The search for genericity in graphics recognition
applications: Design issues of the Qgar software
system

Jan Rendek, Gérald Masini, Philippe Dosch, and Karl Tombre

LORIA, B.P. 239, 54506 Vandceuvre-lés-Nancy Cedex, France

Jan.Rendek@loria.fr, Gerald.Masini@loria.fr, Philippe.Dosch@loria.fr,
Karl.Tombre@loria.fr

Abstract. This paper presents the main design and development issues
of the Qgar software environment for graphics recognition applications.
We aim at providing stable and robust implementations of state-of-the-
art methods and algorithms, within an intuitive and user-friendly envi-
ronment. The resulting software system is open, so that our applications
can be easily interfaced with other systems, and, conversely, that third-
party applications can be “plugged” into our environment with little ef-
fort. The paper also presents a quick tour of the various components of
the Qgar environment, and concentrates on the usefulness of this kind of
system for testing and evaluation purposes.

1 Introduction

The design of document analysis systems implies mastering a number of complex
issues. Firstly, and obviously, the designers have to put together a set of stable,
robust implementations of state-of-the-art methods and algorithms, to perform
the various processing and recognition tasks needed in document image analysis:
Image preprocessing and filtering, binarization, text-graphics separation, vector-
ization, feature extraction, character and symbol recognition, etc. Best practices
in software engineering, as well as the need for performance assessment and eval-
uation tools, lead to the requirement that each function, class, or task should be
associated with data sets for testing and evaluation purposes.

Secondly, the system must be easy to use (and hence provide an intuitive
user interface), easy to install, and well documented. The various tools and
applications should be as generic as possible, so that the system does not solely
work for a tiny subset of document analysis tasks.

The third requirement is probably the most important: The system has to
be open, versatile, and interfaceable. Even if the best care is given to all possi-
ble aspects of a document analysis problem, and even if the development team
has unlimited resources (which is obviously never the case), some applications
will inevitably not be foreseen in the system. Had they been foreseen, other
teams may still want to use their own algorithm or method for a given problem,
and may want to interface their tools with the general system, without being

constrained by a rigid framework, non-standard formats, etc. Conversely, the
document analysis system, even if it provides by itself a large coverage of docu-
ment analysis needs, may have to become a component of a larger system. Once
again, interfacing and openness are vital requirements.

These design and integration problems are well-known to many researchers
in document analysis, and more generally in image processing. One of the most
famous initiatives to deal with them was the Image Understanding Environment
(IUE) [1,2], which aimed at providing a complete environment for all kinds of
image processing applications. Many useful ideas came out of this project, but
the resulting environment is extremely complex and hard to fully master.

Of course, a number of specific, ad hoc document analysis systems have been
implemented, but the design problems are undoubtedly of another order of mag-
nitude when the system has to be versatile, as the flexible integration of all
the system components becomes a crucial problem on its own. Still, there has
been clear successes in some subareas. For instance, there is good know-how
in building flexible and versatile OCR and page reader systems, taking into
account segmentation, feature extraction, classification, and various linguistic
post-processing steps [3]. Extending the concept to various business documents,
Dengel et al. have also developed a very mature system, capable of adaptation
to different types of documents [4,5]. Other specific application domains have
their mature systems, such as bank check processing software [6], table recog-
nition [7], or forms processing [8]. Some effort has also been made in building
flexible environments for handwriting recognition [9].

However, when it comes to graphics-rich documents, most systems remain
very context-dependent and are just able to solve a very specific problem. Few
teams made attempts to build generic tools. One of the few early initiatives
in this direction comes from Pasternak [10], who proposes a hierarchical and
structural description coupled with triggering mechanisms for interpretation.
Another example is the DMOS method proposed by a team at IRISA [11], and
based on syntactical tools to describe the domain knowledge.

Our team is involved since several years in the development of such an open
software environment (called Qgar) according to a software engineering view-
point [12]. In some aspects, it is similar to the Gamera framework [13], which
provides domain experts with a high abstraction-level, user-friendly environment
to build, to tune, and to compare document analysis applications. Its plug-in ar-
chitecture allows a quick integration of new state-of-the-art methods. Qgar also
offers a common environment where applications and third-party contributions
can easily coexist and interact. However, it mainly aims at providing the com-
munity with stable robust and generic document analysis methods, either as a
set of off-the-shelf components or as an application builder toolkit [14,15,16].
Lately, we have successfully integrated Qgar with other tools and systems, as
part of a French national project on software for document analysis [17].

This paper gives an overview of the main design issues for such a system.
In section 2, we describe the general concepts which have guided us throughout
the development. We then propose a brief tour of the environment (§ 3), before

concentrating on the important issue of testing (§ 4), in a software development
perspective, performance evaluation, and benchmarking.

2 Underlying concepts

When developing the Qgar software platform, we had three main objectives in
mind:

— Ease the development of new image processing applications by grouping
together implementations of graphics recognition methods and common data
structures,

— offer an environment to tune and evaluate the performances of our image
processing applications and compare them with other existing ones,

— demonstrate and distribute our know-how in the field of graphics recognition.

The Qgar platform is an ever evolving project, getting enriched by all develop-
ments required in the course of our research. In some way, it could be considered
as a snapshot of our current know-how about graphics recognition and docu-
ment image processing. This explains why we did not orient our development
effort towards a particular functionality. We paid instead a particular attention
to several (software engineering) issues, such as:

— Interoperability: Our platform has to easily interact at various levels with
external systems. A high level of interoperability is a great asset to build
document analysis chains integrating third-party applications. It is a great
help for evaluation purposes, as it allows us to compare our work with others
within a common framework. Interoperability is also a key feature for distri-
bution as it makes part or whole of the platform available to other (research)
groups with little effort. For example, the integration of Qgar applications
into the DocMining platform®, for heterogeneous document interpretation,
raised no major difficulty [17].

— Reusability: As stated above, the software reuse rate must be maximized
from one research work to another. This implies that the platform archi-
tecture and implementation must be highly modular, as, in particular, only
specialized features from a given application are useful to build the next one.
The thinner the granularity of the corresponding software components is, the
more they may be reused. The architecture should also be flexible enough
to allow a quick integration of existing software.

— Extensibility: Since the platform is intended to evolve according to our needs,
it must be extensible and easy to maintain. Adding new features must not

! This project is supported by a consortium including four academic partners, PSI
Lab (Rouen, France), Project Qgar (LORIA, Nancy, France), L3I Lab (La Rochelle,
France), DIUF Lab (Fribourg, Switzerland), and one industrial partner, GRI Lab
from France Télécom R&D (Lannion, France). It is partially funded by the French
Ministry of Research, under the auspices of RNTL (Réseau National des Technologies
Logicielles).

interfere with already implemented functionalities, and updating or extend-
ing existing code to fulfill more precise or slightly different purposes must be
simple. A failure to achieve such requirements would lead to the construc-
tion of concurrent versions of the platform, specifically designed for different
aims. This would contradict the very purpose of our project.

We had to conform to several principles to meet these requirements, and
first of all enforce software quality procedures. As capitalizing on previous de-
velopments is one of our objectives, we try to produce high quality software.
Software poorly documented or written without thorough design is not likely
to be adapted to purposes different from the initial ones. If rigorous design and
implementation are essential to produce high standard code, they must be com-
plemented by good documentation and extensive test suites to result in long
lasting code.

Documentation is essential when coming to code reuse or interoperability.
Maintaining a component, modifying it, or making it interact with other soft-
ware artifacts requires information on its design and implementation. To ensure
the best documentation coverage, the full source code of Qgar is therefore self-
documented. The documentation is embedded in code comments and can be au-
tomatically extracted using Dozygen? to produce online browsable HTML pages
or high-quality hardcopy documents. This documentation is complemented by
several manuals, including design papers and tutorials.

Testing is another aspect of software quality that is essential in the Qgar
context. Regression and performance tests are required to detect errors when
integrating, upgrading or refactoring pieces of code. Considering the modularity
of the platform architecture, unit testing appeared to be the best methodology
to design test suites. Each Qgar module is thus associated with its own inde-
pendent set of regression and performance tests. They provide great help to
detect the propagation of errors when integrating a new module, to evaluate the
performance gain when refactoring, and much more...

C++ has been chosen as programming language, so as to combine the object-
oriented programming paradigm, which is appropriate to modular and easy-to-
maintain software production, with several other advantages of the language, all
conforming to our requirements. When efficiency becomes more important than
modularity, it allows the use of well-known C programming tricks, cutting across
the computational overhead implied by an object-oriented design. C++ is also,
more or less, an industrial standard, giving access to a lot of existing software.

The Qgar software environment is distributed® under the terms of the GNU
Lesser General Public License (LGPL) and, for the user-interface only, the Q
Public License (QPL). In this way, our work can be freely used, modified and
redistributed by others, and we can also reuse existing code published under any
LGPL compatible license. In fact, the choice of such a license helps to improve
the software quality in the long run, thanks to the feedback provided by the users:
Comments, bug reports and corrections, or even requests for new features.

% http://www.doxygen.org/
3 The Qgar system may be downloaded from its web site at http://www.qgar.org/.

3 System overview

The Qgar software system is divided into three parts: QgarLib, a library of C++
classes implementing basic image and graphics recognition operators, QgarApps,
an applicative layer constructed from QgarLib components and providing graph-
ics recognition applications, such as text-graphics separation or vectorization,
and QgarGui, a user interface dedicated to result visualization and application
supervision. The whole system represents about 60,000 lines of C+-+ code. A par-
ticular attention has been paid to the support of standard formats (PBM+, DXF,
SVG), high-quality documentation, configuration facilities (using autoconf /au-
tomake), and support of Unix/Linux operating systems.

3.1 The QgarLib library

The object-oriented paradigm is based on data encapsulation, i.e. describing
abstract data types and their interfaces with the clients. However, image (or
graphics) processing generally concerns collections of operators, i.e. procedures,
to be applied to images. There are two solutions to implement such proce-
dures in an object-oriented way. The first one consists in implementing them
as function members of the classes of the objects on which they operate. For
example, the convolution of an image by a Gaussian could be defined as the
gaussianConvolution function member of the Image class (that describes im-
ages). Such a technique implies ongoing modification of the interfaces of existing
classes, whenever new methods are added to the library. Moreover, the inter-
faces of the corresponding classes grow in proportion and become too large to
be efficiently used.

We thus preferred a more pragmatic solution, based on a very simple idea.
Image becomes the base class of a hierarchy, and an operation that processes an
image is implemented by a constructor of a new derived class: The convolution by
a Gaussian is thus implemented as the constructor of the GaussianConvolution
class deriving from the Image class. In this way, there is no need to modify the
existing hierarchy and classes, and different methods to perform the same con-
ceptual operation can be easily implemented through derived classes of an ab-
stract class. This principle has two main advantages. On the one hand, software
parts separately designed may be easily integrated in the Qgar software, even
when written in C. On the other hand, designers as well as clients of the library
can write compact and easy-to-read code, which meets the understandability
requirements [18].

To illustrate the philosophy of our approach, Figure 1 shows excerpts from
a text-graphics segmentation application, implementing our own variation of
Fletcher and Kasturi’s algorithm [19,20]. In the figure, we did omit the compu-
tations themselves—obviously, such an algorithm cannot boil down to merely
calling a succession of constructors—but the example should give the general
idea of the ease of writing a graphics recognition algorithm using the classes
provided by QgarLib. As one can see, the code remains quite understandable.
This is an idyllic view as, in the general case, additional parameters are needed to

// File containing the initial (binary) image
PbmFile pbf("an_image.pbm");

// Load the image

BinaryImage initImg(pbf);

// Prune small connected components from the image
PrunedConCompBinaryImage prunedImg(initImg, 5);

// Eztract connected components from the resulting image
ConnectedComponents components (prunedImg) ;

// Do some filtering to get the teztual components:
// The result is given by variable tztComponents

// Create the binary image of the teztual components
ComponentBinaryImage txtImg(components, txtComponents);

// Subtract the texztual components from the initial image
// to get the graphical components
initImg -= txtImg;

// Save the image of teztual components
PbmFile txtf("txt_image.pbm");
txtImg.save(txtf);

// Save the image of graphical components
PbmFile graphxf ("graphx_image.pbm") ;
initImg.save (graphxf) ;

Fig. 1. Excerpts from a text-graphics segmentation application.

accurately perform the different image processing steps. However, we firmly be-
lieve that the general philosophy holds for most low-level and intermediate-level
operations in graphics recognition applications.

QgarLib classes implement most data structures and algorithms to be han-
dled when designing a document analysis system (graphical objects such as
points, segments, arcs of circle... image processing operations such as convo-
lutions, mathematical morphology... and so on) as well as different kinds of
utilities, especially to store graphics or image data in files using various formats.
The introduction of XML in the library has become inevitable, as it is now a
standard format which is accepted by an increasing number of tools. Moreover,
import and export of SVG data cannot work without it. However, to avoid com-
patibility problems between various software licenses, an external XML library
cannot be directly integrated. We have therefore adopted a solution allowing the
use of any SAX XML parser. It is based on a set of interfaces providing an indi-

rection level between the Qgar system and the external parser. These interfaces
have to be implemented by concrete classes acting as wrappers between an XML
APT and the system. Wrappers for the Xerces and Qt parsers have already been
implemented.

3.2 The QgarApps applications

QgarApps is a set of stand-alone applications representing the applicative layer
of the Qgar system. Some of them are simple wrappings of QgarLib classes
implementing the construction of useful objects, essentially intended to serve
generic purposes, whereas others are more sophisticated and specific programs.
About ten applications are available, such as binarization, thin-thick segmenta-
tion, text-graphic segmentation, vectorization, etc.

An application is run from a command line and works as a black box, to which
clients have to supply arguments (input/output images, thresholds values, etc.)
suited to the result they want to obtain. Communication between applications
is file-based, in order to simplify the implementation. The interoperability and
integration capability of the Qgar system relies on these applications, which
can be sequentially invoked to build processing chains performing document
analysis tasks. Chains performing the same task according to different methods
can be quickly elaborated and can be conveniently compared, for performance
evaluation for instance.

However, an application is practically useless if clients are not supplied with
a description of the application itself (the tasks which are performed, the corre-
sponding methods, etc.), of its parameters, and of the syntax of the command
line. This information is given by a XML file associated with the application.
In this way, an “external” application, like the DocMining platform [17], can
integrate any Qgar application, provided that it is able to parse the correspond-
ing XML description to “understand” the behavior of the Qgar application and
to get the kind of data the Qgar application must be fed with. Conversely, a
Qgar application can be interfaced with any application designed according to
the same principle like, for example, the graphical user interface QgarGui (see
next section), or the Qgar web site, that proposes dynamic demos of Qgar ap-
plications. In the latter case, a HTML form is automatically generated from
the description file to get parameter values supplied by clients to run selected
applications (Fig. 2).

3.3 The QgarGui user interface

QgarGui provides users with a friendly environment to visualize and interact
with every step of a document processing chain. It is completely independent
of the other parts of the platform, though it may be used to control any Qgar
application. As previously mentioned, an application is integrated within the
interface with the only help of its description file. This description is used to
automatically generate dialogs to tune the application parameters (for a spe-
cific issue) and to make online help directly available thanks to the embedded

Eile Edit

View Go

T

@~ 2

Bookmarks Tools Help

G L] http:/fwww.qgar .orgidynamicDemo php?page=setArgs&demoName: =

= Done

i RE———
e CH
v e
R [Submit |
~nt————
e s

e
~aiisaniie’

(=8

DYNAMIC DEMOS

Fig. 2. HTML form automatically generated by the Qgar web site for the application
performing text-graphics segmentation.

application documentation. For example, Figure 3 shows the activation dialog

<application>
<descr>

<name>Fixed Binarization</name>

</descr>
<paramlist>
<param name="Source Image"
flag="in"
type="grayscale" />
<param name="Target Image"
flag="out"
type="binary"
default="_.pbm" />

name="Threshold"
flag="thr"
type="numeric"
default="127"
min="0"
max="255" />
</paramlist>
</application>

<param

(a)

B agarGui

Fixed Binarization
Call Parameters ICummmdLin: | Description |

~Input P 3

Q Source Image(PGM] ﬁ'issyjs.pgm
@ Thresholdint)

113

~Output P

@ Target Image(PBM) qfssyjs.pbm

(b)

Fig. 3. Automatic integration of an application of binarization: From the XML descrip-
tion of the application (a), QgarGui generates a dialog box (b) to tune its parameters

and then to run it.

created from the description of an application which performs a binarization.
Even when designed apart from the Qgar platform, an application can thus be
very easily integrated into the platform, without recompiling any part of the
platform itself, as long as a description is provided. In this way, the interface
may also be appropriately used as a flexible tool to compare the efficiency of
different applications/methods delivering the same kind of result.

QgarGui supports bitmap and vectorial image formats, such as subsets of
DXF or SVG. It offers features to apply and control image processing tools, to
display results (including zooming and image superimposing facilities), and to
manually correct them (i.e. add missing results, delete or alter erroneous ones...)
if needed. In particular, special operations to edit for both bitmap and vectorial
images are supported, such as copy and paste of bitmap images, creation and
modification of vectorization components, etc. The interface is implemented in
C++ using the Qt framework* and is distributed under the QPL license. This
makes it easy to be upgraded or customized by anyone interested in its features.

4 Testing

As mentioned in § 2, testing is an important part of the Qgar platform develop-
ment and it takes place on two levels, with different purposes.

The first level is related to the developer viewpoint. It is based on a white
box approach with thin granularity, each test focusing on several code lines, up
to a full C++ class. These tests are implemented according to the unit testing
approach, as defined by the extreme programming methodology [21], and are
directly integrated in our software development process. For each C++ class, a
“twin” test-class implements as many test-function members as features of the
original class. A test-function is a set of assertions which automatically check if
the code of the corresponding feature runs correctly. Once written, these tests
are handled by a dedicated framework and can be run individually or together,
using a separate API, CPPUnit®. Every time new code is introduced in the
platform, or old code is updated, all tests are run.

Such a systematic test policy offers several immediate advantages. It provides
developers with an instant feedback on the design of any new code. If the tests
are hard to write, it generally means that the proposed design is either improper
or too complex. It also improves the modularity of the platform: Each new class
is implemented along with a direct client class, the test-class, that constrains
developers to focus on the services offered by this class, rather than on their
implementation.

There are also long term benefits. The set of all the test-classes provides a
solid regression test suite. This eases the process of refactoring [22], as tests can
be run every time a code change occurs, ensuring that no other feature has been
broken. The code quality is improved on the long run: Every time a glitch is
found, a new test is introduced to ensure that it will not appear again.

* The Qt framework is available at http://www.trolltech.com,/.
5 http://cppunit.sourceforge.net/

The second testing level, called functional testing, is related to the client
viewpoint and focuses on the ready-to-use services offered by the software, that
is to say Qgar applications, in our case. Functional tests are written once an
application is ready to be run. Their are designed to validate that the application
fulfills the tasks it is supposed to perform and to evaluate its performances. The
tests are completely independent of the application implementation. They see
the application as a black box and proceed only by comparing its inputs and
outputs. This approach is really interesting when combined with the method of
integration of third-party applications in the platform (see § 3.2). Indeed, the
tests defined for an application can be reused for any application designed for
the same purpose. This makes Qgar a good tool to compare different methods
or different implementation of methods.

Unfortunately, unlike unit tests, functional tests are complex to set up, and
a lot of work remains to be done to define a general, complete framework to
perform such tests. However, their importance is crucial to the field, as they are
at the basis of numerous performance evaluation schemes. We have therefore
started work on adding a number of evaluation methods and tools to the Qgar
platform, providing, among other things, support for the VEC format used by
various evaluation methods [23] and for the document image degradation model
proposed by Kanungo [24]. These tools were used for our participation in the
organization of the first symbol recognition contest, held in Barcelona during
GREC’03 [25]. We also plan to integrate other evaluation methods designed by
our group, notably the vector-to-ground-truth matching method developed by
Xavier Hilaire within our group [26].

5 Conclusion

In our work to develop the Qgar software environment, we do our best to aim
at genericity, ease of use, and interoperability with other software systems. This
led us to the adoption of rigorous design principles, which have been detailed in
this paper. The result is a reference platform, available to any person interested
in building a document analysis system. The environment can be used as such,
obviously with its limitations and constraints. It can also be easily enriched by
“plugging in” document analysis tools separately developed, on the unique con-
dition that a description is provided for each new tool to be added, as explained
in section 3.2. Conversely, the whole environment can itself become a compo-
nent of a larger project, using the same principles, as we have proved with the
DocMining project.

In addition to the interest it may be for the community to freely down-
load state of the art document analysis tools and methods, to use them, and to
eventually integrate them into one’s own application, such a software environ-
ment provides an efficient platform for running benchmarks, comparisons and
performance evaluations. While software-oriented test facilities, as described in
section 4, have been introduced in the platform, we have started adding sup-
port for testing and benchmarking at the functional level. This effort will be

10

emphasized in the coming time, as the Qgar environment provides a good ba-
sis for conducting thorough evaluation campaigns on various document analysis
methods.

References

10.

11.

12.

. Kohl, C.; Mundy, J.: The development of the Image Understanding Environment.

In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
Seattle, WA (USA). (1994) 443-447

. Lerner, R.A.: The Image Understanding Environment progress since IUW’97. In:

Proceedings of the 1998 DARPA Image Understanding Workshop, Monterey, CA
(USA). (1998)

Baird, H.S.: Anatomy of a versatile page reader. Proceedings of the IEEE 80
(1992) 1059-1065

. Dengel, A.R., Klein, B.: smartFIX: A requirements-driven system for document

analysis and understanding. In Lopresti, D., Hu, J., Kashi, R., eds.: Proceedings of
the 5th TAPR International Workshop on Document Analysis Systems, Princeton,
NJ (USA). Volume 2423 of Lecture Notes in Computer Science., Berlin, Springer-
Verlag (2002) 433-444

Dengel, A.R.: Making Documents Work: Challenges for Document Understand-
ing. In: Proceedings of 7th International Conference on Document Analysis and
Recognition, Edinburgh (Scotland, UK). (2003) 1026-1035

Gorski, N., Anisimov, V., Augustin, E., Baret, O., Maximov, S.: Industrial bank
check processing: the A2iA CheckReader. International Journal on Document
Analysis and Recognition 3 (2001) 196-206

Shamilian, J.H., Baird, H.S., Wood, T.L.: A retargetable table reader. In: Pro-
ceedings of 4th International Conference on Document Analysis and Recognition,
Ulm (Germany). (1997) 158-163

Niyogi, D., Srihari, S.N., Govindaraju, V.: Analysis of printed forms. In Bunke,
H., Wang, P.S.P., eds.: Handbook of Character Recognition and Document Image
Analysis. World Scientific (1997) 485-502

Cracknell, C., Downton, A.C.: A Handwriting Understanding Environment (HUE)
for rapid prototyping in handwriting and document analysis research. In: Pro-
ceedings of Hth International Conference on Document Analysis and Recognition,
Bangalore (India). (1999) 362-365

Pasternak, B.: Adaptierbares Kernsystem zur Interpretation von Zeichnungen.
Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwis-
senschaften (Dr. rer. nat.), Universitdt Hamburg (1996)

Cotiiasnon, B.: DMOS: A generic document recognition method. Application to
an automatic generator of musical scores, mathematical formulae and table struc-
tures recognition systems. In: Proceedings of the 6th International Conference on
Document Analysis and Recognition, Seattle, WA (USA). (2001) 215-220

Dosch, P., Ah-Soon, C.; Masini, G., Sanchez, G., Tombre, K.: Design of an inte-
grated environment for the automated analysis of architectural drawings. In Lee,
S.W., Nakano, Y., eds.: Document Analysis Systems: Theory and Practice. Selected
papers from the 3rd TAPR Workshop, DAS’98, Nagano (Japan), November 4-6,
1998, in revised version. Lecture Notes in Computer Science 1655. Springer-Verlag,
Berlin (1999) 295-309

11

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Droettboom, M., MacMillan, K., Fujinaga, I.: The Gamera framework for building
custom recognition systems. In: Proceedings of the Symposium on Document
Image Understanding Technologies, Greenbelt, Maryland (USA). (2003) 275-286
Dosch, P., Tombre, K., Ah-Soon, C., Masini, G.: A complete system for analy-
sis of architectural drawings. International Journal on Document Analysis and
Recognition 3 (2000) 102-116

Tombre, K., Ah-Soon, C., Dosch, P., Habed, A., Masini, G.: Stable, robust and
off-the-shelf methods for graphics recognition. In: Proceedings of the 14th Inter-
national Conference on Pattern Recognition, Brisbane (Australia). (1998) 406-408
Tombre, K., Ah-Soon, C., Dosch, P., Masini, G., Tabbone, S.: Stable and robust
vectorization: How to make the right choices. In Chhabra, A.K., Dori, D., eds.:
Graphics recognition—Recent advances. Volume 1941 of Lecture Notes in Com-
puter Science. Springer-Verlag, Berlin (2000) 3-18

Clavier, E., Masini, G., Delalandre, M., Rigamonti, M., Tombre, K., Gardes, J.:
DocMining: A cooperative platform for heterogeneous document interpretation
according to user-defined scenarios. In: Proceedings of 5th IAPR International
Workshop on Graphics Recognition, Barcelona (Spain). (2003) 21-32

Meyer, B.: Object-oriented software construction, second edition. The Object-
Oriented Series. Prentice-Hall, Englewood Cliffs, NJ (USA) (1997)

Fletcher, L.A., Kasturi, R.: A robust algorithm for text string separation from
mixed text/graphics images. IEEE Transactions on PAMI 10 (1988) 910-918
Tombre, K., Tabbone, S., Pélissier, L., Lamiroy, B., Dosch, P.: Text/graphics
separation revisited. In Lopresti, D., Hu, J., Kashi, R., eds.: Proceedings of the
5th TAPR International Workshop on Document Analysis Systems, Princeton, NJ
(USA). Volume 2423 of Lecture Notes in Computer Science., Springer-Verlag (2002)
200-211

Beck, K.: Extreme programming explained: Embrace change. Addison-Wesley
Professional, Reading, MA (USA) (2000)

Fowler, M.: Refactoring — Improving the design of existing code. Addison-Wesley,
Reading, MA (USA) (2000)

Phillips, I.T., Chhabra, A.K.: Empirical performance evaluation of graphics recog-
nition systems. IEEE Transactions on PAMI 21 (1999) 849-870

Kanungo, T., Haralick, R.M., Baird, H.S., Stuezle, W., Madigan, D.: A statistical,
nonparametric methodology for document degradation model validation. IEEE
Transactions on PAMI 22 (2000) 1209-1223

Valveny, E., Dosch, P.: Symbol recognition contest: A synthesis. In: Selected
Papers from the 5th International Workshop on Graphics Recognition (GREC’03,
Barcelona, Spain). Lecture Notes in Computer Science (2004) to appear.

Hilaire, X.: A matching scheme to enhance performance evaluation of raster-to-
vector conversion systems. In: Proceedings of 7th International Conference on
Document Analysis and Recognition, Edinburgh (Scotland, UK). (2003) 629-633

12

