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Abstract

Vectorization, i.e. raster–to–vector conversion, is a cen-
tral part of graphics recognition problems. In this paper,
we discuss the pros and the cons of basing one’s vectoriza-
tion process on skeletonization. While distance skeletons
have proven to be robust and precise, they tend to distort
the results at line extremities and junctions. In these cases,
contour-matching approaches yield better results, but they
have their own specific problems. A perspective is probably
to combine the best of both methods.

1. Introduction

Graphics recognition is concerned with the analysis of
graphics-intensive documents, such as technical drawings,
maps or schemas. Vectorization, i.e. raster–to–vector con-
version, is of course a central part of graphics recognition
problems, as it deals with converting the scanned image to
a vector form suitable for further analysis. Many vectoriza-
tion methods have been designed throughout the years, and
a number of software packages are available. Thus, in one
sense, the basic raster–to–vector conversion problem might
be considered to be solved. However, there is still a major
problem of precision, robustness and stability of the vec-
torization processes. This has been and still is a matter of
continuing research for our team [22, 23].

From the earliest works on vectorization, one of the
main issues was whether or not to base the method on
some kind of medial axis or skeleton computation. It is
of course quite natural for image processing specialists to
think of raster–to–vector conversion as a typical application
for skeletonization. Indeed, a majority of systems use some
kind of skeleton computation as a central part of their pro-
cess. However, one must not forget that while a skeleton
is meant to represent faithfully the analyzed binary shape, it
does not always provide the best means to retrieve the actual
thought of the draftsman. Typically, the way junctions and
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line extremities are processed by a skeletonization process
is often very different from the way the user wants them to
be processed. This leads to the introduction of a number
of heuristics in the process, reducing the robustness of the
method, or to costly manual editing.

Many other ideas have therefore been explored, with the
aim of extracting the lines without explicitly computing the
medial axis. In this paper, we will not review exhaustively
all these ideas, but we propose a discussion about the pros
and cons of using or not a skeleton as the central part of
vectorization.

2. The problem

As implied by the name, raster–to–vector conversion
consists in analyzing a raster image to convert its pixel
representation into a vector representation. Whereas a
user would tend to look at vectorization as a whole, engi-
neers and researchers involved in designing good raster–to–
vector methods know that there are several steps in this pro-
cess [23].

The first step is to find the lines in the original raster
image. Whereas the most common approach for this is to
compute the skeleton of the image, a number of other meth-
ods have been proposed. The next step is to approximate
the lines found into a set of vectors. This is performed by
some polygonal approximation method, and there are many
of these around as well, using different approximation cri-
teria. After approximation, it is often necessary to perform
some post-processing, to find better positions for the junc-
tion points, to merge some vectors and remove some others,
etc. A last step sometimes performed is to find the circular
arcs; we discuss this in another paper at the conference [9].

In this paper, we will mainly concentrate on the choice
of methods for the first step, that of finding the lines. But
of course, as the choice of the polygonal approximation
method also has an influence on the whole process, we
will briefly discuss our choices for that step. Among the
many available methods, we have chosen to use two meth-
ods. The first is Rosin and West’s recursive split-and-merge
method [20], which has the advantage that it does not re-



quire any user-given threshold or parameter. The principle
is to recursively split the curve into smaller and smaller seg-
ments, until the maximum deviation is 0 or there are only
3 or less points left. Then, the “tree” of possible segments
is traversed and the method keeps those segments maximiz-
ing a measure of significance, which is defined as a ratio
between the maximum deviation and the length of the seg-
ment.

We have also used for many years an iterative method,
that of Wall and Danielsson [24], enhanced in our team with
a direction-change marking procedure to preserve the angu-
lar points. The method only needs a single threshold, on
the ratio between the algebraic surface and the length of the
segments. It is fast and efficient, but not as precise as the
former. On the other hand, Rosin and West’s method tends
to split up the lines around a junction into too many small
segments [23].

3. How to Find the Lines

To find the lines, we must process a raster image, sup-
posed to contain graphics1, in order to extract a set of lines,
i.e. of chains of pixels. The most intuitive definition for
these lines is probably that they represent the set of sig-
nificant medial axes of the original image, considered as a
shape.

There are three main families of approaches for this step.
As explained in § 1, the first method which comes to mind is
to compute the medial axis, i.e. the skeleton of the raster im-
age. This is the most common approach, and skeletons are
known to yield good precision with respect to the position-
ing of the line. But they also tend to give lots of barbs when
the image is somewhat irregular, so they need some clever
heuristics or post-processing steps, that weaken their gener-
ality and robustness. Another weakness of skeleton-based
methods is that they displace the junction and extremity
points, compared to the position wanted by the draftsman.

A second family of methods is based on matching the
opposite sides of the line. These methods are better at po-
sitioning the junction points, but tend to rely too much on
heuristics and thresholds when the drawings become com-
plex.

A number of sparse-pixel approaches have also been pro-
posed. The general idea is to avoid having to examine all
the pixels in the image, by using appropriate sub-sampling
methods which give a broader view of the line. One lim-
itation of these methods is that they are prone to “double
detections” in some cases.

The first family is the most common choice. In this pa-
per, we discuss its advantages and disadvantages, compar-

1If necessary, some kind of text/graphics segmentation [11] must of
course be applied to the original image before vectorization.

ing it with a method which retrieves directly the lines from
the image, using contour matching.

4. Skeleton-based Methods

The main family of methods for finding the lines is
that of computing the skeleton. There are two well-known
paradigms for skeletonization methods: The first is that of
“peeling an onion”, i.e. iterative thinning of the original
image until no pixel can be removed without altering the
topological and morphological properties of the shape [17].
These methods require only a small number of lines in an
image buffer at any time, which can be an advantage when
dealing with large images. But on the other hand, multiple
passes are necessary before reaching the final result, so that
computation times may become quite high.

The second definition used for a skeleton is that of the
ridge lines formed by the centers of all maximal disks in-
cluded in the original shape, connected to preserve connec-
tivity. This leads directly to the use of distance transforms
or similar measures [2, 7, 18], which can be computed in
only two passes on the image.

In our group, we have been testing both approaches.
The iterative thinning algorithm is straightforward and gives
good results, but is very sensitive to noise. We therefore pre-
fer to use skeletons computed from distance transforms. To
guarantee the precision of the skeleton, we advocate the use
of chamfer distances, which come closer to approximating
the Euclidean distance. A good compromise between pre-
cision and simplicity seems to be the 3–4 chamfer distance
transform (see Fig. 1), for which a good skeletonization al-
gorithm has been proposed by Sanniti di Baja [8]. A single
threshold on the significance of a branch enables correct re-
moval of the smallest barbs. The latter method is our pre-
ferred choice, it yields stable skeletons in an efficient way,
and prunes reasonably well the small barbs.

The correct positioning of junctions is often very im-
portant in graphics recognition applications. All skeleton-
based methods are weak with respect to the correct restitu-
tion of the junction at the location the draftsman wanted it
to be. This is a direct consequence of the fact that the skele-
ton follows the centers of the maximal discs of the pattern,
whereas the position of the junction as envisioned by the
draftsman isnot on these centers (see Fig. 2).

5. Matching Opposite Contours

Another family of vectorization methods, often pro-
posed, relies on matching the opposite contours of the
line [1, 4, 10, 12, 14]. They perform better with respect to
positioning the junctions. Generally, these approaches are
based on four main steps: extraction of the contour vectors,
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V2 V3 V4
V1 X V5
V8 V7 V6

First pass :Y = min(V1 + 3; V2 + 4; V3 + 3; V4 + 4)
Second pass :Z = min(Y; V5 + 3; V6 + 4; V7 + 3; V8 + 4)

Figure 1. Computing the 3–4 chamfer distance transform in two passes over the image, the first
from left to right and from top to bottom, the second from right to left and from bottom to top. See
reference [8] for details.

Figure 2. Position of the junction point with a
skeleton-based method.

matching of these vectors, generation of a medial line and
junction processing (filling the gaps left by the matching
process). The aim of the two first steps is to decompose the
binary shape into slices (“blocks” in [10]), thus segmenting
the graphical shape into regions, which themselves connect
junctions. To extract and to bridge the medial line, the con-
nection information obtained during the matching process
is used. For example, an adjacency graph is built in [12]. In
most cases, the medial lines yielded by matched contours
can be extended until their intersections are found.

The main drawback of these approaches comes from
the difficulty of correctly handling non-matches and mis-
matches between contours, and in the complexity of one-
to-many and many-to-many matches (Fig. 3). This leads to
hard-to-master thresholds and heuristics in the case of com-
plex drawings. Some authors propose combined methods,
such as using the skeleton for positioning of the lines and
contour matching to reduce noise [13].

Furthermore the matching criteria are based on orien-
tation similarities between contours vectors. That is, the
method fails when the binary pattern is not symmetric.

To improve the matching procedure, we have recently
suggested [21] to use the gradient orientation defined by
Canny’s operator [3]:

G�(x; y) = �

1

2��2
exp(�

x2 + y2

2�2
);

whereG is the 2D Gaussian filter and� the standard devia-

Figure 3. Some of the difficulties with the
matching approach: extremity segments,
one–to–many and many–to–many matchings.

tion. The direction� at each point is:

�(x;y) = tan(
@y(I(x; y) �G)

@x(I(x; y) �G)
)�1

where� denotes convolution. It is well known that the gra-
dient vector is perpendicular to the contour. Thus, each con-
tour point is matched using the orientation�. In this case the
match is dense and robust, as it relies on contour points and
the contours are smoothed with the Gaussian filter. Conse-
quently, mismatches don’t affect the global qualities of the
results. Figure 4.c shows the application of the method.

6. Contextual Information

Whereas the line finding methods discussed until now
are independent of any a priori information about the na-
ture of the drawing, it is often necessary to add contextual
knowledge at some stage of the vectorization process. For
some applications, this kind of knowledge favors a given
method. For instance, the vector-matching approach de-
scribed by Chang [4] gives good results on Chinese char-
acters, as the vectorial characteristics of Chinese characters
are known and integrated in the process.
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Many different ideas have been proposed for adding
this kind of domain knowledge to the vectorization pro-
cess. When processing a large number of very specific
documents, it may make sense to develop a completely
ad hocvectorization system. For instance, Chhabra et al.
have developed efficient methods for finding straight lines
in telephone company drawings containing a lot of large ta-
bles [6]. In such a case, the direct recognition of the longest
straight lines solves all the junction problems, as the junc-
tions are simply the intersections of the straight lines found.

Several authors prefer to use general vectorization meth-
ods and propose a set of simple heuristics to correct the
result, setting junctions straight, merging those which are
close to each other, reconnecting lines split up by a missing
pixel, etc. One of the best and most recent examples of such
a system is that of Chen et al. [5]. These systems yield good
results, but as they rely on heuristics, they tend to introduce
a number of additional thresholds and parameters.

When we look for something specific, such as walls in
architectural drawings, it may be very interesting to use
contour-matching methods. Here, the contextual knowl-
edge is the fact that the walls are basically horizontal or
vertical rectangles. The underlying idea of the method is
to reconstruct the 2D geometry of the graphics. To do this,
a broad skeleton is extracted from the graphics using the
point-to-point matching approach described in § 5. Each
skeleton fragment represents the signature of a 2D primi-
tive (in our case a rectangle). We do not use this “skele-
ton” as the basis for polygonal approximation, but solely
for reconstruction of the corresponding rectangles, which
correspond to the walls. Figure 4 illustrates this approach
on a simple architectural drawing. Figures 4.b and 4.c show
the extracted contours and the signature of the broad skele-
ton. We can observe that the contours are clean and well
located. The circumscribed rectangles in the horizontal and
vertical directions are presented in Figure 4.d, and the ex-
tracted medial lines of the rectangles in Figure 4.e. For the
sake of comparison, Fig 4.f shows the result of a skeleton-
based vectorization, using the 3–4 distance transform (§ 4
and a polygonal approximation.

7. Discussion

As the wall detection example described in the previ-
ous section demonstrates, contour matching associated with
contextual knowledge can yield much better results than the
usual skeletonization approaches. However, in the general
case, it is not possible to associate a priori knowledge with
all types of vectors to be extracted. Given the complexity
and lack of stability of contour matching methods in the
general case, we still believe that despite its weaknesses,
the skeletonization approach is more general and robust.
Whatever the graphics, the qualities of the results are always

good, especially with a good skeletonization algorithm like
the 3–4 distance transform method explained in § 4.

However, these methods, working on the binary image,
only use simple topological, geometric and photometric
rules to somehow find the skeleton in the image. As we
have seen with skeletons, this can lead to a lack of precision
around the junctions. In this case, we need to post-process
the image in order to improve the detection and the local-
ization of the junctions. In our opinion, the most promising
path for post-processing in a vectorization process, while
remaining as generic and robust as possible, is that of intro-
ducing models of the “ideal” junctions (T junctions, L junc-
tions, X junctions, Y junctions: : : ) and correcting each
junction by fitting one of these models to it. Janssen pro-
posed a similar system based on morphological processing
of the junction areas [15]. It is also possible to add con-
straints, describing the “ideal” geometry of the result, to the
vectorization process itself. This was proposed by Röösli
& Monagan [19]. We are currently exploring various fitting
methods, hoping to report soon on promising results in that
area.

As illustrated by the example of Fig. 4, there are also cer-
tainly ideas from the contour-matching approach which can
be reused in a more general framework. For instance, when
we take a broader view of the respective merits of the two
approaches, we can say that skeleton-based methods em-
phasize thedistancecriterion (finding the points which are
centers of maximum enclosed circles) whereas the point-to-
point matching approach described in § 5 emphasizes the
direction criterion. If a first “crude” vectorization could
segment a drawing into pieces which have the same direc-
tion, we could use directional distance transforms on each
of these pieces, and this would eliminate the problems at
the line extremities and simplify junction processing. Such
a two-step vectorization is also currently under study in our
group.

8. Conclusion

In this paper, we have discussed the respective qualities
of skeletons and contour matching methods for building a
robust vectorization method. Of course, we also need to fol-
low the evolution in neighboring fields, where new methods
may emerge. Even if they must still be considered to be too
experimental or too computationally expensive to be appli-
cable for real-size graphics recognition problems, they may
mature in the coming years to propose alternatives to the
current techniques used for computing a “skeleton” or for
approximating a line. This includes ideas like the use of
energy minimization techniques to compute the medial axis
of shapes; for instance, a recent paper proposes a statistical
framework based on Markov random fields, which yields
surprisingly good results on simple shapes [25].
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(a) Original image. (b) Contour detection.

(c) Broad skeleton extraction. (d) Reconstruction into 2D primitives.

(e) Medial lines of the 2D primitives. (f) Classical skeletonization followed
by polygonal approximation.

Figure 4. Contour matching method compared with usual skeletonization.
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