
An Error-Correction Graph Grammar to Recognize

Textured Symbols �

Gemma Sánchez1;2, Josep Lladós1, Karl Tombre2

1Computer Vision Center, Dept. Informàtica,

Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain

2Loria, Campus scienti�que, B.P. 239, 54506 Vand÷uvre-lès-Nancy CEDEX, France

Abstract

This paper presents an algorithm for recognizing symbols with textured ele-

ments in a graphical document. A region adjacency graph represents the graphical

document, with the nodes being polygons and the edges the neighborhood relations

between them. The textured symbols are modeled by a graph, where nodes are poly-

gons (represented by strings) or textured areas (represented by a graph grammar

with error-correction rules). The recognition process is done by a graph matching

process that uses a string edit distance to recognize the static parts of the symbol

and a parsing process that segments the subgraph in the original graph, following

the rules of the graph grammar.

1 Introduction

The detection and recognition of symbols is an important area within graphics recognition.

One of the key issues is to be able to describe what a symbol is supposed to be and of which

graphical components it is composed. There are typically two kinds of structures that can

�Work partially supported by project CICYT TIC2000-0382.

1

be considered to form a symbol: those consisting of �xed primitives, i.e. parts that can

be represented by a prototype pattern, and structures consisting of a repetitive pattern,

such as crosshatched areas in engineering drawings, tiled patterns in architectural plans,

etc. Each type of symbol induces its own recognition strategy. Prototype-based symbols

can be recognized by many kinds of pattern matching approaches, whereas repetitive

structures need a strategy able to iteratively capture the repetitions.

In a previous work, we have studied prototype-based symbol recognition and textured

symbol recognition using separate strategies [8]. In this work, we propose a uni�ed repre-

sentational structure and recognition process for symbols with textured or not textured

parts, and we focus on the syntactic modeling and recognition of texture-based compo-

nents.

The symbol recognition process is based on the graph matching process explained in

[8], but now the nodes of the graph can represent static parts as well as textured parts.

The present paper focuses on explaining the textured parts recognition, as the static

parts recognition remains the same as in [8]. In this work, the symbol recognition process

is applied to an architectural drawing understanding application. An input graphical

document is transformed, assuming a previous vectorization process, into a RAG (Region

Adjacency Graph)H(V;E; LV; LE; FV; FE), constructed as in [8]. Thus, in the attributed

graph H(V;E; LV; LE; FV; FE), V is the set of nodes corresponding to regions and E is

the set of edges representing the region adjacencies. Every graph vertex, v 2 V , is given as

attribute a cyclic string that represents the sequence of lines forming the shape contour of

the region. Every graph edge (v; v0) is given as attribute the straight segment connecting

the centers of the shapes v and v0. In this kind of graphical documents, di�erent kinds of

textured symbols can appear (see Fig. 1); some of them are two-dimensional, as those in

Fig. 1(a) and Fig. 1(b), others are one-dimensional, as in Fig. 1(c) and Fig. 1(d); some are

formed by only one kind of shape, or primitive, as in Fig. 1(a), Fig. 1(c), and Fig. 1(d),

and others with two, as in Fig. 1(b). All of them can be characterized by a primitive

or some primitives which are placed following a rule. This structure can be represented

by a RAG. In the RAG, some distortions may appear, due to the scanning process or

2

to the vectorization, while in the textured symbol appearing in the RAG, other kinds

of distortions may appear due to the �nite nature of the symbol; in particular, symbol

primitives may be fragmented on the borders of a textured zone. Therefore, due to the

process used to obtain the RAG representing the document, and to the �nite nature of

the texture, four kinds of distortions may appear in the symbol, presented in Fig. 2:

(i) Distortions in the shapes forming the texture, see Fig. 2(a), (ii) Distortions in the

placement rules of the shapes forming the texture, see Fig. 2(b), (iii) Fusion of two or

more elements forming the texture, see Fig. 2(c), (iv) Partial occlusion of the elements

forming the texture, due to the �nite nature of the textured area, see Fig. 2(d). The

present work presents a graph grammar, based on the one presented in [10], improved

with some error-correction rules, to model textured symbols. The automatic grammar

inference process and the parser process to recognize textured symbols in a given RAG

are also explained.

aa
b

b c

cc

c

a

a

b

b
65

4

3 2

1

c

a
b

c

d

d
d b

c

a

a

d

d

d

b

b

b

b

a

a
a

aa

(a) (b) (c) (d)

Figure 1: (a) 1-primitive 2D textured symbol. (b) 2-primitives 2D textured symbol. (c)

1-primitive 1D textured symbol. (d) 1-primitive 1D textured symbol.

The paper is structured as follows: in section 2, the grammar to model textured com-

ponents and its inference process is presented; section 3 explains the recognition process

by means of parsing a given graph using a graph grammar with error correction. Section

4 is devoted to conclusions and future work.

3

(a) (b) (c) (d)

Figure 2: (a) Shape distortions. (b) Placement rules distortions. (c) Merging of the

shapes. (d) Occlusion of the shapes.

2 Graph Grammar Inference

Graph grammars have been used in syntactic pattern recognition to extract the description

of an input pattern or to classify it. When patterns are multidimensional, their description

using string grammars is di�cult, and then graph grammars can represent the space

relations among their parts. Graph grammars have been used in diagram recognition

[1], music notation [3], visual languages [6], drawing dimensions recognition [2, 9] and

mathematical formula recognition [5]. In this section we present the de�nition of our

grammar and the way to infer it automatically from a given example.

Given a textured symbolX, we infer a context-sensitive error-correction graph grammar

to recognize it. A graph grammar is a six tupleG = (�;�;
; P; S) where � is the alphabet

of non-terminal node labels, � is the alphabet of terminal node labels,
 is the alphabet

of terminal edge labels, P is the �nite set of graph productions or rewriting rules, and

S the set of initial graphs, usually consisting of one node with a non-terminal label. A

graph production P is a four tuple P = (hl; hr; T; F), where hl is the left hand graph, hr is

the right hand graph, T is the embedding transformation T = f(n; n0)jn 2 Vhl; n
0 2 Vhrg

and F is the set of attribute transferring functions, for edges and nodes in hr. The direct

derivation of a graph H 0 from a host graph H by applying a production P = (hl; hr; T; F),

H
P
!H 0 is de�ned by locating hhostl , a subgraph of H isomorphic to hl, and replacing hhostl

by hhostr , a subgraph isomorphic to hr. Let H
�hhost

l be the graph remaining after deleting

hhostl from H, the edges between the subgraph hhostr and H�hhost
l are the embedding of

4

hhostr in H�hhost
l , and de�ned by T . In the present work we use induced isomorphism. An

induced subgraph of a graph must include all local edges of the host graph, i.e. all edges

that connect two nodes in the subgraph. For a more comprehensive explanation of graph

grammars, see [7] and [4].

Given a textured symbol X consisting of regular repetitions of n di�erent primitives,

NX = fN1; : : : ; Nng, and m di�erent kinds of neighborhoods RX = fR1; : : : ; Rmg, the

inference process is as follows: First, for each primitive Ni forming X, we de�ne one

hierarchy of non-terminal node labels Li, and three terminal node labels li, cli, dli, repre-

senting the primitive, the primitive cut on a border and more than one primitive merged

into one shape respectively, and the start node label S 0, having � = fL1; : : : ; Ln; S
0g and

� = fl1; cl1; dl1 : : : ; ln; cln; dlng. For each hierarchy Li we de�ne two derived labels, ILi

and RLi, representing an inserted node and a real one, respectively. Then, we de�ne one

terminal edge label ei for each kind of neighborhood Ri, having
 = fe1; : : : ; emg. For

each primitive Ni 2 NX we denote as NRi = fRi
1
; : : : ; Ri

mi
g, 8j = 1 : : :mi; R

i
j 2 RX , the

set of di�erent kinds of neighborhoods that Ni has in counter-clockwise order, for example

for the symbol in Fig. 1(a), Ni being the rectangle in the middle, NRi = fa; b; cg. For

each primitive Ni 2 NX we denote as NNi = fN i
1
; : : : ; N i

ni
g, 8j = 1 : : : ni; N

i
j 2 NX , the

set of neighbors that Ni has in counter-clockwise order, starting with the N i
1
such that

the label of the edge (Ni; N
i
1
) is Ri

1
, for example in the same symbol shown in Fig. 1(a),

Ni being the rectangle in the middle, and denoting each node neighbor with the natural

number the rectangle has in its corner, i.e. N1; : : : ; N6, NNi = fN1; : : : ; N6g. Then the

productions are de�ned in the following way:

1. For each Ni 2 NX we de�ne a production with the left hand side being the start

node S 0, and the right hand side a subgraph with a node n labeled as li, and with

all the closed loops starting on Ni, labeling the neighboring nodes of n with the

following non-terminal node labels fLi
1
; : : : ; Li

mi
g in the counter-clockwise order,

and the edges among all of them with their corresponding terminal label.

2. Each non terminal node can have one or more terminal nodes as neighbors. Each

terminal node has all its neighbors at least labeled as a non terminal node. Then,

5

for each shape Ni, we generate one set of productions for each number of terminal

nodes that Ni can have, i.e. we generate one set of productions when Ni has one

terminal node as a neighbor, then when it has two, and so on until ni, and each

production in each of this set of productions is de�ned taking the �rst terminal

neighbor following one possible kind of neighboring.

3. The inserted nodes allow us to end the texture and to correct errors of shapes

appearing only partially because they are on the border of the texture or shapes

which are merged because of distortions in the acquisition process. For these inserted

nodes, one rule is added that substitutes it by lambda, the cut terminal label, cli,

or the joined terminal label, dli.

Figure 3 shows the example of the graph grammar representing the texture in Fig. 1(b).

There are two kinds of primitives forming the texture: the square and the octagon. For the

octagon, three terminal labels are de�ned: o, co, do, representing the normal octagon, the

cut one, and the one representing some octagons merged into one shape, and one hierarchy

of non-terminal labels, O, which has as derived labels, Ro representing an existing node,

and Io, representing an inserted one. For the square, three other terminal labels are

de�ned, r, cr, dr, representing the normal square, the cut one, and the one representing

some squares merged into one shape, and one hierarchy of non-terminal labels, R, which

has as derived labels, Rr representing an existing node, and Ir, representing an inserted

one. For each production P , hl and hr are graphs whose nodes have a number or a

number with 0, this number represents the embedding rule, i.e. the node on the left side

with number i, or the corresponding one on the right side with number i0. Rules 1 and

10 are the starting rules for the square and the octagon respectively, while rules 9 and 40

are the end rules and error-correction rules for the square and the octagon, respectively.

Notice that each time a label O appears on the production, it can represent both derived

labels, respectively Io and Ro, and the same for label R, with its derived labels Ir and

Rr. However, we can only rewrite one non-terminal node by a terminal one when it is a

real one, that is Ro or Rr, the only exceptions being the rules to correct errors. We should

also notice that each rule is representing itself and its symmetric rule, and the rules with

6

labels with parameters e1 and e2 are representing four kind of rules: those without the

nodes and edges parameterized with them, those with the nodes parameterized with e1,

those with the nodes parameterized with e2, and those with all of them.

3 Recognition Process: Parsing

Given a host graph H representing an architectural drawing, and a graph grammar G

representing the textured symbol, the parsing process on H, to recognize the textured

symbol, is done in the following way: First, nodes in H are taken one by one until a start

rule can be applied to one of them. Let us denote by n this selected node. This means

that the shape represented by n is similar to the shape expected on the left side of the

starting rule, and that there is a subgraph isomorphism between a subgraph around n and

the graph hr of this starting rule. The similarity between the shapes represented by the

nodes is computed by means of the string edit distance explained in [8]. In this process, n

is marked as an element forming the textured symbol, and the set of nodes and edges of H

around n which have an equivalence at the right hand side of the grammar rule are labeled

as the rule points, being the nodes labeled as non-terminal inserted into a list, Lnt, to

be analyzed by the parser, while the nodes and edges not found are labeled as inserted

nodes and inserted into a separate list, Li, to be analyzed during a post-processing phase,

to �nd possible errors and to �nalize the textured symbols. These inserted nodes are

pointing to existing nodes in H, which are in a relative position with respect to n similar

to the expected corresponding nodes in the hr of the grammar rule. Then, for each non-

terminal node n in Lnt, the rule to be applied each time is directly selected by counting

the number of terminal neighbor nodes it has and in which position they start. Then the

rule is applied as in the previous step, using a subgraph isomorphism and inserting into

Lnt and Li the non-terminal and inserted nodes to be analyzed, respectively. Node n

is marked as an element forming the textured symbol. Once all the non-terminal nodes

in Lnt are analyzed, we have a set of nodes in H marked as part of the texture, and,

surrounding them, the nodes marked as inserted. Then, for each inserted node n in Li,

we apply the error-correcting or ending rules. Ending rules delete the inserted nodes

7

O

O

r
1’

4’

3’

5’

c
b

a
bbb d

d

O

O
2’

b
c

a

S’
1

::=

1

O

O

Rr
1

3

5
d

d
o

2

b
c

a
O

O

r
1’

4’

3’

5’

c
b

a
bbb d

d
o

O

2’

b
c

a

::=

4(e1||e2)

a(e2)
O

c(e1)

2

o

O

r
1’

4’

3’

5’

c
bbbb d

d
O

O

2’

b c

a

::=

o

Rr

1

4

3

c
bbbb

d

O

O
2

b

a

5(e1||e2)

c(e1)

O
a(e2) a

3

o

O

Rr

1

3

5
d

d
o 2

b c

a
o

O

r
1’

4’

3’

5’

c
b

a
bbb d

d
o

O

2’

b c

a

::=
4

c
bbbb

O
a(e1)

4

o

O

r
1’

4’

3’

5’

c
b

a
bbb d

d
O

o

2’

b c

a

::=

o
1

4

3

c
bbbb

d

o

O 2

b

a

O
5a

d
Rr c(e1)

5

o

O

1

3

5
d

d
o 2

b
c

a o

O

r
1’

4’

3’

5’

c
b

a
bbb d

d
o

o

2’

b
c

a

::=
4

c
bbbb

o a

Rr

6

o

o

r
1’

4’

3’

5’

c
b

a
bbb d

d
O

o

2’

b
c

a

::=

o
1

4

3

c
bbbb

d

o

O 2

b

a

o
5a

d
cRr

7

o

o

r
1’

4’

3’

5’

c
b

a
bbb d

d
o

o

2’

b c

a

::=

o
1

4

3

c
bbbb

d

o

o 2

b

a

o
5a

d
cRr

8

Ir ::= � cr dr

9

S’
1

o

O

O

O

RR

RR

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d
c

b
a

bbb

b

b

b

bd

d

d

d

O::=

10

o

O

O

O

RR

RR

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d

c
b

a
bbb

b

b

b

bd

d

d

d

ooRo

R

R

1

b
a

db

d ::=
2

3

9

O

4(e1)

d(e1)

O

8(e2)

b(e2)

11

O

O

r
1

4

3

2

c
b

a
bbb d

d

o

O

O

O

R

RR

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d
c

b
a

bbb

b

b

b

bd

d

d

d

::=Ro O

rR

5(e1)

b(e1)

R

9(e2)
b(e2)

6(e1)

b(e1)

O

O

8(e2)
b(e2)

12

o

o

O O

RR

RR

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d
c

b
a

bbb

b

b

b

bd

d

d

d

::=

O

o

Ro

RR
1

5

4

3

d
c

bbbb

b d

O

2(e1)

d(e1)

O
b(e2)

6(e2)

13

::= o

O

O

O

R

RR

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d
c

b
a

bbb

b

b

b

bd

d

d

d

O

r

Ro

O

O

r
16

5

4

b

a
d

c
b

b

O

R
3(e1)

2(e1)
d(e1)

d(e1)

O

R
7(e2)

d(e2)
d(e2)

8(e2)

14

o

O

O

O

R

RR

1’

9’8’
7’

6’

5’

4’

3’

2’

d
c

b
a

d
c

b
a

bbb

b

b

b

bd

d

d

d

ooRo

r

R

1

b

a
db

d
::=

2

3

9

O
4

c
d

r

O

R

6(e1)

5(e1)

b(e1)

b(e1)

O

8(e2)
b(e2)

15

O

r
1

4

3

2
d

c
b

a
bbb d

d

o

O

o

O

R

RR

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b

a
d

c
b

a
bbb

b

b

b

bd

d

d

d

::=Ro O

r

d

O

o

R
5 b

6(e1)

b(e1)

OO

O

R

9(e2)

8(e2)
b(e2)

b(e2)

16

o

o

O

O O

Rr

RR

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d
c

b
a

bbb

b

b

b

bd

d

d

d

::=

o

Ro

Rr
1

5

4

3

d

c
bbbb

b d

O
6 a

b

O

2(e1)

d(e1)

O

R
7(e2)

d(e2)

d(e2)

8(e2)

17

::=
o

O

O

R

RR

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d
c

b
a

bbb

b

b

b

bd

d

d

d

o

r

Ro

O

o

r

16

5

4

b
a

d

c
b

b

R
7

d

O
d(e2)

O 8(e2)

O

R
3(e1)

2(e1)

d(e1)

d(e1)

18

o

O

O

R

RR

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d
c

b
a

bbb

b

b

b

bd

d

d

d

ooRo

r

R

1 b
a

db

d
::=

2

3

9

o 4

c
d

rR
5

d

b o

19

O

6(e1)

b(e1)

O

8(e2)

b(e2)

6

O

r
1

4

3

2d

c
b

a
bbb d

d

o

O

o

O

r

RR

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d
c

b
a

bbb

b

b

b

bd

d

d

d

::=Ro O

r

d

O

o

r
5

b

O a
b 20

O

RR
9(e2)7(e1) b(e2)

b(e2)

d(e1)
8(e1||e2)

d(e1)

o

o

O

o O

Rr

RR

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d
c

b
a

bbb

b

b

b

bd

d

d

d

::=

o

Ro

Rr
1

5

4

3

d
c

bbbb

b d

o
6 a

b

R

7
d b

21

O
2(e1)

d(e1)

O

8(e2)
d(e2)

::= o

O

O

O

R

Rr

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d

c
b

a
bbb

b

b

b

bd

d

d

d

o

r

Ro

O

o

r
16

5

4

b
a

d
c

b

b

r
7

d

O
8

c

d

22

O

R
3(e1)

2(e1||e2)
d(e1)

d(e1)

R

9(e2)
b(e2)

b(e2)

o

O

O

r

RR

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d
c

b
a

bbb

b

b

b

bd

d

d

d

ooRo

r

R

1 b
a

db

d
::=

2

3

9

o
4

c
d

rr
5

d

b o

O
6 a

b 23

O

R
8(e1||e2)

7(e1)

b(e2)d(e1)

d(e1)

O

r
1

4

3

2
d

c
b

a
bbb d

d

o

O

o

O

r

RR

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b

a
d

c
b

a
bbb

b

b

b

bd

d

d

d

::=Ro

r

d

o

o

r
5

b

o
6

a
b

R
7

bd

24

O

R

9(e2)

8(e1||e2)
b(e2)

b(e2)d(e1)

o

o

O

o O

Rr

Rr

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d
c

b
a

bbb

b

b

b

bd

d

d

d

::=

o

Ro

Rr
1

5

4

3

d
c

bbb

b d

o
6 a

b

r
7

d b

O
8

c
d

25

O

R
9(e2)

2(e1||e2)

b(e2)

b(e2)

d(e1)

::= o

o

O

O

R

Rr

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d

c
b

a
bbb

b

b

b

bd

d

d

d

o

r

Ro

O

o

r

16

5

4

b
a

d

c
b

b

r
7

d

o
8

c

d
R

9

d

b

26

O

R
3(e1)

2(e1||e2)

b(e2)

d(e1)

d(e1)

o

O

o

r

RR

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d
c

b
a

bbb

b

b

b

bd

d

d

d

ooRo

r

R

1

b
a

db

d
::=

2

3

9

o
4

c
d

rr
5

d

b o

o

6
a

b

R
7

b
d

27

O
8(e1||e2)

b(e2)d(e1)

O

r
1

4

3

2
d

c
b

a
bbb d

d

o

O

o

O

r

Rr

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b

a
d

c
b

a
bbb

b

b

b

bd

d

d

d

::=Ro

r

d

o

o

r
5 b

o

6
a

b

r
7

bd

O
8

c

d

28

R

9(e1)
b(e1)

b(e1)

o

o

o

o O

Rr

Rr

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d

c
b

a
bbb

b

b

b

bd

d

d

d

::=

o

Ro

Rr
1

5

4

3

d
c

bbbb

b d

o
6

a
b

r
7

d b

o

8
c

d
R

9

d

b

29

O2(e1||e2)

b(e2)

d(e1)

::= o

o

O

O

R

rr

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d

c
b

a
bbb

b

b

b

bd

d

d

d

o

r

Ro

O

o

r

16

5

4

b
a

d
c

b

b

r
7

d

o
8

c

d
r

9

d

b

O
2a

b

30
R

3(e1)

d(e1)

d(e1)

o

O

o

r

Rr

1’

9’
8’

7’

6’

5’

4’

3’

2’

d
c

b

a
d

c
b

a
bbb

b

b

b

bd

d

d

d

ooRo

r

R

1

b
a

db

d
::=

2

3

9

o
4

c
d

rr
5

d

b o

o
6 a

b

r
7

b
d

O

8
c

d

31

b(e1)

O

r
1

4

3

2
d

c
b

a
bbb d

d

o

o

o

O

r

Rr

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d
c

b
a

bbb

b

b

b

bd

d

d

d

::=Ro

r

d

o

o

r
5

b

o
6 a

b

r
7

b
d

o

8
c

d
R

9

d

b

32

b(e1)

o

o

o

o O

Rr

rr

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d

c
b

a
bbb

b

b

b

bd

d

d

d

::=

o

Ro

Rr
1

5

4

3

d

c
bbbb

b d

o
6 a

b

r
7

d b

o

8
c

d
r

9

d

b

O
2a

b

33d(e1)

::= o

o

O

o

R

rr

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d

c
b

a
bbb

b

b

b

bd

d

d

d

o

r

Ro

O

o

r

16

5

4

b
a

d
c

b

b

r
7

d

o

8
c

d
r

9

d

b

o
2a

b

Rbbbb d

3

34

d(e1)

o

o

o

r

Rr

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d
c

b
a

bbb

b

b

b

bd

d

d

d

ooRo

r

R

1

b
a

db

d
::=

2

3

9

o
4

c
d

rr
5

d

b
o

o
6 a

b

r
7

b
d

o

8
c

d b

35

O

r
1

4

3

2d

c
b

a
bbb d

d

o

o

o

O

r

rr

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d

c
b

a
bbb

b

b

b

bd

d

d

d

::=Ro

r

d

o

o

r
5

b

o

6
a

b

r
7

b
d

o
8

c

d
r

9

d

b

b

36

o

o

o

o o

Rr

rr

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d
c

b
a

bbb

b

b

b

bd

d

d

d

::=

o

Ro

Rr
1

5

4

3

d

c
bbbb

b d

o
6

a
b

r
7

d b

o
8
c

d
r

9

d

b

o
2a

b

d 37

::= o

o

O

o

r

rr

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d
c

b
a

bbb

b

b

b

bd

d

d

d

o

r

Ro

O

o

r
16

5

4

b

a
d

c
b

b

r
7

d

o
8

c

d
r

9

d

b

o
2a

b

rbbbb d

3
d

38

o

o

o

o

r

rr

1’

9’8’7’

6’

5’

4’

3’

2’

d
c

b
a

d
c

b
a

bbb

b

b

b

bd

d

d

d

o

r

::=Ro

o

o

r

16

5

4

b
a

d
c

b

b

r
7

d

o

8
c

d
r

9

d

b

o
2a

b

rbbbb d

3
d

39
40

Io ::= � co do

Figure 3: Graph Grammar representing the textured symbol of Fig. 1(b).

8

while error-correcting rules test if there is a cut shape or a split shape in the position

of the inserted node. Each time an error-correcting rule is applied, a cost is associated

with it, that quanti�es the distortion of the textured symbol from the model. Once this

cost reaches a given threshold, no more error-corrections are possible, and the remaining

inserted nodes are deleted.

In Fig. 4, an example of a parsing process is presented. Given a graph H in Fig. 4(b)

representing the image in Fig. 4(a) we parse it following the grammar presented in Fig. 3.

Then in Fig. 4(c) we take the �rst node and compare it with the two possible shapes

obtaining that it is the octagonal shape. Then we apply the �rst starting rule 10 in Fig. 3,

having the graph in Fig. 4(c), where the nodes with Ir or Io are the inserted ones, the

node with white o the one we are rewriting as a terminal node, and the nodes with R and

O the ones we are rewriting as non-terminal nodes. Then all the non-terminal nodes are in

a list and the inserted nodes in a separate list. Taking the �rst non-terminal node from its

list, we apply rule 11 in its symmetric form with parameters e1 and e2 as false, modifying

the graph as it appears in Fig. 4(e), where the nodes already parsed as being part of the

symbol appear in grey color. In the same way, we apply the rules marked in Fig. 4(e)�

(m), where the parameters T or F denote whether the nodes labeled with e1 ad e2 do

exist or not, respectively, and Sym: denotes whether the rule is applied in its symmetric

version. In Fig. 4(f) rule 13(false; false) from Fig. 3 is applied, with the resulting graph

of Fig. 4(f); we should notice that this shape has some distortions, but can be matched

with the original octagon, because the distortions are under a certain threshold. Once the

whole list of non-terminal nodes has been analyzed, we are at the point of Fig. 4(n), where

all the nodes recognized as forming the textured symbol represented by the grammar in

Fig. 3 are in grey and all the inserted nodes appear around them. Then, we apply the

grammar rules 9 and 40, to delete the non existing inserted nodes having the graph in

Fig. 4(o). From that point, we apply rule 40 to correct errors, selecting the cut shapes

and the double ones, represented by the terminal nodes oc and os, respectively. At the

end, the whole graph is recognized as the textured symbol.

9

r r r

r

o o o d2

o o o d2

d1

r r r

r

o o o d2

o o d2

d1

S’

r r

r

o o d2

o d2

d1

o

R

O

OIo

Io

Ir

Ir Ir

(a) (b) (c) (d)rule 10

r

r

o d2

d2

d1

o

R

O O

O

R

oIo

Io Io

Ir

Ir Ir Ir

r

r

o d2

d2

d1

o

R

O

O

R

o

o

Io

Io Io

Io

Io

IrIr

Ir

Ir Ir Ir

r

r

o d2

d2

d1

o

O

O

R

o

o

r

Io

Io Io

Io

IrIr

Ir

Ir Ir Ir

Io

r

d2

d1

o

O

R

o

o

r

o

R

O

Io

Io Io Io

Io

Io

Io

Ir

IrIr

Ir

Ir Ir Ir

d2

(e)r11(F; F)Sym. (f)r13(F; F) (g)r6 (h)r11(F; F)Sym.

d2

d1

o

R

o

o

r

o

R

Oo

R

Io

Io Io Io

IoIo

Io

Io

Ir

IrIr

Ir

Ir Ir Ir
d2

d2

d1

o o

o

r

o

R

Oo

R

r

Io

Io Io Io

IoIo

Io

Ir

IrIr

Ir

Ir Ir Ir

Io d2

d1

o o

o

r

o

R

o

R

r

o

Io

Io Io Io

IoIo

Io

Io

Io

Io

Ir

IrIrIr

Ir

Ir Ir Ir

d2

d2

d1

o o

o

r

o

o

R

r

o

r

Io

Io Io Io

IoIo

Io

Io

Io

Io

Ir

IrIrIr

Ir

Ir Ir Ir

d2

d2

(i)r21(T; F) (j)r13(F; F) (k)r21(F; F) (l)r13(F; F)

d2

d1

o o

o

r

o

o

r

r

o

r

d2Io

Io Io Io

IoIo

Io

Io

Io

Io

Ir

IrIrIr

Ir

Ir Ir Ir

d2

d1

o o

o

r

o

o

r

r

o

r

Io

Io Io Io

IoIo

Io

Io

Io

Io

d2

Ir

IrIrIr

Ir

Ir Ir Ir
d2

d1

o o

o

r

o

o

Io

r

r

o

r

Io

Io

Io d2 d2

co

d1

o o

o

r

o

o

Io

r

r

o Io

Io

r

(m)r4(F) (n)r9; r40 (o) (p)r40

co

co

d1

o o

o

r

o

o

Io

r

r

o

Io

r

co

d1

o o

o

r

o

o

r

r

o

r

dodo

co

coo o

o

r

o

o

r

r

o

r

do

co

do

(q)r40 (r)r40 (s)

Figure 4: Parsing process of a graph.

10

4 Conclusions and Future Work

In this paper, we have presented a model to represent textured symbols. The model

is based on a graph, with some nodes representing �xed patterns�polygons�and other

nodes representing structural textures. Polygons are represented by a string while textures

are represented by a graph grammar. The recognition process is done through graph

isomorphism, starting a parser process on the graph when a textured part of the symbol

has to be found. The grammar allows four kind of distortions in the textured parts of the

symbol: Distortions in the shapes forming the texture, distortions in their neighborhood,

shapes which are split due to an insu�cient resolution in the lines around the shape or

because of noise, and shapes which appear only partially because they are at the border of

the texture. It is also points out the need to add a cost function to model the distortion of

the textured symbol found from its model, in order to control which degree of deformation

we allow.

The present work is the �rst step of a process to recognize textured symbols in graphical

documents. Given the nature of such documents, several distortions may appear on these

textured symbols. Here, we have presented some solutions for a group of these distortions,

but others may appear, due to the acquisition process or because other symbols may

appear, superimposed on the texture, so that they create holes in it and several kinds of

partitions in its shape. Because of all of that, some distortions have to be allowed, but

they must be controlled, to guarantee that the parsing subgraph is really the textured

symbol to be recognized. For that purpose, an error distance should be computed by

adding a cost function each time we apply a correcting rule. This cost function should

be in terms of the distortion of the shapes we are taking as distorted ones and their

neighborhoods, but it should be weighted, using the number of correct elements forming

the texture, and allowing more distortions when the set of correct elements is larger.

11

References

[1] H. Bunke. Attributed Programmed Graph Grammars and Their Application to

Schematic Diagram Interpretation. IEEE Transactions on Pattern Recognition and

Machine Intelligence, Vol:4, N.6, pp. 574�582, November 1992.

[2] D. Dori. A syntactic/geometric approach to recognition of dimensions in engineering

machine drawings. Computer Vision, Graphics and Image Processing, 1989.

[3] H. Fahmy and D. Blostein. A graph grammar programing style for recognition of music

notation. Machine Vision and Aplications (1993) Vol. 6. pp. 83�99, Springer-Verlag

[4] H. Fahmy and D. Blostein. A Survey of Graph Grammars: Theory and Applications.

12 ICPR, pp. 294�298, 9-13 October 1994, Jerusalem (Israel).

[5] A. Kosmala, S. Lavirotte, L. Pottier, and G. Rigoll. On-Line Handwritten Formula

Recognition using Hidden Markov Models and Context Dependent Graph Grammars.

In Proc. of 5th International Conference on Document Analysis and Recognition, 1999.

[6] J. Rekers and A. Schürr. De�ning and Parsing Visual Languages with Layered Graph

Grammars. Journal of Visual Languages and Computing, Vol. 8, No. 1, London: Aca-

demic Press (1997), pp. 27�55.

[7] G. Rozenberg. Handbook of Graph Grammars and Computing by Graph Transforma-

tion. Vol. I, Foundations, World Scienti�c, 1997.

[8] J. Lladós, G. Sánchez and E. Martí. A string-based method to recognize symbols

and structural textures in architectural plans. Graphics Recognition, Algorithms and

Systems. K. Tombre and A. K. Chhabra (eds). Lecture Notes in Computer Science,

Springer-Verlag, 1389:91�103, 1998.

[9] W. Min, Z. Tang, and L. Tang. Using web grammar to recognize dimensions in

engineering drawings. Pattern Recognition, 26(9):1407�1916, 1993.

[10] G. Sánchez, J. Lladós. A Graph Grammar to Recognize Textured Symbols. To appear

in proceedings of ICDAR 2001.

12

