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Abstract—The deployment strategy for achieving differentiated
coverage and probabilistic connectivity in wireless sensor net-
works is studied in this paper. A novel solution based on elitist
non-dominated sorting genetic algorithm (NSGA-II) is proposed.
Simulation results show that NSGA-II based strategy can meet
the desired coverage reqirements and maintain connectivity in a
probabilistic manner with a small number of sensors. In addition,
for the applications in which the coverage requirement varies in
some subareas, a local genetic operation is more time-efficient
and needs less variation in the original disposal than a renewed
global optimization.

I. INTRODUCTION

Coverage and connectivity are two fundamental issues in
wireless sensor networks. The goal of coverage is to ensure
that the area of interest (AoI) or the physical state of the target
is precisely sensed, while connectivity is to ensure the event
in AoI or the state of the target is successfully transmitted to
the base station and subsequently captured by remote users.
Coverage and connectivity together can be treated as a measure
of quality of service (QoS). In the case where the target field is
inaccessible, random deployment is the only method. However,
it cannot guarantee the required coverage and connectivity
unless the node density is higher than certain threshold [1]. If
the target field is accessible, a deterministic sensor deployment
strategy should be more effective. Such a strategy would
minimize the total number of sensors required and achieve
the specific needs of applications in terms of their expected
quality of coverage and connectivity.

Most existing works on sensor deployment with guaranteed
coverage and connectivity are based on simplistic sensing and
communication models, such as the boolean disc model [1–3],
with sensing range Rs and communication range Rc. Under
disc model, it is well known results that when Rc ≥ 2Rs,
k-coverage of a convex region implies k-connectivity [2].
However, this result may not hold under probabilistic sensing
and communication models. Although disk model facilitates a
geometric treatment to the coverage and connectivity problem,
it fails to consider collaboration in sensing and stochastic
nature of radio communication. Our work is based on a prob-
abilistic sensing model and a shadowing fading link model,
which are more realistic compared to boolean disk model.

In this paper, we take into consideration the geographic
feature of the AoI and the target event. In other words,
different points of interest (PoIs) in the AoI can be of different
importance due to their geographic relation to the events. If

there is some a priori knowledge about the importance of
each PoI, the deployment plan can be more customized. For
example, in case of a fire detection application, PoIs around the
oil depot are considered highly risky and should be assigned
high coverage probability, while the PoIs near the water
area can be placed lower importance. Intuitively, locations
with higher detection requirement need to be deployed more
sensors than those with lower requirement. Meanwhile, the
network connectivity should be guaranteed in a probabilistic
manner otherwise more power has to be used to ensure
communication. This deployment issue can be formulated as
a multi-objective optimization problem (MOP). The essential
requirement for MOP is to find Pareto-optimal solutions under
multiple decision objectives and constraints, from which the
user can make a trade-off choice according to their own
preference and some practical limits. Among the existing
solutions, genetic algorithm (GA) has been recognized as one
of the possibly well-suited to MOP [4]. We adopt NSGA-II [4],
which is one of the most popular GAs and has been shown
effective in a number of applications [5, 6], to develop the
framework for solving the MOP in sensor deployment. The
algorithm can be run in the base station (BS) and the sensor
nodes are distributed following the final result. In case the user
changes a small part of the detection requirement, it is not
efficient to run the algorithm once again over the whole area.
We propose to restrict genetic operations in the varied subareas
while evaluate the fitness function globally. Simulation shows
that this method converges more quickly with little degradation
in performance and the variation of sensor nodes are much less
than the global way.

The rest of the paper is organized as follows. Section
II reviews related work. Section III introduces the models
used and problem definition. In Section IV, NSGA-II based
deployment strategy is specified and analyzed. We present
simulation results in Section V and conclude the paper in
Section VI.

II. RELATED WORK

The problem of finding optimal deployment with guaran-
teed coverage and connectivity has been addressed in several
literatures. Bai et al. [3] propose optimal deployment patterns
to achieve full coverage and k-connectivity (k ≤ 6) under
different ratios of sensor communication range over sensing
range. However, their work is under the assumption of disk



sensing and communication model. Under non-disc models,
their “optimal” deployment patterns may be too conservative.
A few literatures have replaced disk sensing model by proba-
bilistic [7–9] or stochastic models. Zou et al. [7] present two
heuristic algorithms to optimize the number of sensors while
minimizing the overall miss probability and they specifically
deal with the problem of uncertainty in sensor locations.
In [8], Zhang et al. formulate the differentiated deployment
problem as an integer linear programming problem and also
propose a heuristic algorithm to solve it. Propositions in
[7, 8] only satisfy coverage requirement but do not consider
network connectivity. Aitsaadi et al. [9] use tabu search to find
optimal deployment with differentiated coverage and connec-
tivity. Their approach is testified to outperform solutions in
[7, 8]. However, they adopt disk model as the communication
model and their final solution has no diversity. There are also
literatures addressing mobile sensor deployment [10], while in
this paper, we only focus on static sensor node deployment,
i.e., sensors do not move after deployed.

III. PRELIMINARIES AND PROBLEM FORMULATION

A. Sensing and Communication Models
We adopt exponential sensing model as described in [7].

Specifically, the probability that a target/event at point P be
sensed by sensor si is:

csi
(P ) =





1, h(si, P ) ≤ rs

e−ω(h(si,P )−rs)β

, rs < h(si, P ) < ru

0, h(si, P ) ≥ ru.

(1)

where h(si, P ) is the distance between si and P , ω and β
are parameters that measure the decay of sensing probability
with distance, rs and ru are two thresholds denoting boolean
sensing radius and maximum sensing range respectively. This
model reflects the behavior of range sensing devices such as
infrared and ultra sound sensors.

Let S be the set of nodes whose sensing range cover the
point P , expressible as S = {si|h(si, P ) < ru}. The total
coverage probability of the point P , also referred to as 1-
coverage probability, is defined as:

CS(P ) = 1−
k∏

i=1

(1− csi
(P )) (2)

which is the probability that point P is covered by at least
one sensor.

Empirical studies have shown that the radio links between
low-power sensing devices are extremely unreliable. Thus
boolean disk model has been repeatedly challenged. Here
we adopt PRR (packet reception rate)-based link model [11],
which can reflect the unreliable and asymmetric nature of
wireless links. The PRR of a wireless link is expressible as:

p(h) =
(

1− 1
2

exp
(
−γ(h)

2
1

0.64

))8f

(3)

where h is the transmitter-receiver distance, γ(h) is the signal-
to-noise ratio (SNR), and f is the frame size including pream-
ble, payload and CRC in following MICA2 motes [12] and the

standard non-coherent FSK modulation and NRZ coding. This
model takes into account both distance-dependent path loss
and log-normal shadowing in identifying the signal strength
and randomness in wireless environment.

For transmitting power Pt, the SNR, γ(h), is expressible
as:

γ(h)dB = Pt dB − PL(h)dB − Pn dB (4)

where, by MICA2 radios, Pt dB is set at 0 dB, the noise floor
Pn dB is at −115 dB, while the path loss PL(h)dB is modeled
as:

PL(h)dB = PL(h0)dB − 10n log10 (h/h0) + Xσ dB (5)

in which n is the path loss exponent, h0 is the reference
distance (1 meter), and Xσ denotes the log-normal shadowing
with zero mean and variance σ2.

B. Problem Formulation

The to-be-deployed area A is first discretized into X × Y
grids. The grid dimension depends on the user’s precision
requirement and the BS’s computational capability . If the area
is highly fine-grained, each grid can be regarded as a PoI. To
facilitate mathematical description, we refer to each grid by its
barycenter. The distance between two grids is defined as the
distance between their barycenters. As mentioned before, the
coverage requirement of different PoI in the area A is different
characterized by their geographic relation to events or targets.
Thus, we assume that each PoI Pi in A is associated with
a minimum coverage threshold, denoted Ri, 0 ≤ Ri ≤ 1.
The deployment strategy can thus be denoted by a X × Y
boolean matrix D, with the element di = 1 indicating a
deployed sensor in respective PoI while di = 0 no sensor
deployed. After deployment, each PoI is actually covered with
probability Ci, defined by (2). We use G(V, E) to represent
the communication graph after deployment, in which V is
the vertex set and E is the edge set denoting communication
links. Finally, under given connectivity requirement Rconn, we
formulate the MOP as:

min N =
X×Y∑

i=1

di,

min
X×Y∑

i=1

∆i,

s.t. Conn(G(V, E)) ≥ Rconn,

di ∈ {0, 1}.

(6)

where
∆i =

{
(Ri − Ci)/Ri, Ri > Ci;
0, Ri ≤ Ci.

(7)

and Conn is defined as the 1-connectivity probability of the
resulting network. In problem (6), the first objective is to
minimize the number of nodes while the second objective
is to minimize the difference between the required coverage
threshold and the after-deployment coverage probability. The
constraint is that the 1-connectivity probability of the resulting
network should be greater than user requirement Rconn. The



dimension of the solution space of the above problem is 2X×Y .
To obtain the optimal or sub-optimal solutions in polynomial
time, we resort to heuristic approaches.

IV. NSGA-II BASED DEPLOYMENT STRATEGY

There are a number of heuristic methods possible to solve
problem (6), among which we choose a popular genetic
algorithm, NSGA-II. As well-known, GAs have been suc-
cessfully applied in many areas, especially in numerical and
combinatorial optimizations [5, 6]. NSGA-II follows some
basic steps of GA. The population is first initialized and then
sorted based on nondomination into each front by using a fast
sorting algorithm. Each individual in each front is assigned a
fitness (or rank) value equal to its nondomination level. Once
the nondominated sorting is completed the crowding distance
is also assigned. Parents are selected from the population
by using binary tournament selection based on the rank and
crowding distance. The offspring population is combined with
the current generation population and selection is performed to
set the individuals of the next generation. The selected parents
generate offspring by using crossover and mutation operators.
The new generation is controlled by each front subsequently
until the population size exceeds the current population size.
Since all the previous and current best individuals are added in
the combined population, elitism is ensured in the NSGA-II.

A. Initial Population

Each GA requires an initial population P0 to serve as the
starting point. To have more diversity in the initial population,
we use both random and greedy approaches to generate P0.
Random deployment is calculated as follows:

di =
{

1, rand < K ·Ri;
0, otherwise (8)

in which K is a tunable parameter controlling the node
density and rand ∈ [0, 1]. The greedy approach is similar
to the initialization procedure presented in [9]. The decision
to deploy a sensor on Pi follows Bernoulli distribution B(θ),
whose parameter θ associated to Pi is calculated as follows:

θ =
1

|S(Pi)|
|S(Pi)|∑

i=1

1{Ci<Ri}, (9)

where |S(Pi)| is the number of nodes in S, and 1{·} is the
indicating function, which is equal to 1 if the condition is true
and 0 otherwise. First, there is no node deployed. For any PoI
Pi, Ci = 0. Select a random PoI and compute the value of θ
following (9). Second, generate a list L to include all points
of A in decreasing order of the value of θ. Third, select the
point Pi with highest θ and remove it from L, and compare
the actual sensing probability Ci with the requirement Ri. If
Ci < Ri, deploy a sensor in Pi following B(θ). If the decision
is to deploy a sensor, recompute the coverage probability in
the sensing range of Pi and update L. Repeat the third step
until the list L is empty.

B. Objective Evaluation, Fast Sorting and Crowding Distance
Comparison

After the initial population is generated, we compute all
the objectives for each individual solution and evaluate the
constraints.

F1 =
X×Y∑

i=1

di, F2 =
X×Y∑

i=1

∆i,

Ct = Conn(G).

(10)

After computing the objectives and constraints, each individ-
ual solution in the population is ranked with nondominated
criteria and sorted into different fronts by using a fast sorting
algorithm. Crowding distance is computed for differentiating
the solutions of the same rank. Thus the diversity among
nondominated solutions can be obtained.

C. Genetic Operations

An intermediate population of size np is created by employ-
ing the following genetic operators:

1) Selection: First, parents are selected from the population
by using a binary tournament selection based on the rank and
crowding distance. It is based on the principle that parents
with better chromosomes can reproduce better offsprings.

2) Crossover: We choose multiple crossover points, whose
locations are calculated using a random number generator
(RNG), to create a new population with probability pc.

3) Mutation: Newly reproduced chromosomes are trans-
ferred to the mutation pool. With mutation probability pm,
randomly chosen chromosomes are mutated. A new population
is thus generated. To achieve good convergence, pc is usually
set a larger value than pm.

After the genetic operation, we combine the parents and
offspring populations into a whole population of size 2np

and continue the procedures in section IV-B to obtain a new
population of size np, which is then used for the genetic oper-
ation in section IV-C. The iteration stops when the termination
criterion, e.g. a maximum generation gen, is reached.

D. Deployment Result Update

Suppose an optimal solution has been obtained using the
above NSGA-II algorithm. There is a question that when the
coverage thresholds at some PoIs vary, is it required to run
the above algorithm once again? As illustrated in Fig.1, the
coverage thresholds of PoIs inside the ellipse vary while those
outside the ellipse remain the same. One way is to take it as
a brand new issue and follow the original steps to reach an
optimal solution. Due to the nature of genetic algorithm, this
treatment may result in a major change of the node deployment
over the whole AoI. In order to preserve the original placement
of most sensors, another way is to clip out the varied subarea
and run the algorithm independently in the subarea. However,
this will bring a problem that nodes outside the subarea cannot
contribute to the coverage or connectivity inside, which may
result in larger number of nodes than required. Therefore, we
propose to do genetic operations in the varied subarea while
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Fig. 1. The coverage requirement in the circled area is varied.

evaluate the objectives still in a global way. This will ensure
that nodes outside the varied subarea cooperate with nodes
inside in both sensing coverage and communications.

V. PERFORMANCE EVALUATION

In this section, we conduct numerical experiments to eval-
uate the performance of the deployment strategy based on
NSGA-II. We compare the algorithm with tabu search (TS)
approach proposed in [9], as well as random and grid deploy-
ment. In case the coverage threshold in a small area varies after
deployment, both global and local operations are conducted to
redeploy the sensors. In addition, we compare the efficiency
of the two strategies according to multiple metrics.

A. Simulation Settings

Unless otherwise stated, we use the following settings: (i)
ω = 0.4, β = 1.2, rs = 2m, ru = 10m. (ii) The transmission
power increases from -16.9dB to -3.2dB, corresponding to
equivalent communication ranges from 5m to 11m. The equiv-
alent sensing and communication range under disk models are
calculated as below:

ERs =
∫ ru

0

c dh

ERc =
∫ +∞

0

p dh

(11)

where c is the sensing probability of a sensor within distance
h defined in (1), and p is the communication probability
defined in (3). Following (11), the equivalent sensing and
communication range (Pt = −6.9dB) under disk models
equal to 4m and 9m respectively, as shown in Fig.2. (iii)
The deployment region is discretized into 50 × 50 grids and
the center of each grid is a PoI. The coverage thresholds of
the AoI are non-uniformly distributed and vary from 0.1 to
0.99, as illustrated in the first sub-figure of Fig.8, with light
color indicating a large threshold value while dark color on
the contrary. (iv) Random deployment approach follows (8)
and the best is chosen out of 10 tries. For NSGA-II based
strategy, np = 50, pc = 0.75, pm = 0.1, gen = 50; the
settings related to TS strategy can be referred to literature [9].
(v) The connectivity constraint is set to 95%.

B. Simulation Results

Fig.3 plots the number of nodes required by four deploy-
ment methods under different ERc/ERs ratios. For each
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Fig. 2. Sensing and communication models, indicating equivalent sensing
and communication range under disk models, with Pt = −6.9dB.

method, as the ERc/ERs ratio increase from 5/4 to 11/4,
the number of nodes required gradually decreases and finally
converges to a minimum value. This is because the sensing
parameters remain unchanged. There should be a minimum
number of nodes guaranteeing the coverage requirement. Fur-
ther increase in ERs cannot do any help to the coverage but
result in a waste of power instead.

5/4 6/4 7/4 8/4 9/4 10/4 11/4
50

100

150

200

250

300

ER
c
/ER

s

N
um

be
r 

of
 n

od
es

GA
TS
random
grid

Fig. 3. Required node number of different deployment vs. ERc/ERs ratio.

Although TS based strategy require least sensors, it cannot
satisfy the connectivity requirement as shown in Fig.4. This
is because TS approach does not support multi-objective
optimization problem very well. The strategy proposed in
[9] ensures a connected network under boolean model in
the initialization phase. However, it does not maintain the
connectivity in the afterward searching procedure. The 1-
connectivity probability is plotted in Fig.4, which indicates
that the resulting network by GA approach can ensure a
connected network with the probability around 95%.

As ERc/ERs increases, more transmission power is re-
quired. As shown in Fig.5, the total power for the network
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Fig. 4. 1-connectivity probability of differently deployed network vs.
ERc/ERs ratio.
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Fig. 5. Total power of different deployment vs. ERc/ERs ratio.

increases in spite of the number of nodes decreasing. It is
worth noting that in case ERc/ERs < 2, the increase in the
total power is gentle while in case ERc/ERs > 2, the increase
becomes steep. This implies that there should be a tradeoff
between transmission power setting and the total number of
nodes required, preventing the total power from going to the
steeply increase range.

Fig.6 and Fig.7 show the obtained nondominated solutions
using NSGA-II. In Fig.6, all the solutions satisfy the constraint
Ct, nondominated solutions with tradeoffs in F1 and F2 are
presented. Similarly in Fig.7, all the solutions satisfy F2 =
0, nondominated solutions with tradeoffs in F1 and Ct are
given for users to choose an appropriate one according to their
practical conditions and limits.

In case that the coverage requirement in some subarea vary,
we do both global and local optimizations for the updated
problem. As shown in Fig.8, the first sub-figure denotes the
original requirement, while the 4 sub-figures afterwards are
new requirement with subareas variation. Fig.9 shows respec-
tive performance. We can see that the total number of nodes
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required is almost the same for the two approaches. Local
approach converges more quickly and it is easier to find a novel
solution while the global approach which searches in a wider
range, lacks of efficiency and sometimes may not reach the
same level as local approach with the same time complexity.
An obvious advantage of local approach lies in the varied
number of nodes in the network. For global genetic operation,
it is highly possible that the deployment in the area without
threshold variation be destroyed to satisfy a global search of
optimal solution. On the contrary, local approach restricts the
search in the localized area. Thus the placement outside is
not affected. Since the fitness function is still evaluated in a
global way, the local approach will not degrade too much, if
compared with the optimal solutions. Both local and global
approaches satisfy the connectivity constraints as shown in
Fig.10.

C. Complexity Analysis

The worst-case complexity of NSGA-II is O(mn2
p), where

m is the number of objectives while the worst-case complexity
of TS is O(kXY ), where k is a constant related to iteration



Fig. 8. The coverage requirement in subareas is varied: four situations.
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time and sensing range. It is worth noting that if the deploy-
ment area is large or the dimension of discretized grids is
small, the complexity of NSGA-II based strategy is not af-
fected but the complexity of TS based method increases. In this
sense, NSGA-II based deployment strategy is more adaptive
and robust to the dimension of the area and discretized grids.

VI. CONCLUSIONS

We propose a novel NSGA-II based deployment strategy,
which is able to meet the desired coverage performance and
maintain connectivity in a probabilistic manner with a rela-
tively small number of sensors. Besides, for the applications
in which the coverage requirement varies in some subareas,
a local genetic operation is more time-efficient and requires
less variation in the original disposal than a renewed global
optimization. Our solution to the deployment issue can also be
applied to solve on-duty sensor set selection and scheduling
problem if the sensors have already been densely deployed. A

design of hybrid algorithm is worked in progress to find the
best genetic operator and improve the searching efficiency.
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