
Architectural Symbol Recognition Using a Network
of Constraints

Christian Ah-Soon1 and Karl Tombre2

LORIA–CNRS–INPL, B.P. 239, 54506 Vandœuvre-lès-Nancy CEDEX, France

Abstract

We propose a method for recognizing architectural symbols. The method is based on the
description of the model through a set of constraints on geometrical features, and on prop-
agating the features extracted from a drawing through the network of constraints. One ad-
vantage of this approach is the possibility to incrementally build and update the model,
when new symbols have to be taken into account.

Key words: Graphics recognition. Symbol recognition. Architectural drawings. Constraint
checking.

1 Introduction

Our team has been working for several years on the analysis of architectural draw-
ings. The ultimate aim is to reconstruct a 3D model of a building from the analysis
of design-phase drawings. For this purpose, we have developed two complemen-
tary methods for reconstructing the geometric model of a level from its vectoriza-
tion (Ah-Soon and Tombre 1997; Dosch et al. 1999). But both methods rely heavily
on a correct recognition of architectural symbols. These symbols are much less nor-
malized than those which can be found in other technical domains. We therefore
need a flexible method, capable of easily integrating new symbol models with min-
imal computation overhead in the recognition phase.

After explaining our two main sources of inspiration for this work (§ 2), we describe
our model (§ 3) and the way we use it for recognition (§ 4), before explaining how
new symbols can be added to the model (§ 5). In § 6, we discuss some limitations
of our present work and propose some perspectives on extending it.

1 Now with Business Objects, Paris.
2 Corresponding author.

Preprint submitted to Elsevier Preprint 6 October 2000

2 State of the Art

The recognition of graphical symbols is a well-known problem, for which many
methods have been proposed (Cordella and Vento 1999; Chhabra 1998). A first
family of methods has been adapted to documents such as diagrams, basically
made of symbols and connecting lines—see (Yu et al. 1997) as a typical exam-
ple. Other applications include map analysis (Samet and Soffer 1998) and printed
music scores (Miyao and Nakano 1996). But there have been few attempts at recog-
nizing architectural symbols; of the few works we are aware of, we can cite Lladós
et al. (1997), who use attributed graph matching and a special graph-edit algorithm
(Lladós and Martí 1999) to recognize symbols taken from a set of known models,
and Valveny and Martí (1999), who have proposed a method based on deformable
template matching within a Bayesian framework. These methods have proven to be
efficient, even for hand-drawn drawings, although the scalability when the number
of models increases is not guaranteed.

In our quest for a good recognition method, we felt the need forflexibility and
genericity. As architectural drafting is much less normalized than other technical
domains, we come upon large variations in the way basic elements such as doors
or windows are represented. We therefore cannot build ana priori set of models
and decide that these are the only symbols we will recognize. We must be able to
incrementally add new models to the knowledge base, with minimal computational
overhead during recognition.

A first system which inspired us was that of Pasternak (1996). In his ADIK system,
he uses graphical specifications of the symbols, based on a number of predicates
and on constraints between parts of the same geometric composition. Object recog-
nition is activated through a triggering mechanism. The whole knowledge base is
represented as a structural/geometric taxonomy.

This idea of constraint-based, hierarchical modelling appealed to us. However, we
were looking for more efficient ways to manage a set of models, as a hierarchy of
models can become very cumbersome to update and maintain. Messmer and Bunke
(1996) proposed a method which allows for model pre-compilation through the use
of a network, where all model descriptions are gathered at once; the features are
the input to this network and “trickle down” until one of the terminal nodes—i.e.
one of the model symbols—is activated. As illustrated by Fig. 1, their work was
based on graph isomorphism (Messmer and Bunke 1998); in our case, as we use
constraint propagation, we have adapted the network concept to these constraints.

2

3 Symbol Modelling

Before explaining our model, we will assume in this article that the vectorization
of the document image yields a set of segments (Tombre et al. 1999). This can
easily be extended to segments and arcs. LetF be the set offeatures, i.e.n-uples
of distinct segments; letP be the set ofpredicates, i.e. boolean functions. The
size of a feature is defined as the number of its segments, and the size of a pred-
icate is the number of its arguments. LetC be the set ofconstraints, defined as
fc 2 hP pr;F feij(size(fe(c)) � 1) ^ (size(fe(c)) = size(pr(c)))g. Thus, a
constraint is made of a predicate and of a feature, and it applies to the segments of
this feature. We define the size of the constraint as being the size of its feature.

LetD be a set of descriptions. A description is defined by a feature, whose segments
represent the model symbol, and by a set of constraints. These constraints apply to
the segments of the feature, and are of two kinds: connection constraints, which
describe connection relations between segments, and simple constraints. We define
the size of a description as being the size of its feature.

For instance, we can define the description of a lozenge (Fig. 4) as follows:

dsl = hfsd1; sd2; sd3; sd4g; fcc1; cc2; cc3; cc4; cs1; cs2; cs3; cs4gi

cc1 = h(sd1; sd2); pci cc2 = h(sd2; sd3); pci pc : x� y 7! point1(x) = point2(y)

cc3 = h(sd3; sd4); pci cc4 = h(sd4; sd1); pci

cs1 = h(sd1; sd2); psi cs2 = h(sd2; sd3); psi ps : x� y 7! length(x) = length(y)

cs3 = h(sd3; sd4); psi cs4 = h(sd4; sd1); psi

In order to facilitate the input of descriptions, and to ensure the flexibility of the
model, all descriptions are gathered in a text file, made of a set of entries. Each
entry corresponds to a description, and is mainly a set of constraints on the features
which constitute the symbol. These entries are written in a small language that we
have designed, and whose grammar is summarized in Fig. 2. An example desribing
the simple lozenge with descriptiondsl, using this language, is given by Fig. 3.

4 Symbol Recognition

4.1 Use of the Network

Although Messmer and Bunke use a different matching mechanism, subgraph iso-
morphism, we adapted several of their ideas to our method. For instance, we use
a network to model the descriptions and thus perform the search for all possible

3

symbols at once, instead of trying separately to match a candidate with all possible
models. For this, we search separately for all the features verifying each constraint,
and we then merge these features to get the symbol.

Thus, in order to detect lozenges of descriptiondsl (§ 3) among the segments of
an image, we can use an 8-node network (Fig. 4). By using the various predicates
(pNM2, pNC3, pNM4 : : :), we get the constraints which describe the lozenge. Thus,
the features which end up inNF8 represent lozenges.

4.2 Nodes of the Network

The search for symbols works through propagation of the segments through a
network. This network is made of four kinds of nodes : NNSegment, NNMerge,
NNCondition and NNFinal. These nodes are connected through father–son links;
each node can have at most two fathers, but can have several sons. Each node tests
some constraints, and can thus be seen as a “filter”, which only transmits to its sons
the features (sets of segments) which verify the tested constraints. These features,
created only once by each node, can be used by all the sons of the node. At the end,
the segments of the features which have “trickled” down to the terminal nodes of
the network represent the corresponding symbols.

For each network, there is only oneNNSegmentnode, which corresponds to the
root of the network. This node initializes the recognition process, creates a one-
segment feature for each segment, and sends it to all its sons (Alg. 1). ANNCondi-
tion node has only one father. It tests the constraint on the features sent to it by its
father. If the constraint is satisfied, the NNCondition node propagates the feature to
its sons (Alg. 2). ANNMerge node has two father nodes, and gathers the features
sent by its fathers, if they verify a connection constraint. The resulting feature, if
any, is sent to the sons of the NNMerge node (Alg. 3). Note that in order to allow
the NNMerge nodes to gather all their fathers’ features, each node in the network
has to keep a local storage of the features it is transmitting. TheNNFinal nodes are
the terminal nodes; they have one father and no sons. Each of these nodes corre-
sponds to one of the symbols which have to be recognized. When a feature reaches
such a node, it has gone through a number of NNMerge and NNCondition nodes
and has verified their constraints. To get the actual symbol, it is therefore sufficient
to get the set of features stored in the NNFinal node.

4

Algorithm 1 NNSeg.transmission(image I)
for all segments s of Ido

newFea create a feature from s
myFeatures.add (newFea)
for all my sons ndo

n.transmission (newFea, me)
end for

end for

Algorithm 2 NNCond.transmission(F f, N p)
if f verifies myPredicatethen

myFeatures.add (f)
for all my sons ndo

n.transmission (f, me)
end for

end if

Algorithm 3 NNMerge.transmission(F f, N p)
for all features g disjoint of f and sent by my other father (not p)do

if p = myFather1then
newFea merge (f, g)

else
newFea merge (g, f)

end if
if newFea verifies myPredicatethen

myFeatures.add (newFea)
for all my sons ndo

n.transmission (newFea, me)
end for

end if
end for

4.3 Use of the Network

4.3.1 Features Extracted from the Image

Two kinds of features can be extracted by low-level techniques: segments and arcs.
As vectorization and arc recognition methods are always noisy, the resulting set of
graphical entities may contain extraneous segments, especially at the junctions of
thick lines. Actually, we are looking for symbols such as windows and doors, which
are always represented with thin lines; we therefore separate thick lines from thin
lines, using simple mathematical morphology. The thin lines image is vectorized
independently of the thick lines image (Fig. 7(b) (Tombre et al. 1998). This reduces
the number of artefacts in the set of vectors.

5

Although we do not describe it in this paper, for the sake of simplicity, we also add
a NNArc node, which propagates arcs in the same way as NNSegment propagates
segments.

4.3.2 Error Computation and Propagation

Although we only vectorize the thin lines, we still have errors, due to noise and to
the approximation of curves by polylines. We therefore use an error measure, which
quantifies the deviation between the searched symbol and the candidate features.
When a node receives a feature, it computes the resulting error, if the segments
of the feature do not exactly verify the constraint. This error is accumulated from
one node to the other, and when it exceeds a given threshold, the feature is not
transmitted anymore. We are working on having more adaptive thresholds, instead
of the fixed ones currently in use.

4.3.3 Inversion of the features

The orientation of the graphical entities yielded by vectorization and arc segmenta-
tion is dependent on these low-level steps. But the descriptions used in the network
may have different orientations. Therefore, in order to be able to check the con-
straints in all cases, we send both the original features and their inversion into the
network.

For instance, if we search for three segments which only verify constraintscc1 and
cc2 (§ 3), we cannot only input the segments yielded by vectorization (Fig. 5(a)) to
the network; we must also input their inversions (Fig. 5(b)), so that the network can
recognize the two configurations which verify the constraints (Figs. 5(c) and 5(d)).

4.3.4 Splitting up the image

In the example given in Fig. 4, with only 4 segments actually input into the network,
16 features are created and stored in the network after propagation. This is due to
the fact that when a NNMerge node receives a feature from one of its fathers, it
stores it for later constraints verification, whenever another feature comes from the
other father. Thus, the number of features present in the network can become very
large, especially when the image itself is large, or when the number of segments
yielded by vectorization is large. This in turn increases the computing time and
memory requirements necessary for propagation and checking.

As the symbols to be recognized are relatively small, compared to the image size,
it is not necessary to try to recognize a symbol made of basic geometric features
which are too far from each other—whose distance is larger than the maximal sym-
bol size, more precisely. We therefore divide the image intomeshSize�meshSize

6

meshes,meshSize being given as the maximal symbol size. Symbol detection is
then repeated for each subimage defined by a3 � 3 square of meshes. Only the
segments contained in the corresponding meshes are sent into the network (Fig. 6).

To avoid erasing and reconstructing too many times the features contained in over-
lapping meshes, when the search window is moved over the image, we start a line
by adding to the network all features contained in the window (Fig. 6(a)). After
propagating these features through the network, the window is moved to the next
mesh (Fig. 6(b)), but only the features of the first column are erased, and the fea-
tures of the new column are added. This is repeated until the end of the line is
reached (Fig. 6(c)). To avoid excessive complexity in the updating process, we
chose in this case to erase all features and rebuild them at the start of the next line
(Fig. 6(d)).

Because of the overlapping of the meshes, some symbols may be recognized several
times through this method. We therefore need to sort the positions of all detected
symbols, to eliminate double detections.

The use of this “windowing” system does not change the principle, nor the inner
working of the network. It is only an extra layer, to avoid excessive computation
requirements.

4.3.5 Results

We have tested our network on eleven architectural drawings such as the one repre-
sented in Fig. 7(a), with nine descriptions of doors and windows. With a computa-
tion time of 5 to 30 seconds on a SUN Sparc Ultra 1, the network recognizes most
of the represented symbols (Fig. 7(c)). In table 1, we give for each drawing the
number of symbols to be recognized (S), the number of symbols recognized by the
system (R) and the number of false hits (F). Most of the latter stem from redundant
recognition (e.g. double doors being also recognized as two simple doors).

Table 1
Performances of the symbol recognition method

Drawing # 1 2 3 4 5 6 7 8 9 10 11

S 14 11 15 12 12 15 14 14 16 14 15

R 13 11 14 11 10 15 14 14 14 13 14

F 1 0 3 2 0 0 1 4 1 4 2

7

5 Building the Network

For a set of descriptions, it is of course possible to build several networks, each rel-
ative to one description. But as we want to accelerate the symbol recognition pro-
cess, our aim is to factorize as much as possible the constraints which are common
to several symbols, and to find the most efficient ordering in a common network.
For this, we use several heuristics. After constructing the root node NNSegment,
we proceed incrementally and sequentially: the descriptions are ordered by increas-
ing number of constraints, and added to the network one after the other. For each
new symbol, we only add nodes for constraints which are not already tested in the
network.

5.1 Constraints Which Are Already Tested

One of the strengths of this approach is the ability to use constraints common to
several descriptions. When a new description is added to the network, we look for
constraints in this description which the network can already test.

For this, we input the segmentssd1; : : : ; sdt of the description to the network (t
being the size of the description). When they propagate through the network, these
segments will be checked by all the constraints already available there, and this
yields features which correspond to one of the constraints of the description. This
can be done by slightly modified versions of the algorithms used in the recognition
phase: Alg. 4, 5 and 6 are very similar to the previous Alg. 1, 2 and 3.

Algorithm 4 NNSeg.transD(D d)
for k 1 to size (d)do

feat create one feature fromsdk
myFeatures.add (feat)
for all my sons ndo

n.transD (feat, me, d)
end for

end for

Algorithm 5 NNCond.transD(F f, N p,D d)
c2 create one constraint from f and myPredicate
if there is a constraint c of d such that c2 is an extension of c (§ 5.5) then

myFeatures.add (f)
for all my sons ndo

n.transD (f, me, d)
end for

end if

8

Algorithm 6 NNMerge.transD(F f, N p,D d)
for all features g disjoint of f and filtered by my other father (not p)do

if p = myFather1then
newFeat merge (f, g)

else
newFeat merge (g, f)

end if
c2 create one constraint from newFeat and myPredicate
if there is a constraint c of d such that c2 is an extension of c (§ 5.5) then

myFeatures.add (newFeat)
for all my sons ndo

n.transD (newFeat, me, d)
end for

end if
end for

After this propagation, the network contains several features, localized in all the
nodes through which the segments verifying the description have been propagated.
For instance, let us look at the followingdnew description:

dnew = hfsd1; sd2; sd3; sd4g; fcc1; cc2; cc3; cs1gi
cc1 = h(sd1; sd2); pc : x� y 7! point1(x) = point2(y)i
cc2 = h(sd2; sd3); pc : x� y 7! point1(x) = point2(y)i
cc3 = h(sd1; sd4); pc : x� y 7! point1(x) = point2(y)i
cs1 = h(sd1); pcs1 : x 7! length(x) � 20i

which we want to add to an existing network (Fig. 9(a)), where:

pNC2 : x 7! length(x) � 20
pNM3 : x� y 7! point1(x) = point2(y)
pNM4 : x� y � z 7! point1(y) = point2(z)

After propagation of the model segments through the network, using the previously
described algorithms, the network contains seven features (Fig. 9(b)).

5.2 Disjoint Features Set

Among the features present in the network after propagation (§ 5.1), let us choose
a set of disjoint features, i.e. a set such that each segment of the model is present
in one and only one feature. Generally, several choices are possible for such a set.
All these choices are valid for the incrementation of the network. But it is better to
choose the set which yields the most compact network. We therefore try to maxi-
mize the number of constraints already tested by the traversed nodes.

9

In the previous example withdnew, it is possible to create four disjoint features sets
(Fig. 9(c), 9(d), 9(e) and 9(f)), but we choose the last set, for which two constraints
are already tested by the network.

5.3 Adding Simple Constraints

After having chosen a set of disjoint features, we have to decide how to add the new
nodes to the network. This depends on the order in which the remaining constraints
have entered the network (Fig. 10). We decided to process the simple constraints
sequentially, starting with those of smallest size (e.g. a constraint on only one seg-
ment will be processed before a constraint on several segments). This relies on the
fact that the smallest constraints are supposed to have most discriminating power,
and thus it is interesting to find them at an early stage in the network.

Before we create the node which will check the simple constraint, we must group
the corresponding segments into a common feature. If they are not already grouped,
i.e. if they are spread into different features, we use themergeFeatures function
(§ 5.4) to create the appropriate NNMerge nodes. When all segments concerned by
the simple constraint are grouped, the corresponding NNCondition node can be
added to the sons of the node where the last feature is found. The feature can then
be removed from the latter node and added to the newly created node. Every time
a new simple constraint is added to the network, we also check whether this new
constraint can be used to verify other untested constraints of the description, to
minimize the size of the network and improve its performances.

Finally, when all simple constraints have been added, the remaining connection
constraints, which have not already been taken into account, are added with the
mergeFeatures function (§ 5.4). As all segments of the description are related
to each other through constraints, and as all constraints have been inserted in the
network, all segments of the description are included in a common feature. The
corresponding NNFinal node, which represents the new symbol to be recognized,
can therefore be created and added to the sons of the node containing this feature.

5.4 Adding Connection Constraints

There are several cases where we need to merge features: to create a unique feature
when adding a simple constraint, or to add the remaining connection constraints in
a description (§ 5.3). The algorithm we use (Alg. 7) to add the nodes merging these
features takes as arguments the list of features to be merged, the network where
they are located, and the list of constraints between pairs of segments belonging to
the features to be merged. The features are merged two by two, and this results in

10

the creation of the corresponding NNMerge nodes. If no connection constraint is
found, the node is created with atrue predicate.

When all the features have been merged into a single final feature, the remaining
connection constraints, if any, related to two segments of this feature, are added to
the network as NNCondition nodes.

For example, the merging of the three features located in three nodes (Fig. 11(a)),
through the following connection constraints:

cc1 = h(sd5; sd6); pcc1 : x� y 7! (point1(x) = point2(y))i
cc2 = h(sd1; sd2); pcc2 : x� y 7! (point2(x) = point1(y))i
cc3 = h(sd4; sd5); pcc3 : x� y 7! (point2(x) = point2(y))i

leads to the creation of a NNMerge node for thecc1 andcc2 constraints (Figs. 11(b)
and 11(c)), and to the creation of a NNCondition node for thecc3 constraint (Fig. 11(d)).

Algorithm 7 mergeFeatures (listhFi feat, network r, listhCi const)
while size(feat)> 1 do

f1 smallest feature of feat
f2 smallest feature of feat not equal to f1, such that there is a constraint cc
in const between 2 segments from f1 and f2
if no such feature f2 existsthen

f2 smallest feature of feat not equal to f1
p true

else
p predicate which tests cc
remove cc from const

end if
newNode create NNMerge from p and the nodes of r which contain f1 and
f2
add newNode to r
remove f1 and f2 from r and from feat
add the feature resulting from the merge of f1 and f2 to feat and to newNode

end while
while there are constraints cc left in constdo

add cc to a new NNCondition node, as son of the last new node
end while

5.5 Constraint Checking

Generally, the predicate tested by a NNMerge node or a NNCondition node is not
equal to the predicate of the corresponding constraint. This stems from the fact that

11

we can only check that the segments to which the constraint is related areincluded
in the features received by the node, which can also contain other segments, or
contain the right segments in another order than that expressed by the constraint.
To take into account these variations, we generalize the predicates which are put
into the nodes when we create the network.

Let size be the recursive function defined by:

size : n 7!

8>>>>><
>>>>>:

1 if n is of type NNSegment

size(father(n)) if n is of type NNFinal or NNCondition

size(father1(n)) + size(father2(n)) if n is of type NNMerge

The size of a NNMerge and NNCondition node, defined by this function, also cor-
responds to the size of the tested predicate and that of the feature which can be sent
by the node.

Let d be the constraint that the node to be created must verify, and letm be the
feature from which we create the node. If we create a NNCondition node, it is the
feature coming from the father node of this node. If we create a NNMerge node, it
is the union of the features coming from the two fathers. By definition, this feature
m contains the segments to which constraintd refers. The predicate ofd must be
a restriction of the predicatep which we must add to the new node, modulus a
change in the order of its arguments. We say that constraintc defined byhm; pi is
an extension ofd for m. The injectionl defined on[1; size(d)]! [1; size(c)] by:

8><
>:
8i 2 [1; size(d)]; ni = ml(i)

8x 2 Ssize(c); p(x1; :::; xsize(c)) = q(xl(1); :::; xl(size(d)))

gives the order of the arguments for the two predicates, as it returns the location of
the segments ofd’s feature inc’s feature. For a featurem containing all segments of
thed’s feature, the injectionl is defined uniquely. Actually, there is only one con-
straintc, havingm as its feature, for whichc is an extension ofd. For example, for
the feature(sd2; sd1; sd3; sd4), c = h(sd2; sd1; sd3; sd4); p : x � y � z � w 7!
length(z) = 2:length(y)i is an extension ofd = h(sd3; sd1); q : x � y 7!
length(x) = 2:length(y)i.

12

6 Limitations and perspectives

6.1 Building the network

6.1.1 Descriptive power

We are aware that the language we have defined (Fig. 2) lacks descriptive power
when the constraints become more complex. We are currently studying alternatives,
such as specialized constraint description languages.

6.1.2 Global construction

The building of the network, using the heuristics presented previously, is robust and
fast. But the process cannot guarantee that the resulting network is the most com-
pact, even if many constraints are factorized. This stems from the fact that the net-
work is built sequentially, without any comparison between the descriptions which
have already been input, to localize global common constraints. Thus, depending
on the order in which the descriptions are analyzed, some factorizations may or
may not be found by the network, and the resulting networks may be different and
more or less efficient.

For instance, letd1 andd2 be two descriptions defined by:

d1 = h 3; fcc1; cc2g; ; i
d2 = h 3; fcc3; cc4g; fcs1g i

cc1 = h (sd1; sd2); pcc1 : x� y 7! point1 (x) = point2 (y) i
cc2 = h (sd2; sd3); pcc2 : x� y 7! point2 (x) = point2 (y) i

cc3 = h (sd1; sd2); pcc3 : x� y 7! point2 (x) = point2 (y) i
cc4 = h (sd2; sd3); pcc3 : x� y 7! point1 (x) = point1 (y) i
cs1 = h (sd1; sd2); pcs1 : x 7! length (x) = length (y) i

When building the network recognizing these two symbols,d1 is added befored2,
asd1 andd2 have the same size, andd1 has less constraints thand2.

Two different networks can be built for detectingd1: P1, which starts by checking
thecc1 constraint (NM2), and then thecc2 constraint (NM3) (Fig. 12(a)), andQ1,
which starts by checkingcc2 (NM2), and then checkscc1 (NM3) (Fig. 12(c)). The
node predicated checked by these two networks are defined by:

13

pNM2 : x� y 7! point1 (x) = point2 (y)
pNM3 : x� y � z 7! point2 (y) = point2 (z)

qNM2 : x� y 7! point2 (x) = point2 (y)
qNM3 : x� y � z 7! point1 (x) = point2 (y)

Then, descriptiond2 is added to theP1 network. When propagating the features
of d2 into this network (§ 5.1), as theNM2 node ofP1 does not check anyd2’s
constraints, no feature is propagated and new nodes must be created for each of
d2’s constraints. The resultingP2 network then contains eight nodes (Fig. 12(b)).

Conversely, when addingd2 to theQ1 network, theNM2 node ofQ1 actually checks
one ofd2’s constraints, i.e.cc3, and this node can thus be reused for the detection of
d2. The resultingQ2 network only contains seven nodes (Fig. 12(d)). The predicates
of the new nodes added toP2 andQ2 are:

pNM5 : x� y 7! point2 (x) = point2 (y)
pNC6 : x� y 7! length (x) = length (y)
pNM7 : x� y � z 7! point1 (y) = point1 (z)

qNC5 : x� y 7! length (x) = length (y)
qNM6 : x� y � z 7! point1 (y) = point1 (z)

In our present implementation, there is no strategy to choose the best of these two
networks3 . The resulting network only depends on the input order of the con-
straints in the description file.

In this simple case, the size difference is only one node. But in real cases, when
the network is built from many descriptions, containing several constraints, the re-
sulting may become less than optimal. An additional network optimization strategy
should be added, taking into account a global view of all constraints, especially in
the buildup phase.

6.2 Use of the network

We have already mentioned that our error computations are quite simplistic and
ought to be enhanced (§ 5.5). The use of the network can also be enhanced in other
ways.

3 Actually, in the case demonstrated here, our system buildsP1, followed byP2.

14

6.2.1 Dependence on the low level

Although we work only on thin lines (§ 4.3.1) and use an error measure, the network
still relies on the quality of the vectorization, as it is designed to perform one-to-
one matches at the segment level. Thus, missing or extraneous features often lead
to recognition errors.

For instance, let us assume that we use the network to detect a triangle in the vec-
torized image of a triangle. If the vectorization contains an extraneous segment
connecting two extremities (Fig. 13(a)), the error is small and a correct triangle
will still be detected (Fig. 13(b)). But if the vectorization split one of the triangle
sides into two segments (Fig. 13(c)), the error measure is greater. If it is too large,
nothing is detected; else, the triangle detected by the network, (Fig. 13(d) or 13(e)),
does not correspond to the right solution.

This weakness is the main reason for the observed failures of our symbol recogni-
tion method, in all our experiments, with architectural drawings as with electronic
diagrams. There are two possible solutions to enhance this, and we investigate both:

� We work on enhancing the precision and quality of the vectorization step. This
has been—and still is—the goal for many researchers in the realm of graphics
recognition, of course.
� We also are considering adding some many-to-one matching steps in the con-

straints checking mechanisms, although this will add to the total complexity of
the method.

6.2.2 Parameters of the network

One of the strong features of our approach is the possibility to look for all symbols
in a single step, instead of testing each model-to-image matches individually. How-
ever, the drawback is that when looking only for a single symbol or for a subset of
all possible symbols, the proposed approach is complex. Although the search area
can be restricted to a subimage (§ 4.3.4), the present method does not provide the
possibility to only look for a subset of the model symbols, without rebuilding a new
network with this subset. A possible solution would be to add an activation flag for
each node in the network; only activated nodes would then filter and propagate at
any given time. If the task is to only look for a given set of symbols, we need a way
to quickly retrieve and activate the corresponding nodes in the network.

Another limitation is that our present description language does not allow for pa-
rameters. The dimensioning features are given explicitely by the description, whereas
it would be interesting to add variables to the description languages, for instance to
describe possible dependencies between several measures.

15

7 Conclusion

We have presented an adaptation of Messmer and Bunke’s network approach to
constraint representation and feature propagation. Despite the limitations discussed
in § 6, the method has several strong points, such as the factorization capabilities,
its adaptability and flexibility, and its independence of the geometry and topology
of the symbols. For instance, concerning this last point, many symbol recognition
methods need clearly separable symbols, which may be easy for wiring diagrams,
where there are basically symbols and lines, but which is much more difficult in
architecture, when the symbols are completely “immerged” in the drawing. Our
first results are promising. We are working on improving the low-level processing,
for a better input to the system. In addition to the improvements and perspectives
suggested in § 6, we also need to evaluate the performances of the method on a
larger set of model symbols, to test the scalability of the approach when the number
of models to recognize is 10 times larger than presently.

Acknowledgments

This paper is a thoroughly revised and extended version of a paper first presented
at SSPR’98 (Ah-Soon and Tombre 1998). The work was partly funded by financial
support from Région Lorraine.

References

Ah-Soon, C. and K. Tombre (1997). Variations on the Analysis of Architec-
tural Drawings. InProceedings of 4th International Conference on Docu-
ment Analysis and Recognition, Ulm (Germany), pp. 347–351.

Ah-Soon, C. and K. Tombre (1998, August). Network-Based Recognition of Ar-
chitectural Symbols. In A. Amin, D. Dori, P. Pudil, and H. Freeman (Eds.),
Advances in Pattern Recognition (Proceedings of Joint IAPR Workshops
SSPR’98 and SPR’98, Sydney, Australia), Volume 1451 ofLecture Notes
in Computer Science, pp. 252–261.

Chhabra, A. K. (1998, April). Graphic Symbol Recognition: An Overview. In
K. Tombre and A. K. Chhabra (Eds.),Graphics Recognition—Algorithms
and Systems, Volume 1389 ofLecture Notes in Computer Science, pp. 68–
79. Springer-Verlag.

Cordella, L. P. and M. Vento (1999, September). Symbol and Shape Recogni-
tion. In Proceedings of 3rd International Workshop on Graphics Recogni-
tion, Jaipur (India), pp. 179–186.

Dosch, P., C. Ah-Soon, G. Masini, G. Sánchez, and K. Tombre (1999). Design
of an Integrated Environment for the Automated Analysis of Architectural

16

Drawings. In S.-W. Lee and Y. Nakano (Eds.),Document Analysis Systems:
Theory and Practice. Selected papers from Third IAPR Workshop, DAS’98,
Nagano, Japan, November 4–6, 1998, in revised version, Lecture Notes in
Computer Science 1655, pp. 295–309. Berlin: Springer-Verlag.

Lladós, J., J. López-Krahe, and E. Martí (1997). A System to Understand Hand-
Drawn Floor Plans Using Subgraph Isomorphism and Hough Transform.
Machine Vision and Applications 10(3), 150–158.

Lladós, J. and E. Martí (1999). A Graph-Edit Algorithm for Hand-Drawn Graph-
ical Document Recognition and Their Automatic Introduction into CAD
Systems.Machine Graphics & Vision 8(2), 195–211.

Messmer, B. T. and H. Bunke (1996, May). Automatic Learning and Recog-
nition of Graphical Symbols in Engineering Drawings. In R. Kasturi and
K. Tombre (Eds.),Graphics Recognition—Methods and Applications, Vol-
ume 1072 ofLecture Notes in Computer Science, pp. 123–134. Springer-
Verlag.

Messmer, B. T. and H. Bunke (1998, May). A New Algorithm for Error-Tolerant
Subgraph Isomorphism Detection.IEEE Transactions on PAMI 20(5), 493–
504.

Miyao, H. and Y. Nakano (1996, May). Note Symbol Extraction for Printed
Piano Scores Using Neural Networks.IEICE Transactions on Information
and Systems E79-D(5), 548–554.

Pasternak, B. (1996, April).Adaptierbares Kernsystem zur Interpretation von
Zeichnungen. Dissertation zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.), Universität Hamburg.

Samet, H. and A. Soffer (1998, June). MAGELLAN: Map Acquisition of GE-
ographic Labels by Legend ANalysis.International Journal on Document
Analysis and Recognition 1(2), 89–101.

Tombre, K., C. Ah-Soon, P. Dosch, A. Habed, and G. Masini (1998, August).
Stable, Robust and Off-the-Shelf Methods for Graphics Recognition. InPro-
ceedings of the 14th International Conference on Pattern Recognition, Bris-
bane (Australia), pp. 406–408.

Tombre, K., C. Ah-Soon, P. Dosch, G. Masini, and S. Tabbone (1999, Septem-
ber). Stable and Robust Vectorization: How to Make the Right Choices. In
Proceedings of 3rd International Workshop on Graphics Recognition, Jaipur
(India), pp. 3–16. Revised version to appear in a forthcoming LNCS volume.

Valveny, E. and E. Martí (1999, September). Application of Deformable Tem-
plate Matching to Symbol Recognition in Hand-written Architectural Draw-
ings. InProceedings of 5th International Conference on Document Analysis
and Recognition, Bangalore (India), pp. 483–486.

Yu, Y., A. Samal, and S. C. Seth (1997, August). A System for Recognizing a
Large Class of Engineering Drawings.IEEE Transactions on PAMI 19(8),
868–890.

17

a

b

ca

b

ca

b

a

b

ba c

INPUT

a

b

ca

b

a

b

Fig. 1. Messmer’s network.

18

symbol 7! # type SEGMENT int ARC int{ constraint;}+ instantiation
constraint 7! constraint or constraint j constraint andconstraint
constraint 7! point == point j real op_comp_ real
real 7! real jmin (real , real) jmax (real , real) j abs (real)
real 7! point.x ()j point.y() j point.distance(point)
real 7! prim .f_elem() j prim .f_angle(prim) j real op_alg real
real 7! arc.radius() j point.angle(point, point)
f_elem 7! lengthj width j x j y
f_angle 7! pt1_angle_pt1j pt1_angle_pt2j pt2_angle_pt1j pt2_angle_pt2
point 7! prim .point1()j prim .point2() j arc.center()
prim 7! arc j segment
arc 7! arc int
segment7! seg int
op_comp 7! < j > j <= j >= j ==
op_alg 7! �j=j+ j�
instantiation 7! type ({ real j point } { , real j ,point } �)
type7! door j double_doorj windowj double_windowj ...

Fig. 2. Grammar of the description language.

19

#lozenge
SEG 4 ARC 0
s1.point1() == s2.point2(); s1.length() == s2.length();
s2.point1() == s3.point2(); s2.length() == s3.length();
s3.point1() == s4.point2(); s3.length() == s4.length();
s4.point1() == s1.point2(); s4.length() == s1.length();

Fig. 3. Description of a lozenge.

20

sd1

sd2 sd3

sd4

SegmentsNS1

pNM2(x,y) =
(point1(x) == point2(y))

NM2

pNC3(x,y)=
(length(x)==length(y))

NC3

pNM4(x,y,z,w) =
(point1(x) == point2(y))

NM4

Symbols
NF8

pNC7(x,y,z,w)=
(length(y)==length(z))

NC7

pNC6(x,y,z,w)=
(length(w)==length(x))

NC6

pNC5(x,y,z,w)=
(length(y)==length(z))

NC5

Fig. 4. Network for recognition of a lozenge.

21

(a) (b)

sd1

sd2
sd3

(c)

sd3

sd1

sd2

(d)

Fig. 5. Inversion of segments—white dots represent origin points and black dots end points:
(a) segments yielded by vectorization; (b) segments sent to the network; (c) and (d) seg-
ments verifying constraintscc1 andcc2.

22

(a) Start of a line. (b) Moving the
window.

(c) End of line. (d) New line.

Fig. 6. Moving the symbol detection window. The meshes labeled+ contain features input
into the network, those labeled- contain features which are withdrawn from the network.

23

(a) A drawing. (b) Thin lines. (c) Symbols.

Fig. 7. Result for a simple drawing (1700�1600 pixels) vectorized in about 300 segments
and arcs.

24

(a) A drawing. (b) Thin lines. (c) Symbols.

Fig. 8. Result for a simple drawing (1700�1600 pixels) vectorized in about 300 segments
and arcs.

25

pNC2(x)
NC2

pNF3(x,y)
NF3

Segments
NS1

pNF4(x,y,z)
NF4

(a) Subset of a network.

(sd1)
NC2

(sd1, sd2)
NF3

(sd1) (sd2) (sd3) (sd4)
NS1

(sd1, sd2, sd3)
NF4

(b) Possible mappings.

NC2

NF3

(sd1) (sd2) (sd3) (sd4)
NS1

NF4

(c) No tested constraint.

(sd1)
NC2

NF3

 (sd2) (sd3) (sd4)
NS1

NF4

(d) cs1 tested.

NC2

(sd1, sd2)
NF3

(sd3) (sd4)
NS1

NF4

(e) cc1 tested.

NC2

NF3

(sd4)
NS1

(sd1, sd2, sd3)
NF4

(f) cc1 andcc2 tested.

Fig. 9. Looking for constraints already tested by the network.

26

NC2

NF3

NS1

NF4

NF5

NC6

NT7

(sd4,sd1, sd2, sd3)

pNC6(x,y,z,w)

pNF5(x,y,z,w)

(a) cc3 beforecs1.

NC2

NF3

NS1

NF4

NT7

(sd4,sd1, sd2, sd3)

NC5

NF6

pNF6(x,y,z,w)

pNC5(x,y,z,w)

(b) cs1 beforecc3.

Fig. 10. Two choices when adding the remaining constraints ofdnew, starting from
(Fig. 9(f)).

27

(sd4, sd1) (sd5) (sd2, sd6)

(a) Initial state.

(sd5, sd2, sd6)
NFj

(sd4, sd1)
NRg NRh NRi

(b) Addingcc1.

NFj

(sd4,sd1,sd5,sd2,sd6)
NFk

NRg NRh NRi

(c) Addingcc2.

NFj

(sd4,sd1,sd5,sd2,sd6)

NFk

NCl

NRg NRh NRi

(d) Addingcc3.

Fig. 11. Merging different features by using connection constraints.

28

Segments
NS1

pNM2(x,y)
NM2

pNM3(x,y,z)
NM3

NF4

(a) Starting withP1,...

pNC6(x,y)
NC6

Segments
NS1

pNM2(x,y)
NM2

pNM3(x,y,z)
NM3

NF4

pNM5(x,y)
NM5

pNM7(x,y,z)
NM7

NF8

(b) ...P2 contains 8 nodes.

Segments
NS1

qNM2(x,y)
NM2

qNM3(x,y,z)
NM3

NF4

(c) Starting withQ1,...

qNC5(x,y)
NC5

Segments
NS1

qNM2(x,y)
NM2

qNM3(x,y,z)
NM3

NF4

NM6
qNM6(x,y,z)

NF7

(d) ...Q2 contains only 7 nodes.

Fig. 12. Non-optimal building of a network.

29

(a) (b) (c) (d) (e)

Fig. 13. Recognizing a triangle with the network.

30

