient B has
received themessage.The evidence of receipt is generated by the recipient and held by
the originator. This property protects the originator against a dishonest recipient.

Definition 3. The service of non-repudiation of submission, denoted
NRSA(B), provides the originator A a set of evidences which ensures that he
has submitted the message for delivery to B. This service only applies when the
protocol uses a TTP. Evidence of submission is generated by the delivery agent,
and will be held by the originator. This property protects the originator against
a dishonest recipient.

Definition 4. Theserviceofnon-repudiationofdelivery, denotedNRDA(B),
provides the originator A a set of evidences which ensures that the recipient B has
received the message. This service only applies when the protocol uses a TTP. Evi-
dence of delivery is generated by the delivery agent, andwill be held by the originator.
This property protects the originator against a dishonest recipient.

Definition 5. A service of fairness (also called strong fairness) for a non-
repudiation protocol provides evidences that, at the end of the protocol execution,
either the originator has the evidence of receipt of the message and the recipient
has the evidence of origin of the corresponding message, or none of them has any
valuable information. This property protects the originator and the recipient.

Definition 6. A service of timeliness for a non-repudiation protocol guaran-
tees that, whatever happens during the protocol run, all participants can reach a
state that preserves fairness, in a finite time.

Note that in general, sets of evidences such as NRO, NRR, NRS and NRD
are composed with messages signed by an agent.

After this informal use of the notion of evidence, let us consider for the sequel
of this paper the following definition.

Definition 7. An evidence for an agent A and a non-repudiation property P
is a message, a part of a message, or a combination of both, received by A that
is necessary for guaranteeing property P .

We will also consider the following definition of a valid service.

Definition 8. A non-repudiation service is valid if is satisfies the correspond-
ing property.

196 F. Klay and L. Vigneron

Remark: In this paper, we consider the evidences given by the protocol designer
as valid: without intervention of an intruder, those evidences are sufficient to
guarantee the non-repudiation service; and in case of a dispute, a judge analyz-
ing them will always be able to protect honest agents. Thus, we suppose that
evidences are correctly chosen, so that a judge can use them for building proofs
protecting honest agents.

3 Non-repudiation as Authentication

It is well known that non-repudiation is a form of authentication [23]. In this
section we use the Fair Zhou-Gollmann protocol to demonstrate that properties
like NRO, NRR,. . . can be at least partially represented by authentication prop-
erties. However we show some strong limitations of this approach, motivating
the introduction of a new approach in the next section.

3.1 Running Example: The FairZG Protocol

In this section we describe the Fair Zhou-Gollmann protocol (FairZG) [31], a fair
non-repudiation protocol that uses a TTP. We have chosen this protocol as a
case study to demonstrate our analysis approach because of the existence of sig-
nificant related work [4,10,21,25]. The protocol is presented below in Alice&Bob
notation, where fNRO, fNRR, fSUB and fCON are labels used to identify the
purpose of messages.

1. A → B: fNRO.B.L.C.NRO
2. B → A: fNRR.A.L.NRR
3. A → TTP: fSUB.B.L.K.SubK
4. B ↔ TTP: fCON.A.B.L.K.ConK
5. A ↔ TTP: fCON.A.B.L.K.ConK

where A (for Alice) is the originator of the message M, B (for Bob) is the recipient
of the message M, TTP is the trusted third party, M is the message to be sent
from Alice to Bob, C is a commitment (the message M encrypted by a key K),
L is a unique session identifier (also called label), K is a symmetric key defined
by Alice, NRO is a message used for non-repudiation of origin (the message
fNRO.B.L.C signed by Alice), NRR is a message used for non-repudiation of
receipt (the message fNRR.A.L.C signed by Bob), SubK is a proof of submission
of K (the message fSUB.B.L.K signed by Alice), ConK is a confirmation of K (the
message fCON.A.B.L.K signed by the TTP).

Non-repudiation properties of origin and receipt are defined by the protocol
designers by the following sets of terms:

NROB(A) = {NRO,ConK}
NRRA(B) = {NRR,ConK}

The main idea of this FairZG protocol is to split the delivery of a message
into two parts. First a commitment C, containing the message M encrypted

Automatic Methods for Analyzing Non-repudiation Protocols 197

by a key K, is exchanged between Alice and Bob (message fNRO). Once Alice
has an evidence of commitment from Bob (message fNRR), the key K is sent
to a trusted third party (message fSUB). Once the TTP has received the key,
both Alice and Bob can retrieve the evidence ConK and the key K from the TTP
(messages fCON). This last step is represented by a double direction arrow in the
Alice&Bob notation because it is implementation specific and may be composed
by several message exchanges between the agents and the TTP. In this scenario
we assume that the network will not be down forever and both Alice and Bob
have access to the TTP’s shared repository where it stores the evidences and the
key. This means that the agents will be able to retrieve the key and evidences
from the TTP even in case of network failures.

3.2 Non-repudiation of Origin as Authentication

In our example, the FairZG protocol, non-repudiation of origin should provide
the guarantee that if Bob ownsNRO then Alice has sent M to Bob. Proposition 1
shows how this can be partially ensured with a set of authentications.

Definition 9. auth(X,Y,D) is the non injective authentication, and means agent
X authenticates agent Y on data D.

The semantics of such a predicate is standard and can be found in [16]. The next
two lemmas present standard properties of authentication.

Lemma 1 (Subterm property). Given agents A and B, and message M, if
auth(A,B,M), then for each subterm sofM, accessible by composition/decomposition
of M by both agents, auth(A,B,s) is true.

Lemma 2 (Transitivity of authentication). Given agents A, B and C, and
message M, if auth(A,B,M) and auth(B,C,M), then auth(A,C,M).

Proposition 1. Given the FairZG protocol, if auth(B,A,NRO), auth(B,TTP,
ConK) and auth(TTP,A,SubK) are valid, then the non-repudiation service of ori-
gin NROB(A) is valid.

Proof. For the two evidences of NROB(A) = {NRO,ConK}, we have:

– NRO = SigA(fNRO.B.L.{M}K): since auth(B,A,NRO) is valid, there is an
agreement between B and A on SigA(fNRO.B.L.C). From the subterm prop-
erty, this also means an agreement on {M}K, thus A has sent the {M}K that
B holds.

– ConK = SigTTP(fCON.A.B.L.K): as above auth(B,TTP,ConK) implies an
agreement on K between B and TTP. Furthermore SubK=SigA(fSUB,B, L,K),
thus auth(TTP,A,SubK) implies an agreement on K between TTP and A. By
transitivity we have an agreement on K between B and A which means that
A has sent K to TTP, that same K that B got from TTP.

198 F. Klay and L. Vigneron

As A has sent {M}K and K, it means that he has generated M and run the
protocol in order to transmit it to B.

Non-injective authentication is only required for auth(B,TTP,ConK) because
B can ask many times ConK. However since all authentications imply an agree-
ment on the unique session identifier L, this protects from authentication across
different sessions.

3.3 Non-repudiation of Receipt as Authentication

In our example, the FairZG protocol, non-repudiation of receipt should provide
the guarantee that if Alice owns NRR then Bob has received M from Alice.
Proposition 2 shows how this can be partially done with a set of authentications.

Proposition 2. Given the FairZG protocol, if auth(A,B,NRR), auth(A,TTP,
ConK) and auth(B,TTP,ConK) are valid, then the non-repudiation service of re-
ceipt NRRA(B) is valid.

Proof. For the two evidences of NRRA(B) = {NRR,ConK}, we have:

– NRR = SigB(fNRR.A.L.{M}K): a reasoning as for NRO in Proposition 1 en-
sures that B has received {M}K.

– ConK = SigTTP(fCON.A.B.L.K): auth(A,TTP,ConK) implies an agreement on
K between A and TTP. Furthermore auth(B,TTP,ConK) implies an agreement
on K between B and TTP. This means that there is an agreement on K
between A and B, thus when A holds ConK, B has received or will be able
to receive K.

The proof end is similar to the one of Proposition 1.

3.4 Limitations and Difficulties

We have just illustrated on the FairZG protocol how to represent some non-
repudiation properties using authentication. This shows that non-repudiation
can be handled by most existing protocol analyzers, as most of them can handle
authentication.

However, this only permits to partially handle non-repudiation:

1. The main problem is to apply Propositions 1 and 2 in automatic tools, since
the authentication property is usually encoded by an annotation pair (for
example “witness”/“request” in AVISPA). In such a situation we cannot
handle dishonest agents since for example with the NROB(A) service, a dis-
honest Bob could forge a fake evidences set without executing the “request”
annotation. In such a case there is no authentication failure but the service
is not valid.

More generally dishonest agents can always act so that authentications in
which they are involved fail or not, by generating wrong authentication “re-
quests”, or wrong “witnesses”. This is the reason why tools like AVISPA do

Automatic Methods for Analyzing Non-repudiation Protocols 199

not handle authentications involving the intruder. This is also why with our
representation of non-repudiation, the AVISPA tool does not find any error in
the FairZG protocol, while this is possible to prove that the protocol is not fair
when agent A is dishonest [9] (see Section 4.4 for details of this attack).
In order to avoid this kind of problems we need to prove that Bob could only
own NRO if Alice has actually sent the correct protocol messages. This may
be done as for example in [25], [27] or [10] but this is not trivial.

2. Another problem with the handling of non-repudiation as authentications
is that it is difficult to apply to optimistic non-repudiation protocols that
include sub-protocols like abort and resolve as presented in the next section.
One of the main difficulties is that such protocols are non-deterministic.

As a conclusion, proving non-repudiation with the help of authentications
does not seem to be the best way; this is why in the next section we propose
another simple and complete approach for handling non-repudiation.

4 Non-repudiation Based on Agent Knowledge

In this section, we present a new method for considering non-repudiation services
and fairness in a uniform framework: we introduce a logic permitting to describe
states invariants. This logic is a very classical one, except that we define two new
predicates, deduce and aknows that permit to consider agents knowledge in the
description of goals. The aknows predicate is also used as a protocol annotation,
with the following semantics: agent X knows (or can deduce) term t.

All our work is based on the standard formal semantics described in [7,8] for
the AVISPA Tool.

4.1 Description of Non-repudiation Properties

The main role of a non-repudiationprotocol is to give evidences of non-repudiation
to the parties involved in the protocol. To analyze this kind of protocol, one must
verify which participants have their non-repudiation evidences at the end of the
protocol execution. For example, if the originator has all its evidences for non-
repudiation of receipt, then the service of non-repudiation of receipt is guaranteed.
If the recipient has all its evidences for non-repudiation of origin, then the service
of non-repudiation of origin is guaranteed. If both parties (or none of them) have
their evidences, fairness is guaranteed. In other words, to analyze non-repudiation,
we need to verify if a set of terms is known by an agent at the end of the protocol
execution.

And for considering a large class of non-repudiation protocols, we shall not re-
strict evidences to a set of terms, but we have to consider them as a combination
of terms using standard logical connectors (conjunction, disjunction, negation).

For considering non-repudiation and fairness properties involving honest and
dishonest agents, we have defined a new predicate that permits to access the
knowledge of protocol participants. This predicate, named aknows (for agent
knows), is used in protocols specifications for annotating transitions and for
defining properties.

200 F. Klay and L. Vigneron

Definition 10 (NR X(Y)). Let A be a set of agents playing a finite number of
sessions of a protocol, T a set of terms sent in the messages of this protocol and
E the subset of terms in T that are part of the evidences of non-repudiation in
the protocol. For agents X,Y ∈ A, NR X(Y) is a logical combination of terms
t ∈ E that constitute the evidence for a service of non-repudiation NR for agent
X wrt. agent Y .

Definition 11 (aknows). Let A be a set of agents playing a finite number of ses-
sions of a protocol, P the set of processes (ie. instances of protocol roles) involved
in those sessions, and T a set of terms. The protocol annotation aknows(X, p, t)
is a predicate with X ∈ A, p ∈ P and t ∈ T , asserting that agent X, playing a
role of the protocol as process p, knows (or can deduce) the term t.

The semantics of predicate aknows(X, p, t) is that the term t can be composed
by agent X , according to its current knowledge in process p of the protocol,
whether this agent is honest or not. This composability test can be easily done
by any tool that is able to manage agents knowledge or intruder knowledge.

By abuse of notation, we may write aknows(X, p, L), for a logical formula
L combining evidences (NR X(Y) for example), considering that the predicate
aknows is an homomorphism:

aknows(X, p, L1 ∧ L2) = aknows(X, p, L1) ∧ aknows(X, p, L2)

aknows(X, p, L1 ∨ L2) = aknows(X, p, L1) ∨ aknows(X, p, L2)

aknows(X, p,¬L) = ¬aknows(X, p, L)

Definition 12 (deduce). Let A be a set of agents playing a finite number of
sessions of a protocol and T a set of terms. We define deduce(X, t), with X ∈ A
and t ∈ T , as the predicate which means that X can deduce t from its knowledge.

We will use the same abuse of notation for deduce as for aknows.
The aknows predicate is used in protocol transitions for indicating that an

agent knows an important information; it corresponds to a fact; it has the same
meaning when used in the description of a property, but also indicates that
protocol transitions have really been run.

The deduce predicate is used in properties description for indicating a de-
ducible knowledge.

As a consequence, we can assume that each aknows annotation in protocols
transitions corresponds to a valid deduce predicate on the same information;
this assumption permits to avoid bad annotations.

Definition 13 (well-formedness). The evidence NR X(Y) is well-formed if
it contains information that uniquely identifies X, Y , M . This set, held by X,
is used for proving to a judge that Y has run the protocol in a coherent way
wrt. X’s run.

Note that in this context, the interesting case to study is when X is dishonest
and has forged the set of evidences, while Y did not run the protocol (eg. has
not sent M for a service of non-repudiation of origin).

We now give the results obtained by this representation.

Automatic Methods for Analyzing Non-repudiation Protocols 201

Proposition 3. Given a non-repudiation service of B against A about a mes-
sage M with the well-formed evidence NR B(A) for processes pB and pA of B
and A respectively. If the following formulae are true at the end of process pB of
B, then the non-repudiation service is valid.

aknows(B, pB ,NR B(A)) ⇒ aknows(A, pA,M)
deduce(B,NR B(A)) ⇒ aknows(B, pB,NR B(A))

Proof. A sketch of proof is as follows: by the second implication if B is able to
deduce NR B(A) then aknows(B, pB,NR B(A)) is included in its knowledge,
since by well-formedness of NR B(A), NR B(A) and aknows(B, pB,NR B(A))
are related to the same process pB.

And again by well-formedness of NR B(A), it includes all the information
uniquely identifying M , thus the first implication implies an agreement on M
between B and A. Finally as aknows(A, pA,M) is an annotation, this means
that A has followed the protocol, thus he has done what he must do with M .

Remark: Verifying formulae given in the above Proposition is not a problem,
because a priori any theorem prover (able to consider secrecy) can compute
whatever can be deduced by an agent at a given step of the protocol, especially
concerning the deduce predicate [12].

Corollary 1. Given a non-repudiation service of origin for B against A about
message M , involving processes pB and pA of B and A respectively. IfNROB(A))
is well-formed and the following formulae are true at the end of process pB, then
the service is valid.

aknows(B, pB,NROB(A)) ⇒ aknows(A, pA,M)
deduce(B,NROB(A)) ⇒ aknows(B, pB,NROB(A))

Corollary 2. Given a non-repudiation service of receipt for A against B about
message M , involving processes pA and pB of A and B respectively. IfNRRA(B))
is well-formed and the following formulae are true at the end of process pA, then
the service is valid.

aknows(A, pA,NRRA(B)) ⇒ aknows(B, pB,M)
deduce(A,NRRA(B)) ⇒ aknows(A, pA,NRRA(B))

4.2 Description of Fairness

In the literature, authors often give different definitions of fairness for non-
repudiation protocols. In some definitions none of the parties should have more
evidences than the others at any given point in time. Others have a more flexible
definition in which none of them should have more evidences than the others at
the end of the protocol run. In many works it is also not very clear if only suc-
cessful protocol runs are taken into account, or partial protocol runs are valid
as well.

202 F. Klay and L. Vigneron

In this paper we consider the flexible definition of fairness, taking into account
complete protocol runs. By complete protocol runs we mean a run where, even
though the protocol could not have reached its last transition for all agents,
there is no executable transition left, i.e. all possible protocol steps have been
executed, but this does not mean that all agents are in a final state.

We define this standard notion of fairness as a function of non-repudiation of
origin and of non-repudiation of receipt. If both properties, NRO and NRR, are
ensured or both are not valid for a given message M , then we have fairness.

Proposition 4. Given a protocol whose purpose is to send a message from Alice
to Bob, we have the following equivalence concerning the standard definition
of fairness for processes pA and pB of Alice and Bob respectively. If the non-
repudiation is valid for the NRO and NRR services then:

Fairness ≡ (aknows(Bob, pB,NROBob(Alice)) iff aknows(Alice, pA,NRRAlice(Bob)))

This result can be generalized to fairness wrt. a set of non-repudiation services
as follows.

Theorem 1. Given a protocol involving a finite number of agents, given a finite
set of valid non-repudiation services NR, the protocol is fair wrt. NR iff

∀NRS1X1
(Y1),NRS2X2

(Y2) ∈ NR,
aknows(X1, p1,NRS1X1

(Y1)) iff aknows(X2, p2,NRS2X2
(Y2))

4.3 Running Example: CCD

For illustrating the analysis method described above, we use in this section a
recent protocol, the Cederquist-Corin-Dashti (CCD) optimistic non-repudiation
protocol [6]. The CCD protocol has been created for permitting an agent A to
send a message M to an agent B in a fair manner. This means that agent A
should get an evidence of receipt of M by B (EOR) if and only if B has really
received M and the evidence of origin from A (EOO). EOR permits A to prove
that B has received M , while EOO permits B to prove that M has been sent by
A. The protocol is divided into three sub-protocols: the main protocol, an abort
sub-protocol and a resolve sub-protocol.

The Main Protocol. It describes the sending of M by A to B and the exchange
of evidences in the case where both agents can complete the entire protocol. If
this direct communication cannot be completed, in order to finish properly the
protocol, the agents execute the abort or the resolve sub-protocol with a trusted
third party (TTP).

The main protocol is therefore composed of the following messages exchanges,
described in the Alice&Bob notation:

1. A→ B : {M}K .EOOM where EOOM = {B.TTP.H({M}K).{K.A}Kttp}inv(Ka)

2. B → A : EORM where EORM = {EOOM}inv(Kb)

3. A→ B : K
4. B → A : EORK where EORK = {A.H({M}K).K}inv(Kb)

Automatic Methods for Analyzing Non-repudiation Protocols 203

where K is a symmetric key freshly generated by A, H is a one-way hash function,
Kg is the public key of agent g and inv(Kg) is the private key of agent g (used
for signing messages). Note that we assume that all public keys are known by
all agents (including dishonest agents).

In the first message, A sends the message M encrypted by K and the evidence
of origin for B (message signed by A, so decryptable by B). In this evidence, B
checks his identity, learns the name of the TTP, checks that the hash code is the
result of hashing the first part of the message, but he cannot decrypt the last
part of the evidence; this last part may be useful if any of the other sub-protocols
is used.

B answers by sending the evidence of receipt for A, A checking that EORM

is EOOM signed by B.
In the third message, A sends the key K, permitting B to discover the plain-

text message M .
Finally, B sends to A another evidence of receipt, permitting A to check that

the symmetric key has been received by B.

The Abort Sub-Protocol. The abort sub-protocol is executed by agent A
if he does not receive the message EORM at step 2 of the main protocol. The
purpose of this sub-protocol is to cancel the messages exchange.

1. A→ TTP : {abort.H({M}K).B.{K.A}Kttp}inv(Ka)

2. TTP → A :

⎧
⎪⎪⎨
⎪⎪⎩

ETTP where ETTP = {A.B.K.H({M}K)}inv(Kttp)

if resolved(A.B.K.H({M}K))
ABTTP where ABTTP = {A.B.H({M}K).{K.A}Kttp}inv(Kttp)

otherwise

In this sub-protocol, A sends to the TTP an abort request, containing the abort
label and some information about the protocol session to be aborted.

According to what the TTP knows about this protocol session, he has two
possible answers: if this is the first problem received by the TTP for this pro-
tocol session, the TTP sends a confirmation of abortion, ABTTP , and stores in
its database that this protocol session has been aborted; but if the TTP has
already received a request for resolving this protocol session, he sends to A the
information for completing his evidence of receipt by B, ETTP .

The Resolve Sub-Protocol. The role of this second sub-protocol is to permit
agents A and B to finish the protocol in a fair manner, if the main protocol
cannot be run until its end by some of the parties. For example, if B does not
get K or if A does not get EORK , they can invoke the resolve sub-protocol.

1. G→ TTP : EORM

2. TTP → G :

{
ABTTP if aborted(A.B.K.H({M}K))
ETTP otherwise

where G stands for A or B.

204 F. Klay and L. Vigneron

A resolve request is done by sending EORM to the TTP. If the protocol
session has already been aborted, the TTP answers by the abortion confirmation,
ABTTP . If this is not the case, the TTP sends ETTP so that the user could
complete its evidence of receipt (if G is A) or of origin (if G is B). Then the
TTP stores in its database that this protocol session has been resolved.

Agents’ Evidences. For this protocol, according to [6], the logical expressions
of evidences are:

NROB(A) = {M}K ∧ EOOM ∧K
NRRA(B) = {M}K ∧EORM ∧ (EORK ∨ETTP)

Note that there are two possibilities of evidences for non-repudiation of receipt,
according to the way the protocol is run.

According to our method, we simply have to annotate protocol steps with
aknows predicates, and then write the logical formula to be verified.

Non-Repudiation of Origin. The following table shows where those annota-
tions take place in the three CCD sub-protocols, for considering non-repudiation
of origin.

NROB(A) Protocol - step

aknows(B, pB, {M}K) Main - 1.
aknows(B, pB, EOOM) Main - 1.

aknows(B, pB,K) Main - 3.
aknows(B, pB,K) Resolve - 2.

Note that the key K can be obtained either by the third message of the main
protocol, or by the second message of the resolve sub-protocol. One annotation
has to be put in each of those protocol steps.

By Corollary 1, non-repudiation of origin for the CCD protocol is repre-
sented by the following invariant formulae:

aknows(B, pB , {M}K ∧EOOM ∧K)⇒ aknows(A, pA,M)
deduce(B, {M}K ∧ EOOM ∧K)⇒ aknows(B, pB, {M}K ∧ EOOM ∧K)

Non-Repudiation of Receipt. The following table shows where those annota-
tions take place in the three CCD sub-protocols, for considering non-repudiation
of receipt.

NRRA(B) Protocol - step

aknows(A, pA, {M}K) Main - 1.
aknows(A, pA, EORM) Main - 2.
aknows(A, pA, EORK) Main - 4.
aknows(A, pA, ETTP) Abort - 2.
aknows(A, pA, ETTP) Resolve - 2.

For this property, ETTP can be obtained from the second message of the abort
sub-protocol or of the resolve sub-protocol.

Automatic Methods for Analyzing Non-repudiation Protocols 205

According to Corollary 2, non-repudiation of receipt for the CCD protocol
is represented by the following invariant formulae:

aknows(A, pA, {M}K ∧ EORM ∧ (EORK ∨ ETTP)) ⇒ aknows(B, pB,M)
deduce(A, pA, {M}K ∧ EORM ∧ (EORK ∨ ETTP)) ⇒

aknows(A, pA, {M}K ∧ EORM ∧ (EORK ∨ ETTP))

Fairness. For analyzing fairness, this protocol requires timeliness, that is each
participant should reach a final state before testing fairness. Fairness for the CCD
protocol is described by the following logical formula, a very simple application
of Theorem 1:

aknows(A, pA,NRRA(B)) ⇔ aknows(B, pB,NROB(A))

Basically the property states that if A knows the EOR evidence ({M}K , EORM ,
and EORK or ETTP), then B knows the EOO evidence. And symmetrically for
B, if B knows the EOO evidence ({M}K , EOOM and K), then A knows the
EOR evidence.

Experiments. The CCD protocol has been specified in the AVISPA Tool, with
the description of the fairness property given above. The detailed formulae used
in the AVISPA Tool, with an LTL syntax, are:

�

0
@

0
@

aknows(A, pA, {M}K) ∧
aknows(A, pA, EORM) ∧
(aknows(A, pA, EORK) ∨ aknows(A, pA, ETTP))

1
A⇒

0
@

aknows(B, pB , {M}K) ∧
aknows(B, pB , EOOM) ∧
aknows(B, pB ,K)

1
A

1
A

�

0
@

0
@

aknows(B, pB , {M}K) ∧
aknows(B, pB , EOOM) ∧
aknows(B, pB ,K)

1
A⇒

0
@

aknows(A, pA, {M}K) ∧
aknows(A, pA, EORM) ∧
(aknows(A, pA, EORK) ∨ aknows(A, pA, ETTP))

1
A

1
A

Several scenarios have been run, and two of them have raised an attack,
showing that the CCD protocol does not provide the fairness property for which
it has been designed.

The first attack has been found for a scenario with only one protocol session
where A, an honest agent, plays the protocol with a dishonest agent B (named
i, for intruder). As soon as i has received the first message from A, he builds
EORM and sends it to the TTP as resolve request. Later, when A, not receiving
EORM , decides to abort the protocol, this is too late: the protocol has already
been resolved, the intruder can get M and build the proof that A has sent M ,
and A cannot build the evidence of receipt, as he will never get EORM .

The trace of this attack is the following:

1. A→ i : {M}K .EOOM

2. i→ TTP : RESOLVE

3. TTP → i : ETTP

*** timeout for A ***

4. A→ TTP : ABORT

5. TTP → A : ETTP

206 F. Klay and L. Vigneron

The second attack is a variant where both A and B are honest agents. The
only difference is that B sends EORM to A, but this message is intercepted by the
intruder andnever delivered toA. At this point, the protocol is blocked,both agents
waiting for a message. So, each agentwill ask the help of the TTP for concluding the
protocol: A will invoke the abort sub-protocol and B will invoke the resolve sub-
protocol. And if the resolve request reaches the TTP before the abort request 3,
B will get all his necessary evidences from the TTP, while A, having asked for an
abort, will not be able to get all his evidences even with the help of the TTP.

The originality of this attack is that, at the end:

– A will guess (according to the answer received to his abort request) that the
protocol has been resolved by B, so he will assume that B knows M and
can build the proof that A has sent it; but A cannot prove this;

– B has resolved the protocol and has received from the TTP the information
for getting M and building the proof that A has sent M ; but he does not
know that A does not have his proof;

– the TTP cannot know that A has not received EORM ; so he knows that B
can build its evidences, but he cannot know if A can or not.

So, those attacks show that the CCD protocol is not fair, even if both agents
A and B are honest. The attack is due to a malicious intruder or a network
problem, and the TTP is of no help for detecting the problem.

Correcting the protocol is not difficult, for example by sending EORM to-
gether with ETTP in the abort sub-protocol, when the protocol is already re-
solved. The numerous scenarios that have been tried for this new version have
not raised any attack. This experiment on the CCD protocol is detailed in [24].

4.4 Back to the FairZG Protocol

We have illustrated in Section 3 the representation of non-repudiation proper-
ties by authentications with the FairZG protocol, raising some limitations and
difficulties for an automatic analysis. We have also analyzed this protocol with
our second method, based on agents knowledge.

This protocol is known for having an attack when agent A is dishonest [9]. In-
deed in [31], it is not specified whether or not the TTP should store ConK forever.
And from the TTP point of view, a transaction is closed once both A and B have
retrieved ConK, so he could delete all the information about this transaction.

When the TTP acts in that way, Gürgens and Rudolph have described an
attack: a first session is run until its end between A and B; then, A starts a
second session with B, using the same K and L as in the first session, but with
a different message M2; if B does not remark the similarity of the sessions, he
will answer to A; but once A has got NRR, he can stop the session, not sending

3 Note that this is possible even if channels are protected or pervasive, as agents use
different channels; this is also possible if B has a shorter timeout than A; this notion of
timeout is essential in the implementation of protocols, as demonstrated by Carbonell
et al. in [5].

Automatic Methods for Analyzing Non-repudiation Protocols 207

the third message of the protocol; at that point, A owns NRR from the second
session and ConK from the first session, and this constitutes the evidences of
receipt of M2 by B; on his side, B will never be able to get ConK from the TTP
and will never know how to decrypt M2.

So, this attack is due to the hypothesis that the TTP does not keep informa-
tion on closed sessions. We have modeled this hypothesis by using two parallel
processes for the TTP, one for each session. And we have found the same attack.

5 Conclusion

Non-repudiation protocols have an important role in many areas where secure
transactions with proofs of participation are necessary. The evidences of origin
and receipt of a message are two examples of elements that the parties should
own at the end of a communication. We have given two very different examples of
such protocols. The FairZG protocol is an intensively studied protocol in which
the role of the trusted third party is essential. The CCD protocol is a more recent
non-repudiation protocol that avoids the use of session labels and distinguishes
itself by the use of an optimistic approach, the trusted third party being used
only in case of a problem in the execution of the main protocol.

The fairness of a non-repudiation protocol is a property difficult to analyze and
there are very few tools that can handle the automatic analysis of this property.

The contribution of this work is twofold. First, we have illustrated with the
FairZG protocol how difficult it is to consider full non-repudiation properties
using only a combination of authentications.

Second, we have defined a new method that permits to handle in a very
easy way non-repudiation properties and fairness in a uniform framework. This
method is based on the handling of agents knowledge and can be used to au-
tomatically analyze non-repudiation protocols as well as contract signing pro-
tocols [26]. We have implemented it in the AVISPA Tool and have successfully
applied it to the CCD and FairZG protocols, proving that they are not fair.
We have also tested other specifications of the CCD protocol, for example with
secure communication channels between agents and the TTP, no attack has
been found; but using such channels is not considered as acceptable, because it
generates an overload of the TTP activity.

Our method, based on the writing of simple state invariants, is of easy use,
and can be implemented in any tool handling agents (or intruder) knowledge.
It should be very helpful for setting abstractions for handling unbounded sce-
narios, and it should be very efficient for bounded verifications, as it has been
the case in our implementation. We hope that this work will open a highway
to the specification of many other properties, without any more change in the
specification languages and the analysis engines.

Our work has been done for analyzing non-repudiation protocols. A comple-
mentary approach has been defined by Guttman in [11], where he describes a
protocol design process, based on authentication tests, permitting to guarantee
some security properties, including some non-repudiation properties. Note that
in the example presented by Guttman, fairness is not considered.

208 F. Klay and L. Vigneron

References

1. http://www.lsv.ens-cachan.fr/~kremer/FXbib/references.php
2. Armando, A., Basin, D.A., Boichut, Y., Chevalier, Y., Compagna, L., Cuéllar,

J., Drielsma, P.H., Héam, P.-C., Kouchnarenko, O., Mantovani, J., Mödersheim,
S., von Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vi-
gneron, L.: The AVISPA Tool for the Automated Validation of Internet Security
Protocols and Applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005)

3. Armando, A., Carbone, R., Compagna, L.: LTL Model Checking for Security Pro-
tocols. In: 20th IEEE Computer Security Foundations Symp., CSF, pp. 385–396.
IEEE Computer Society, Los Alamitos (2007)

4. Bella, G., Paulson, L.C.: Mechanical Proofs about a Non-repudiation Protocol. In:
Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 91–104.
Springer, Heidelberg (2001)

5. Carbonell, M., Sierra, J.M., Onieva, J.A., Lopez, J., Zhou, J.: Estimation of TTP
Features in Non-repudiation Service. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA
2007, Part II. LNCS, vol. 4706, pp. 549–558. Springer, Heidelberg (2007)

6. Cederquist, J., Corin, R., Dashti, M.T.: On the Quest for Impartiality: Design
and Analysis of a Fair Non-repudiation Protocol. In: Qing, S., Mao, W., López,
J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp. 27–39. Springer, Heidelberg
(2005)

7. Chevalier, Y., Compagna, L., Cuellar, J., Hankes Drielsma, P., Mantovani, J.,
Mödersheim, S., Vigneron, L.: A High Level Protocol Specification Language for
Industrial Security-Sensitive Protocols. In: Proc. of Work. on Specification and
Automated Processing of Security Requirements, SAPS, Linz, Austria, vol. 180.
Oesterreichische Computer Gesellschaft (Austrian Computer Society) (September
2004)

8. Compagna, L.: SAT-based Model-Checking of Security Protocols. PhD thesis, Uni-
versità degli Studi di Genova and the University of Edinburgh (2005)

9. Gürgens, S., Rudolph, C.: Security Analysis of Efficient (Un-)fair Non-repudiation
Protocols. Formal Aspects of Computing 17(3), 260–276 (2005)

10. Gürgens, S., Rudolph, C., Vogt, H.: On the Security of Fair Non-repudiation Pro-
tocols. Int. Journal of Information Security 4, 253–262 (2005)

11. Guttman, J.D.: Authentication tests and disjoint encryption: A design method for
security protocols. Journal of Computer Security 12(3-4), 409–433 (2004)

12. Jacquemard, F., Rusinowitch, M., Vigneron, L.: Compiling and Verifying Security
Protocols. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS, vol. 1955, pp.
131–160. Springer, Heidelberg (2000)

13. Kremer, S., Markowitch, O.: Optimistic Non-repudiable Information Exchange. In:
Biemond, J. (ed.) 21st Symp. on Information Theory in the Benelux, Wassenaar,
NL, pp. 139–146. Werkgemeenschap Informatieen Communicatietheorie, Enschede
(2000)

14. Kremer, S., Markowitch, O., Zhou, J.: An Intensive Survey of Fair Non-repudiation
Protocols. Computer Communications 25(17), 1606–1621 (2002)

15. Kremer, S., Raskin, J.-F.: A Game-Based Verification of Non-repudiation and Fair
Exchange Protocols. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS,
vol. 2154, pp. 551–565. Springer, Heidelberg (2001)

16. Lowe, G.: A Hierarchy of Authentication Specification. In: 10th Computer Secu-
rity Foundations Work., CSFW, Rockport, Massachusetts, USA, pp. 31–44. IEEE
Computer Society, Los Alamitos (1997)

Automatic Methods for Analyzing Non-repudiation Protocols 209

17. Markowitch, O., Kremer, S.: An Optimistic Non-repudiation Protocol with Trans-
parent Trusted Third Party. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS,
vol. 2200, pp. 363–378. Springer, Heidelberg (2001)

18. Markowitch, O., Roggeman, Y.: Probabilistic Non-Repudiation without Trusted
Third Party. In: 2nd Work. on Security in Communication Networks, Amalfi, Italy
(1999)

19. Ochsenschläger, P., Repp, J., Rieke, R., Nitsche, U.: The SH-Verification Tool -
Abstraction-Based Verification of Co-operating Systems. Formal Aspects of Com-
puting 10(4), 381–404 (1998)

20. Pagnia, H., Gärtner, F.C.: On the Impossibility of Fair Exchange without a Trusted
Third Party. Technical Report TUD-BS-1999-02, Darmstadt University of Tech-
nology, Darmstadt, Germany (1999)

21. Pancho-Festin, S., Gollmann, D.: On the Formal Analyses of the Zhou-Gollmann
Non-repudiation Protocol. In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schnei-
der, S. (eds.) FAST 2005. LNCS, vol. 3866, pp. 5–15. Springer, Heidelberg (2006)

22. Roscoe, A.W., Hoare, C.A.R., Bird, R.: The Theory and Practice of Concurrency.
Prentice Hall PTR, Englewood Cliffs (1997)

23. Ryan, P., Goldsmith, M., Lowe, G., Roscoe, B., Schneider, S.: Modelling and Anal-
ysis of Security Protocols. Addison Wesley, Reading (2000)

24. Santiago, J., Vigneron, L.: Optimistic Non-repudiation Protocol Analysis. In:
Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.-J. (eds.) WISTP 2007.
LNCS, vol. 4462, pp. 90–101. Springer, Heidelberg (2007)

25. Schneider, S.: Formal Analysis of a Non-Repudiation Protocol. In: Proc. of The
11th Computer Security Foundations Work, pp. 54–65. IEEE Computer Society
Press, Los Alamitos (1998)

26. Shmatikov, V., Mitchell, J.C.: Analysis of abuse-free contract signing. In: Frankel,
Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 174–191. Springer, Heidelberg (2001)

27. Wei, K., Heather, J.: Towards verification of timed non-repudiation protocols.
In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2005.
LNCS, vol. 3866, pp. 244–257. Springer, Heidelberg (2006)

28. Wei, K., Heather, J.: A theorem-proving approach to verification of fair non-
repudiation protocols. In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider,
S. (eds.) FAST 2006. LNCS, vol. 4691, pp. 202–219. Springer, Heidelberg (2007)

29. Zhou, J., Deng, R.H., Bao, F.: Evolution of fair non-repudiation with TTP. In:
Pieprzyk, J.P., Safavi-Naini, R., Seberry, J. (eds.) ACISP 1999. LNCS, vol. 1587,
pp. 258–269. Springer, Heidelberg (1999)

30. Zhou, J., Gollmann, D.: A Fair Non-repudiation Protocol. In: IEEE Symp. on
Security and Privacy, Oakland, CA, USA, pp. 55–61. IEEE Computer Society, Los
Alamitos (1996)

31. Zhou, J., Gollmann, D.: Towards verification of non-repudiation protocols. In: Proc.
of Int. Refinement Work. and Formal Methods Pacific, Canberra, Australia, pp.
370–380 (September 1998)

