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Abstract. SIFT is one of the most popular algorithms to extract points
of interest from images. It is a scale+rotation invariant method. As a con-
sequence, if one compares points of interest between two images subject
to a large viewpoint change, then only a few, if any, common points will
be retrieved. This may lead subsequent algorithms to failure, especially
when considering structure and motion or object recognition problems.
Reaching at least affine invariance is crucial for reliable point correspon-
dences. Successful approaches have been recently proposed by several
authors to strengthen scale+rotation invariance into affine invariance,
using viewpoint simulation (e.g. the ASIFT algorithm). However, almost
all resulting algorithms fail in presence of repeated patterns, which are
common in man-made environments, because of the so-called perceptual
aliasing. Focusing on ASIFT, we show how to overcome the perceptual
aliasing problem. To the best of our knowledge, the resulting algorithm
performs better than any existing generic point matching procedure.

1 Introduction and Related Works

One of the first steps in many computer vision applications is to find corre-
spondences between points of interest from several images. Applications are e.g.
photography stitching [1], object recognition [2], structure from motion [3], robot
localization and mapping [4], etc. Points of interest belong to “objects” viewed
from different camera positions. Thus, their definition ought to be insensitive
to the aspect of the underlying object. Besides, it is desirable to attach vectors
to these points which describe a surrounding patch of image, in order to find
correspondences more easily. Ideally, these vectors should not change across the
views. In the pinhole camera model, 3D objects are transformed via projective
mappings. However, the underlying object is generally unknown. With the ad-
ditional assumption that points of interest lie on planar structures, points and
descriptors should be invariant to homographies. Since affine mappings are first-
order approximations of homographies, this weaker invariance is often considered
sufficient.

In his groundbreaking work [2], D. Lowe explains how to extract scale+rotation
invariant keypoints, the so-called SIFT features. Some authors have tried to
reach affine invariance (see e.g. MSER [5], Harris / Hessian Affine [6] and the
survey [7], or [8] for semi-local descriptors). Although these latter methods have
been proved to enable matching with a stronger viewpoint change, all of them
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are prone to fail at a certain point. A more successful approach has been recently
proposed by several authors (e.g. [9–11]), in which viewpoint simulation is used
to increase scale+rotation to affine invariance. These papers demonstrate that
this dramatically improves the number of matches between two views compared
to MSER or Harris/Hessian Affine, even with a strong viewpoint change.

Let us explain viewpoint simulation, and especially Morel and Yu’s ASIFT [10]
which we aim at improving. In ASIFT, affine invariance of image descriptors is
attained by remarking from Singular Value Decomposition that any affine map-
ping A (with positive determinant) can be decomposed as

A = λRψ

(
t 0
0 1

)
Rφ (1)

where λ > 0, Rψ and Rφ are rotation matrices, φ ∈ [0, 180o), t > 1.
Since SIFT is scale+rotation invariant, a collection of affine invariant (ASIFT)

descriptors of an image I is obtained by extracting SIFT features from the sim-
ulated images It,φ with

It,φ =
(
t 0
0 1

)
Rφ(I). (2)

Indeed, the location of the SIFT keypoints is (nearly) covariant with any scale
and rotation change λRψ applied to It,φ, and the associated descriptor does
(almost) not change. From [10], it is sufficient to discretize t and φ as: t ∈
{1,
√

2, 2, 2
√

2, 4} and φ = {0, b/t, . . . , kb/t} with b = 72o and k = bt/b · 180oc.
The next step is to match ASIFT features between two images I and I ′. A

two-scale approach is proposed in [10]. First, the It,φ and I ′t′,φ′ are generated
from downsampled images (factor 3), then SIFT features extracted from each
pair (It,φ, I ′t′,φ′) are matched via the standard algorithm from [2], namely that
nearest neighbours are selected provided the ratio of the Euclidean distance be-
tween the nearest and the second nearest is below some threshold (0.6 in ASIFT).
The deformations corresponding to the M pairs (M typically set to 5) that yield
the largest number of matches are used on the full-resolution I and I ′, giving
new SIFT features that are matched by the same above-mentioned criterion. The
obtained correspondences are then projected back to I and I ′, provided already-
placed correspondences are at a distance larger than

√
3. This strategy is used

to limit the computational burden and also prevents redundancy between SIFT
features from different deformations. A subsequent step consists in eliminating
spurious correspondences with RANSAC by imposing epipolar constraints.

Lepetit and Fua [9] use the same decomposition as in eq. (1). Since their
points of interest are invariant neither to scale nor to rotation, they have to
discretize or randomly sample the whole set of parameters λ, t, ψ, φ.

Let us also mention Molton et al. work [11]. Small planar image patches are
rectified through homographies in a monocular SLAM application. In this frame-
work, an on-the-fly estimation of the camera motion and of the 3D normal of the
patch is available. Thus there is no need to generate every possible rectification,
making it effective in a real-time application. This provides a richer description
of the 3D scene than with standard point features.
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Aim and organization of the article. As noted in [10], ASIFT fails when con-
fronted to repeated patterns. In this work we propose to secure ASIFT against
it. Section 2 explains why repeated patterns are important and call for a special
treatment in every image matching applications. Section 3 describes the pro-
posed algorithm. We also improve the selection of the relevant simulated images
and the back-projection step, while enabling non nearest neighbour matches.
Experiments are presented in Section 4. The proposed algorithm has also an
increased robustness to large viewpoint changes.

2 Perceptual Aliasing and Point Matching

Perceptual aliasing is a term coined by Whitehead and Ballard in 1991 [12].
It designates a situation where “a state in the world, depending upon the con-
figuration of the sensory-motor subsystem, may map to several internal states;
[and] conversely, a single internal state may represent multiple world states”. In
computer vision applications and especially point of interest matching, invariant
features make it possible to overcome the first part of the perceptual aliasing. A
viewpoint invariant feature such as ASIFT is indeed supposed to give a unique
representation of the underlying 3D point, whatever the camera pose. However,
repeated patterns are also uniquely represented although they do not corre-
spond to the same 3D point. This makes almost all point matching algorithms
fail when confronted to repeated patterns, except when explicitly taking them
into account in an ad hoc application (e.g. [13]). Some authors even get rid of
them at an early stage (e.g. in [14], patterns occurring more than five times
are a priori discarded). The problem is of primary importance since repeated
patterns are common in man-made environments. Just think of two views of a
building: correctly matching the windows is simply impossible when considering
only invariant descriptors. Additional geometric information is needed.

The problem is all the more relevant as in most applications, matching (or
sometimes tracking) points of interest usually consists in two independent steps:
1) point of interest matching by keeping the “best” correspondence with respect
to the distance between the associated descriptors, then 2) correspondence prun-
ing by keeping those that are consistent with a viewpoint change. A popular
choice for step 1) is nearest neighbour matching, which yet gives false correspon-
dences, partly because of perceptual aliasing. The nearest neighbour has indeed
no reason to be a correct match in case of repeated patterns. Step 2) is often
a RANSAC scheme, which keeps only the correspondences consistent with the
epipolar geometry (fundamental or essential matrix) or with a global homogra-
phy (for planarly distributed points or for a camera rotating around its optical
center). Since ASIFT uses this two-step scheme to match simulated images, it is
not able to retrieve from perceptual aliasing. If the images mostly show repeated
patterns, ASIFT even simply fails as in Section 4, Figures 5 and 6.

We have recently proposed [15] a new one-step method to replace both above-
mentioned steps 1) and 2). It is a general algorithm to match SIFT features
between two views, and it is proved to be robust to repeated patterns. The
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present contribution is to incorporate it into the ASIFT algorithm. Let us briefly
describe the method (which is a generalization of [16]). Considering N1 points of
interest xi with the associated SIFT descriptor Di from image I, and N2 points
of interest x′j with descriptor D′j from image I ′, one aims at building a set of
correspondences (xi, x′j)(i,j)∈S where S is a subset of [1 . . . N1]× [1 . . . N2], which
is the “most consistent set with respect to a homography” among all possible sets
of correspondences. Let us note that the model in [15] also copes with general
epipolar geometry; we will see in Section 3 why we focus on homographies. The
consistency of S is measured in [15] as a Number of False Alarms (NFA) derived
from an a contrario model (see the books [17, 18] and references therein):

NFA(S,H) = (min{N1, N2} − 4) k!
(
N1

k

)(
N2

k

)(
k

4

)
fD(δD)kfG(δG)k−4 (3)

where:
– the homography H from I to I ′ is estimated from four pairs from S,
– k is the cardinality of S,
– δD = max(i,j)∈S dist(Di, D

′
j) where dist is a metric over SIFT descriptors,

– fD is the cumulative distribution function of δD and is empirically esti-
mated from I and I ′, yielding an adaptive measure of resemblance,

– δG = max(i,j)∈S max{d(x′j , Hxi), d(xi, H−1x′j)} where d is the Euclidean
distance between two points,

– fG is the cumulative distribution function of δG.
Several possibilities for dist are investigated in [15]. We choose here to use the
cemd-sum metric introduced in [19], based on an adaptation of the Earth’s
Mover Distance for SIFT descriptors. In particular, it is proved to behave better
with respect to the quantization effects than the standard Euclidean distance.

For the sake of brevity, we elaborate here neither on the statistical model
giving fG and fD nor on the definition of the NFA and kindly refer the reader
to [15]. Let us simply say that fD(δD)kfG(δG)k−4 is the probability that all
points in S are mapped to one another through H (with precision δG), while
simultaneously the associated descriptors are similar enough (with precision δD),
assuming that points are independent. If this probability is very low, then the
independence assumption is rejected following the standard hypothesis testing
framework. There must be a better explanation than independence, and each
pair of points probably corresponds to the same 3D point. The advantage of this
framework is that it automatically balances the resemblance between descriptors
and the geometric constraint. Considering a group with a very low probability,
all of its descriptors are close to one another (photometric constraint) and each
of its points projects close to the corresponding point in the other image via H
(geometric constraint, which is not covered at all by nearest neighbour match-
ing). Mixing both constraints makes it possible to correctly associate repeated
patterns. Additionally, it is permitted to match non-nearest neighbours, provided
they satisfy the geometry. As we will see in Section 4, this provides a number of
correspondences that are never considered in standard SIFT matching.
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Now, instead of measuring the probability fD(δD)kfG(δG)k−4 (of a false pos-
itive in hypothesis testing) which naturally decreases as k grows, the NFA is
introduced in the a contrario literature. One can prove (see [15, 17–19] for fur-
ther information) that a group such that NFA ≤ ε is expected to appear less
than ε times under independence hypothesis (hence the term Number of False
Alarms). Thus, comparing groups of different sizes via the NFA is sound. As
noted in [15], small groups can win over large ones if they are very accurate
(that is, descriptors are very similar and points are nearly perfectly related by
a homography).

Since the combinatorial complexity of the problem is very large, a heuristic-
driven search based on random sampling is given in [15], in order to reach the
group S with the (hopefully) lowest NFA. Let us also mention that this method
does not need application-specific parameters.

Remark that Hsiao et al. [20] have very recently proposed to use ASIFT
for 3D object recognition, improving pose estimation when facing strong view-
point changes, thanks to the numerous point correspondences. As in [15] for
2D/2D matching, they solve correspondences between 3D points and 2D points
by simultaneously taking account of photometric resemblance and pose consis-
tency. Their algorithm is thus robust to repeated patterns.

3 Improving ASIFT

We explain here how we modify the ASIFT algorithm by incorporating the NFA
criterion (yielding the Improved ASIFT algorithm, I-ASIFT in the sequel). The
basic idea is to replace the nearest neighbour matching between generated im-
ages with the matching algorithm of [15], i.e. seek the group of correspondences
consistent with a homography, with the lowest NFA. The back-projection of the
matching features to the original images is also improved. The algorithm for
both Improved ASIFT and Standard ASIFT is explained in Figure 1, where
the proposed modifications are highlighted. A running-example is provided on
Figure 2. Figure 3 compares with standard SIFT matching and ASIFT.

Let us discuss the modifications. First, we replace in step 3 the nearest neigh-
bour criterion by the above-mentioned method. The reason to use homography
constraint is that when simulating affine transformations, one expects that some
of them will correctly approximate homographies related to planar parts of the
scene (possibly related to virtual planes, in the sense that points may be dis-
tributed on a plane which has no physical meaning). Then, each group of corre-
spondences between simulated images should correspond to points lying over a
planar structure, and consequently be associated via a homography. In standard
ASIFT, the number of groups (i.e. of considered pairs of generated images) is
limited a priori to five. In our framework, it would lead to select correspon-
dences from a fixed number of planar pieces. On the contrary, we keep groups
with log(NFA) below −50. This amounts generally to keeping between 5 (fully
planar scene) and ' 70 (multi-planar scene) groups. There is no need to keep
a larger number of groups since groups with the largest NFA would be made of
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Data: two images I and I ′.

1. For both images, generate the new collection of images It,φ and I ′
t′,φ′ (eq. (2)):

I-ASIFT - use t, t′ ∈ {1,
√

2, 2} and φ, φ′ as in ASIFT (the range of t is the
same as in [20], sufficient if the viewpoint change is not too extreme)
ASIFT - first low resolution, then full resolution simulation only for a limited
number of (t, φ), (t′φ′), as explained in Section 2.

2. Extract the SIFT features from the generated images.

3. Match the SIFT features between the pairs of generated images:
I-ASIFT - for each pair (It,φ, I

′
t′,φ′) extract the group of point correspon-

dences with the lowest NFA (eq. (3), see discussion).
ASIFT - for each pair from the limited set of step 1, match each feature from It,φ
to its nearest neighbour in I ′

t′,φ′ , provided the ratio between the distances to the
nearest and to the second nearest neighbour is below 0.6

4. Back-project the matched SIFT keypoints from the It,φ’s and I ′
t′,φ′ ’s to I and I ′:

I-ASIFT - keep groups with log(NFA) < −50, then sort them increasingly
along their NFA. Starting from the first group, back-project a pair of
matching features only if each feature do not fall in the vicinity of any
already-placed feature. The vicinity is defined as the back-projection
in I (resp. I ′) of the circle around the feature extracted from the simu-
lated images, with radius equal to the SIFT scale (minimum ' 2 pixels).
ASIFT - back-project the matching features only if there is no already-placed feature
at a distance less than

√
3 pixels.

5. Discard possible false correspondences:
I-ASIFT - use a contrario RANSAC [16] to check consistency with
epipolar geometry or to homography, depending on the case of interest.
ASIFT - use a contrario RANSAC to check consistency with epipolar geometry
only (not mentioned in [10], but mandatory in the implementation from [21]).

Output: a set of corresponding points of interest between I and I ′.

Fig. 1. Improved ASIFT (I-ASIFT) and Standard ASIFT (ASIFT).

redundant points or would be made of a few inconsistent points filtered by the
final RANSAC.

To improve the back-projection of step 4, we propose to use the NFA as a
goodness-of-fit criterion. As remarked by Hsiao et al. [20], viewpoint simulation
methods give anyway a large number of correspondences, some of them being
concentrated in the same small area. The NFA criterion balances the size of a
group and its accuracy as explained earlier. It seems to us that favouring groups
with the lowest NFA is sounder than systematically favouring large groups. In ad-
dition, when back-projecting points we thoroughly select correspondences from
their scale in order to prevent accumulations in small areas (note that our crite-
rion is stricter than the one in ASIFT). Getting correspondences uniformly and
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densely distributed across the 3D scene is important for structure and motion
applications (as in [20]).

Let us remark that repeated patterns bring specific problems that RANSAC
cannot manage. As remarked in [15], if the repeated patterns are distributed
along the epipolar lines, then it is simply impossible to disambiguate them from
two views (as in Figure 6, ACM+F). Theoretically, I-ASIFT could also suffer
from it. However, it would require that: 1) one of the group consists in a bunch
of shifted patterns consistent with a homography (as in group 51 on figure 2), 2)
this group is large enough and has a very low NFA (otherwise most points are
redundant with already-placed points), and 3) points are along the associated
epipolar lines (otherwise they are discarded by the final RANSAC). Thus I-
ASIFT is more robust to this phenomenon.

4 Experiments

We compare the proposed I-ASIFT, noted I-ASIFT+F (resp. I-ASIFT+H) when
the final RANSAC is based on fundamental matrix (resp. homography), with:

– standard SIFT matching (that is, nearest neighbour + distance ratio con-
dition, between 0.6 and 0.8 to give the best possible results), followed by the
RANSAC from [16]. We note this algorithm NNR+F if RANSAC imposes epipo-
lar geometry (fundamental matrix), or NNR+H for homography constraint;

– the a contrario matching algorithm from [15], which permits SIFT matching
with repeated patterns, noted ACM+F or ACM+H;

– ASIFT, whose implementation is kindly provided by Morel and Yu [21].
We use Vedaldi and Fulkerson’s code for SIFT [22]. The reader is kindly asked
to zoom in the pdf file.

Figure 4 is an assessment on a pair of images with a very strong viewpoint
change. NNR and ACM simply fail here, Harris/Hessian Affine and MSER give
less than 2 matches (see [10]). Viewpoint simulation is thus needed. I-ASIFT
provides more correspondences than ASIFT, which are distributed in a dense
fashion while ASIFT accumulates them in small areas. This is mainly caused by
the distance ratio threshold set to 0.6 in ASIFT, which discards too many corre-
spondences in some generated image pairs. However, using a higher value leads
to a larger rate of outliers, especially when considering large perspective defor-
mations. The more sophisticated matching in I-ASIFT automatically adapts the
resemblance metric between descriptors from each pair of simulated images.

Figure 5 shows an experiment with almost only repeated patterns which can
still be disambiguated after a careful examination. In this case, ASIFT fails.
More precisely, it gives some good correspondences, but they are buried in a
large amount of false matches, and cannot be retrieved with the final RANSAC.
NNR does not give any correspondence. Since the viewpoint change is not too
strong, ACM+H still finds 21 correspondences, all correct. I-ASIFT+H finds 44
correspondences, all correct. One can see that the NFA criterion (eq. (3)) permits
us to match features which are not nearest neighbours (30% in I-ASIFT+H). Of
course, such correspondences are never considered in standard SIFT matching.
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group 1: log(NFA) = −589; 53 points group 2: log(NFA) = −427; 46 points

group 3: log(NFA) = −373; 34 points group 4: log(NFA) = −361; 33 points

group 51: log(NFA) = −319; 13 points

Fig. 2. Running example. Top: 210 correspondences found with I-ASIFT. Each green
ellipse is the backprojection in the original images of the circle with a radius equal
to the SIFT scale in the simulated image. Below (groups 1 to 4): correspondences
from the four pairs (It,φ, I

′
t′,φ′) corresponding to the groups with the lowest NFA. One

can see that these groups actually correspond to points over a quite small piece of
plane. In this experiment, 65 such groups are kept (with log(NFA) < −50). The last
10 groups yield only 14 correspondences. As a comparison, the four groups shown here
yield 116 correspondences. With our scheme, points from group 3 (resp. 4) redundant
with those of group 1 (resp. 2) are not back-projected to I and I ′. Note that points
on the wall or on the carpet are scattered among several groups. Indeed, the strong
induced homographies need to be approximated with several affine mappings. In group
51, the matching algorithm is trapped by perceptual aliasing: descriptors are alike but
the correspondences are consistent with a homography “by chance”. 10 points from
this group are back-projected, but all of them are discarded by the final RANSAC
imposing consistency to epipolar geometry.
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Fig. 3. Running example. Left: SIFT matching (nearest neighbour + ratio set to 0.8),
cleaned by the same RANSAC as in ASIFT [16]. Right: ASIFT. 97 matches are found
for SIFT, 153 for ASIFT. For a fair comparison, ASIFT was run with the same res-
olution as I-ASIFT (no downsampling). Some points on the carpet are not correctly
matched. A bunch of wrong correspondences can indeed be seen on the foreground,
because of repeated patterns falling by chance near the associated epipolar lines.

Fig. 4. The Creation of Adam (from [10, 21]). Left: ASIFT. 100 matches. Right: I-
ASIFT+H. 124 matches are retrieved with t in the range {1,

√
2, 2, 2

√
2, 4} as in ASIFT.

49 groups are kept. The range {1,
√

2, 2} (which we use for all other experiments of
this article with I-ASIFT) still gives 29 matches (19 groups), not shown here.

Fig. 5. Flatiron Building. Left: ACM+H finds 21 matches, 13 of which are nearest
neighbours, 5 are second nearest neighbours, the 3 remaining matches are between 3rd
and 7th nearest neighbours. Right: I-ASIFT+H finds 44 matches, 29 of which are
nearest neighbours, 7 are 2nd nearest, the 8 remaining matches are between 3rd and
6th nearest neighbours. 15 groups are kept.
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Figure 6 is another experiment with repeated patterns. To the best of our
knowledge, I-ASIFT is the only generic point matching algorithm able to retrieve
a large number of correct correspondences over the three visible sides of the cube.
This is a highly desirable feature for structure and motion applications. One can
also see that the ACM+H method (used in step 3 of I-ASIFT) is able to cope
with repeated patterns. Let us remark that in this experiment we get one of the
consistent solutions. However, we cannot eliminate the hypothesis that the cube
has been rotated by 90o. In some cases, a certain amount of perceptual aliasing
cannot be reduced from the information contained in images.

Fig. 6. Synthetic Cube. Top left: ASIFT. 101 correspondences, almost half of them
are not correct. Many matching patterns are actually shifted. Top right: I-ASIFT+F.
192 correspondences. A careful examination proves that almost all are correct. Only
102 among them are nearest neighbours, the others match between 2nd and 8th nearest
neighbours. 49 groups are kept. Middle left: ACM+H. 83 matches (only 40% of them
are nearest neighbours), patterns of the “dominant” plane are correctly retrieved (ho-
mography constraint). Middle right: ACM+F. 102 matches (55% are nearest neigh-
bours). False correspondences can be seen. This is simply unavoidable with two-view
geometry, since in this experiment many wrongly associated repeated patterns (correct
for the photometric constraint) lie along the corresponding epipolar lines (thus correct
for the geometric constraint). Bottom left: NNR+H. 19 matches, corresponding to
shifted patterns. Bottom right: NNR+F. 42 matches, many of them are not correct.

Figure 7 shows that I-ASIFT is also more robust to strong viewpoint changes
than ASIFT. It is due to the proposed strategy consisting in back-projecting
features from simulated images, which automatically selects a large number
of groups of correspondences consistent with a local homography, contrary to
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ASIFT where most correspondences actually come from the same pair of simu-
lated images. NNR+F and ACM+F do not give any set of correspondences.

Fig. 7. Leuven Castle: two distant images from M. Pollefeys’ sequence. Left: ASIFT.
94 matches, only among points from the same façade. Note that repeated windows
yield false correspondences with the fourth window in the second image (which is
not present in the first one.) Right: I-ASIFT+F. 118 matches (24% are not nearest
neighbours), distributed over the whole building. Except for two, all of them are correct.
The fundamental matrix is then estimated over the retrieved set of correspondences.
The epipolar lines (in yellow in the right images) corresponding to some handpicked
points (from the left images) prove that I-ASIFT permits to reliably estimate the
camera motion. The points associated to the handpicked ones are indeed less than 1
pixel away from the corresponding epipolar line. In contrast, the camera motion cannot
be retrieved from ASIFT. As a comparison, MSER gives 5 matches, and Harris/Hessian
Affine 20-30 matches mainly between wrongly associated repeated patterns. (code from
Mikolajczyk et al.’s www.featurespace.org)

5 Conclusion

The main contribution of this article is to change the matching paradigm of
ASIFT (namely nearest neighbour matching) to a more sophisticated one which
aggregates sets of correspondences consistent with a local homography. It is
not limited to nearest neighbour and yields dramatic results when confronted
to repeated patterns. The resulting algorithm is also more robust than ASIFT,
MSER, or Harris/Hessian Affine to large viewpoint changes, showing promising
capacities for Structure From Motion applications.
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