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Abstract

When a local optimal solution is reached with classi-
cal Particle Swarm Optimization (PSO), all particles in the
swarm gather around it, and escaping from this local op-
tima becomes difficult. To avoid premature convergence of
PSO, we present in this paper a novel variant of PSO al-
gorithm, called MPSOM, that uses Metropolis equation to
update local best solutions (lbest) of each particle and uses
Mutation operator to escape from local optima. The pro-
posed MPSOM algorithm is validated on seven standard
benchmark functions and used to solve the problem of re-
ducing memory energy consumption in embedded systems.
The numerical results show that our approach outperforms
several recently published algorithms.

1. Introduction

Global optimization1 (GO) is the branch of applied
mathematics and numerical analysis that focuses on,
well, optimization. GO can be defined as follows:
Minimizef(x) : S → R where f(.) is the objective func-
tion (called also fitness value) which is subject to optimiza-
tion, S ⊂ <D andD is the dimension of the search space S.
Solving global optimization problem means that we need to
find x∗ ∈ S such that f(x∗) ≤ f(x),∀x ∈ S. x∗ is called
the global minimizer of f(.) and f(x∗) is called the global

1http://www.it-weise.de/projects/book.pdf

minimum value of f(.). Finding this global minimum is
very difficult dues to the existence of several local optima.
Over the last decades, several optimization heuristics have
been proposed for solving GO. Among the many heuristics
let us mention Simulated Annealing (SA) [2], Genetic Al-
gorithm [21] and optimization algorithms that make use of
social or evolutionary behaviors like Particle Swarm Opti-
mization (PSO) [19, 22, 1]. PSO is quite popular heuristics
for solving complex optimization problems but this method
has strengths and limitations principally premature conver-
gence. To avoid premature convergence [23] of PSO, many
works in the PSO community try to hybridize PSO with
other heuristic algorithm [19, 22, 18]. Particle Swarm Op-
timization (PSO) is based on the social behavior of indi-
viduals living together in groups. Each individual tries to
improve itself by observing other group members and im-
itating the better ones. That way, the group members are
performing an optimization procedure which is described
in [3]. The performance of the algorithm depends on the
way the particles (i.e., potential solutions to an optimiza-
tion problem) move in the search space with a velocity that
is updated iteratively. Large body of research in the field
has been devoted to the analysis and proposal of different
motion rules (see [19, 4, 5, 6] for recent accounts of PSO
research).

In this paper, we present a new algorithm, called MP-
SOM, that makes full use of the exploration ability of PSO
and incorporates a mutation operator and Metropolis rule to
jump out from local optimum. MPSOM has been validated
on 7 benchmark functions [7] and compared with PSO al-



gorithms variants described in [19, 18, 24]. We also use
MPSOM algorithm to solve the problem of reducing mem-
ory energy consumption in embedded systems. The sim-
ulation results show that MPSOM outperforms the above
mentioned algorithms. Hence MPSOM is a good alterna-
tive for dealing with complex numerical function optimiza-
tion problems. This paper is organized as follows. Section
2 introduces briefly PSO algorithm. Section 3 is devoted to
a precise detailed description of MPSOM . In Section 4, a
series of numerical experiments regarding solution quality,
convergence rate and robustness are conducted to show the
superiority of our MPSOM algorithm. Discussion and re-
sults obtained about solving the problem of reducing Mem-
ory energy consumption in embedded systems are presented
in Section 5. Finally, conclusions and further research as-
pects are given in Section 6.

2. Particle Swarm Optimization

Particle swarm optimization (PSO) is a population based
stochastic optimization technique developed by Eberhart
and Kennedy in 1995 [10], inspired by social behavior pat-
terns of organisms that live and interact within large groups.
In particular, it incorporates swarming behaviors observed
in flocks of birds, schools of fish, or swarms of bees, and
even human social behavior.

The idea of PSO algorithm is that particles move through
the search space with velocities which are dynamically ad-
justed according to their historical behaviors. Therefore, the
particles have the tendency to move towards the better and
better search area over the course of search process. PSO
algorithm starts with a group of random (or not) particles
(solutions) and then searches for optima by updating each
generation. Each particle is treated as a volume-less parti-
cle (a point) in the n- dimensional search space. The ith

particle is represented as Xi = (xi1, xi2, ..., xin). At each
generation, each particle is updated by following two best
values:

• The first one is the best solution (fitness) it has
achieved so far (The fitness value is also stored). This
value is called cbest.

• Another best value that is tracked by the particle
swarm optimizer is the best value, obtained so far by
any particle in the population. This best value is a
global best and called gbest. When a particle takes
part of the population as its topological neighbors, the
best value is a local best and is called lbest.

At each iteration, theses two best values are combined
to adjust the velocity along each dimension, and that ve-
locity is then used to compute a new move for the particle.
The portion of the adjustment to the velocity influenced by

the individual’s previous best position (cbest) is considered
the cognition component, and the portion influenced by the
best in the neighborhood (lbest or gbest) is the social com-
ponent.

With the addition of the inertia weight factor, ω, by Shi
and Eberhart [11] (for balancing the global and the local
search), these equations are:

vij = ω × vij + c1 × rand× (cbestij − xij)
+ c2 × rand× (gbestij − xij)

(1)

xij = xij + vij (2)

where rand is a random number independently gener-
ated within the range of [0,1] and c1 and c2 are two learning
factors which control the influence of the social and cogni-
tive components (usually, c1 = c2 = 2).

In Equation 1 if the sum on the right side exceeds some
fixed V max value, then the velocity on that dimension is
assigned to be ±Vimax. Thus, particles’ velocities are
clamped to the range of [−Vimax;Vimax] which serves as
a constraint to control the global exploration ability of PSO
algorithm. This also reduces the likelihood of particles for
leaving the search space. Note that this does not restrict the
values of xi to the range [−Vimax;Vimax]; it only limits
the maximum distance that a particle will move during one
iteration.

3. MPSOM Algorithm

This section presents MPSOM algorithm that makes full
use of the exploration ability of PSO and incorporates a mu-
tation operator and Metropolis rule to jump out from local
optimum. The mutation operator is introduced to PSO every
K iterations if no improvement of the global best solution
does occur. The value of K is predefined to 60 according to
our experimentations.

The principle of MPSO algorithm is works as illustrated
in Algorithm 1, where:

Description of a particle: Each particle (solution) is
represented by its:

– current position X ∈ S represented by n > 0
components, i.e., X = (x1, x2, , xn), where i =
1, 2, ..., n and n represents the dimension of the
optimization problem to solve.

– previous best solution founded so far (called
cbest).

– velocity that corresponds to the rate of the posi-
tion change.

Initial Swarm: Initial Swarm corresponds to popula-
tion of particles that will evolve. Each particle xi is ini-
tialized with uniform random value between the lower



Initialize swarm size particles1
Evaluate(Swarm)2
stop criterion←maximum evaluation functions3
noImprove← 0,4
Initialize inertia factor w ← w05
Initialize Initial Temperature T ← T06
while Not stop criterion do7

Sort(Swarm)8
if nonimprove < k then9

for each particle i← 1 to swarm size do10
Accept(X, cbest, T)11
Update velocity according equation (4)12
Enforce velocity bounds13
Update particle position according equation (2)14
Enforce position bounds15

end16

else17
// Mutation operator18
noImprove← 019
for each particle i← 1 to swarm size do20

Initialize its velocity to maximum velocity21
allowed

end22

end23
Evaluate(Swarm)24
if there is no improvement of global best solution then25

noImprove← noImprove+ 126
else27

Update global best solution28
noImprove← 029

end30
Update inertia factor w by using equation 631
Update (T)32
Update (stop criterion)33

end34

Algorithm 1: MPSOM Algorithm.

and upper boundaries of the interval defining the opti-
mization problem.

Evaluate function: Evaluate (or fitness) function in
MSOSM algorithm is typically the objective function
that we want to minimize in the problem.

• Sort: all particles of the swarm are sorted in decreas-
ing order of their objective function.

Accept function: FunctionAccept(cbest,X, T ) is de-
cided by the acceptance probability given by equation
3, which is the probability of accepting current posi-
tion of one particle as its cbest.

The probability of accepting a new solution is given as
follows:

p =


1 f(X) ≤ f(cbest) or

rand× (1 + e
f(X)−f(cbest)

T ) < 2.0

0 otherwise

(3)

where:

– T is the temperature. It plays a similar role
as the temperature in the physical annealing
process[12, 2]

– rand is a random number independently gener-
ated within the range of [0, 1].

• update velocity: we propose in this work topological
neighborhood which is determined dynamically during
the search process, according to the objective function
of the swarm. After we had sorted the Swarm popula-
tion in decreasing order of their objective function, for
each ith particle, a setNi of its neighbors is defined as:
Ni = {particle k / k ≥ i and k ≤ swarm size}.
Then, to adjust velocity of ith particle, we used the
following equation:

vij = ω × vij + c1 × rand× (cbestij − xij)

+min(Vmax,

swarm size∑
k=i

cbestkj − xij
k

)
(4)

In Equation 4, the social component of ith particle is
computed as a weighted average of all best particles in
Ni. In so doing, a particle is not only influenced by the
global best solution. The particle adjusts its speed ac-
cording to the weighetd average of all solutions which
are better than its ones. This means simply that it’s
better for particle to follow a group of particles rather
than a signle one (this ins of course common sens).

Dire que cette moyenne permet d’viter une par-
ticule d’tre influencer uniquement par la meilleure



solution. Elle ajuste donc sa vitesse en fonction
de la moyenne pondre de toutes les solution qui
sont meilleure qu’elle. Intuitivement, il vaut mieux
suivre la tendance d’un groupe que de suivre 1 un
seul individu!

• Temperature update: to avoid our algorithm getting
trapped at a local minimum point, the rate of reduction
should be slow. In this work, the following method to
reduce the temperature has been used:

Ti+1 = γTi (5)

where i = 0, 1, ... and γ = 0.99.

Thus, at the start of MPSOM most worsening moves
may be accepted, but at the end only improving ones
are likely to be allowed. This can help the procedure
jump out of a local minimum.

• Update Inertial factor: the inertial factor, used to
control relation speed between previous and current
speed of each particle, is defined as follows:

wk = w0 ×
(
1− T0 − Tk

T0

)
(6)

where:

– w0 = 0.9 correspond to the start weight value
of the algorithm. Note that with lower value of
w the searching region of the algorithm could be
around the best solution, and with higher level of
w, the algorithm could enhance the exploration
searching (global searching).

– T0 is an initial temperature and and Tk represents
temperature at kth iteration.

• Mutation operator: If no improvement of the global
best solution does occur during the lasts K iterations,
then it means that the algorithm is trapped at a local
optimum point. To escape out from local optimum,
our MPSOM algorithm uses mutation operator based
on the following idea: by given a maximum velocity
allowed to each particle, equation 2 ensures that all
particles will jumps out from local optimum point and
MPSOM algorithm could have a large range of explo-
ration ability.

4. Experiments results on Benchmark func-
tions

To compare the performance of our MPSOM algorithm
with those described in [19, 24, 18], we use 7 benchmark
functions [7] described in Table 4. These functions possess

some properties similar to real world problems and provide
a good launch pad for testing the credibility of an optimiza-
tion algorithm. For these functions, there are many local
optima in their solution spaces. The amount of local optima
increases with increasing complexity of the functions, i.e.
with increasing dimension.

4.1. Comparison with results obtained by [19, 17,
18]

In order to make a fair comparison of classical PSO,
Gaussian PSO with jumps algorithm (GPSO-J) [24], Com-
prehensive Learning PSO algorithm (CLPSO) [18], Particle
Swarm Optimizer with Adaptive Tabu and Mutation (ATM-
PSO) [19] and our MPSOM approach we fixed, as indicated
in [19], the number of particles in the swarm at 20 and the
maximum number of function evaluations (FEs) is set to
5000 D = 150000. A total of 30 runs for each experimen-
tal setting were conducted and the average fitness of the best
solutions throughout the run is recorded.

Analysis of numerical results given in Table 2 show that:

• All the algorithms successfully solve Sphere’s function
which is the simplest unimodal function even if our
algorithm obtains best solutions.

• Our MPSOM algorithm outperforms other PSO vari-
ants when optimizing hard multimodal problems. In
fact, for Rosenbrock’s function, which is considered
in the optimization literature as difficult problem due
to the nonlinear interaction between variables [13], we
can see that our algorithm successfully solve this prob-
lem while the other algorithms get stuck in local op-
tima.

• ATM-PSO and CLPSO successfully solve Schwefels
problem. In contrast, GPSO-J and our MPSOM algo-
rithm fail to optimize this problem.

• For highly multimodal Rastrigins function, ATM-PSO
and our MPSOM approach hit the global optimal solu-
tion reliably within 150000 FEs.

• The analysis of the results obtained for Ackley’s func-
tion shows that ATM-PSO and MPSOM obtain better
mean results than GPSO-J and CLPSO.

• The optimization of the Griewanks function is an ex-
ample of the failure of all algorithms except MPSOM
that hit the global optimal solution.

• The optimization of the Quartic noisy function is an-
other example of the success of MPSOM and illus-
trates that other algorithms are adapted to a dynamic
environment.



Table 1. Standard benchmark functions adopted in this work.
Function Problem Range f(x∗) ε Classification

Sphere
n∑
i=1

x2i [-100;100] 0 0.01 Unimodal

Rastrigin
n∑
i=1

(x2i − 10 cos(2πxi) + 10) [-5.12;5.12] 0 10 Multimodal

Griewank 1
4000

n∑
i=1

x2i −
n∏
i=1

cos(
xi√
i
) + 1 [−600; 600] 0 0.1 Multimodal

Rosenbrock
n−1∑
i=1

(100(xi+1 − x2i )2 + (xi − 1)2) [-2.048;2.048] 0 100 Unimodal

Schwefel 420.9687 n−
n∑
i=1

(xi sin(
√
|xi|) [-500.0;500.0] 0 2000 Multimodal

Ackley 20 + e− 20 e−0.2 ( 1
n

∑n
i=1 x

2
i )

1
2 − e

1
n

∑n
i=1 cos(2πxi) [−30.0; 30.0] 0 0.1 Multimodal

Quadratic (

n∑
i=1

(i+ 1)x4i ) + rand[0, 1] [−1.28; 1.28] 0 0.1 Noisy

Table 2. Mean results and standard deviation over 30 independent runs for 4 PSO variants algorithms
on 7 benchmark functions(Dimension n = 30 and swarm size = 20).

Function CLPSO GPSO − J ATM − PSO MPSOM

Sphere 8.99e-14 3.85e-07 8.90e-104 9.4008e-113
± 4.66e-14 ± 7.97e-07 ± 3.18e-103 ± 9.6549e-113

Rosenbrock 20.88 27.11 15.13 0.014441893
± 2.58 ± 16.91 ± 8.71e-01 ± 0.016312307

Schwefel 1.76e-12 1336.29 2.36e-12 4501.7
± 3.27e-13 ± 290.81 ± 9.57e-13 ± 1520.45862

Rastrigin 1.34e-06 15.86 0 0
± 1.66e-06 ± 4.52 ± 0 ± 0

Ackley 8.45e-08 1.43e-03 2.59e-14 2.60232e-10
± 1.96e-08 ± 1.36e-03 ± 6.12e-15 ± 5.27812e-11

Griewank 1.95e-09 4.02e-02 2.22e-02 0
± 4.35e-09 ± 4.02e-02 ± 2.03e-02 ± 0

Quadratic 8.18e-03 4.45e-03 9.77e-03 4.0721e-06
± 2.39e-03 ±9.95e-04 ±3.16e-03 ± 1.055e-05

Convergence Rate: Qmeasure

In order to evaluate the convergence rate of all algorithms
compared in this section, a threshold ε is set for each bench-
mark function as described in [19]. When each algorithm
reaches the specified threshold ε (see Table 2) of a certain
benchmark function in the kth trial, the number of function
evaluations FEk needed is recorded and the current trial k
is denoted as a successful trial.

[16] proposes a Qmeasure criterion which incorporates
the measure of both convergence and robustness. The
Qmeasure used, to evaluate performance of all algorithms,
is defined as follows:

Qmeasure =
nt
∑ns

i=1 FEi

n2s
(7)

where:

• nt denote the total number of trials,

• ns denote the number of successful trials,

• the success ratio SR is defined as SR = ns

nt
.

Qmeasure values of four algorithms on 7 benchmark
functions studied in this work are summarizes in Table3.
Analysis of this table show that MPSOM converges slightly
faster than all other algorithms, except for the optimiza-
tion of Schwefel’s function where CLPSO and ATM-PSO
achieve very good performance in comparison with our MP-
SOM.



Table 3.Qmeasure values of four algorithms on 7 benchmark functions studied in this work. Percentage
in parentheses are success ratio (SR).

Function CLPSO GPSO − J ATM − PSO MPSOM

Sphere 67977 19343 8101 216.66
(100%) (100%) (100%) (100%)

Rosenbrock 34654 6537 980 700.66
(100%) (100%) (100%) (100%)

Schwefel 24439 47987 9726 21271
(100%) (100%) (100%) (100%)

Rastrigin 87201 1795500 15187 3248
(100%) (7%) (100%) (100%)

Ackley 62659 42857 9664 4832
(100%) (100%) (100%) (100%)

Griewank 65437 18309 7140 5085
(100%) (90%) (100%) (100%)

Quadratic 38094 11137 5988 1177.33
(100%) (100%) (100%) (100%)

5. Reducing Memory energy consumption in
embedded systems

Text venir

6. Conclusion

In this paper, we have designed a new algorithm (MP-
SOM) that uses the exploration ability of PSO and muta-
tion operator to avoid premature convergence. Compared
with ATM-PSO [19], CLPSO [18] and GPSO-J [24] on 7
well-known benchmark functions (unimodal, noisy, multi-
modal) and on problem of reducing Memory energy con-
sumption in embedded systems, it has been shown that our
approach has better performances in terms of accuracy, con-
vergence rate, stability and robustness. In future work, we
will compare MPSOM algorithm with other hybrid algo-
rithms (GA-SA, PSO-GA) whose design is in progress by
the authors. Comparison will also be done on additional
benchmark functions and more complex problems includ-
ing functions with dimensionality larger than 30.
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