
A New Hybrid GA-MDP Algorithm For The Frequency Assignment Problem

Lhassane IDOUMGHAR
LMIA-MAGE,

Faculté des Sciences et Techniques
4 rue des Frères Lumière,
68093 Mulhouse, France

lhassane.idoumghar@uha.fr

René Schott
IECN and LORIA,

Université Henri Poincaré-Nancy 1,
54506 Vandoeuvre-lès-Nancy, France

schott@loria.fr

Abstract

We propose a novel algorithm called GA-MDP for solv-
ing the frequency assigment problem. GA-MDP inherits the
spirit of genetic algorithms with an adaptation of Markov
Decision Processes (MDPs). More precisely Policy Itera-
tion (PI) and Value Iteration (VI) are used as mutation op-
erators. Experimental results show that for our application,
GA-MDP that uses PI as a mutation operator improves the
quality and time performances of the hybrid algorithms and
hybrid MDP ([1, 2]) designed previously by the authors for
solving the same problem.

1. Introduction

In order to perform suitable geographic and/or demo-
graphic coverages for radiobroadcasting or radiocommuni-
cations, it is necessary to distribute large numbers of trans-
mitters over the geographic areas. To each transmitter is as-
signed one frequency. Unfortunately, to each diffusion sys-
tem is assigned a finite frequency spectrum, which makes
it necessary to reuse frequencies. This problem generates
interference phenomena due to same or adjacent frequen-
cies allocated to neighbouring transmitters. Here, it is of
major importance to minimize the interference while at the
same time to use the spectrum efficiently. This problem,
known to be NP-Hard, can be stated as finding an optimal
assignment of frequencies to a set of transmitters, under var-
ious constraints. The frequency assignment problem can
be represented as a generalised graph colouring problem.
Transmitters are represented by the vertices of a constraints
graph [3]. Each edge of this graph represents a constraint on
the frequencies assigned to the two transmitters connected
by this edge.

The graph colouring problem is one of the most stud-
ied NP-Hard problems, and can be defined informally as
follows. Given an undirected graph, one wishes to colour,

with a minimal set of colours, the vertices of the graph in
such a way that two adjacent vertices are assigned different
colours. Due to the NP-Hardness of this problem [4] heuris-
tic methods must be used for large graphs. Many heuristic
methods have been developed: constructive methods, local
search meta-heuristics [5, 6, 7], hybrid algorithms [1, 2] and
ant colony paradigms [8].

In this paper, we present an original algorithm, called
GA-MDP, for solving the frequency assignment problem.
An application of this new algorithm in the field of radio-
broadcasting leads to enhanced performances (in terms of
quality of the solutions and time complexity) compared to
several other approaches like hybrid genetic algorithms.

This paper is organized as follows: Section 2 describes
the radio network planning process. Section 3 recalls the
graph colouring problem. Section 4 gives a description of
genetic and MDPs algoritms. Section 5 describes our ap-
proach. In Section 6 we present some experimental results.
Concluding remarks and further research aspects are con-
tained in the last section.

2 Radio Network Planning

As the demand for telecommunication services increases
(interactive TV, mobile phones, FM radio, etc.), providers
need fast and efficient design tools to help guarantee their
commercial success. By using such tools the intent is to re-
duce the planning costs and shorten the duration of network
deployment by employing various optimisations. Keeping
the required hardware investments to a minimal level while
achieving a high quality of service is the basic principle of
network planning.

The planning process can be split into two main steps.
The first one, called dimensionning, consists in spreading
an optimal number of transmitters over an area in order for
this area to be efficiently covered. This number should be as
small as possible for obvious economic reasons. Transmit-
ters are spread over the geographical area where providers



wish to provide the users with their services, each transmit-
ter covers a part of this geographical area called its coverage
area (Figure 1). The area around a transmitter where trans-
mission conditions are favourable enough to have a good
receipt of the signal is known as the service area of the
transmitter. The service area is the portion of the coverage
area that is not jammed by other transmitters. The trans-
mission quality and thus the shapes of these regions will
depend heavily on the propagation conditions and current
interferences produced by the other transmitters. Therefore,
coverage areas are frequently of highly irregular shape.

Figure 1. Coverage and service area of a
transmitter

Let W be a set of transmitters distributed accross the ge-
ographical area. We build a constraints graph as follows:

1. apply a propagation routine to each element of W ,

2. for each pair of elements in W , compute the intersec-
tion of the two corresponding coverage areas,

3. each element in W defines a vertex of the graph.

There exists an edge between two vertices if the overlap-
ping of the two corresponding coverage areas is too much
important. In Figure 2 at interference area the signal sent
by transmitter 2 interfers with the one sent by transmitter
1. An example of a constraints graph of the radio network
given in Figure 2 is given in Figure 3.

The weight of each edge depends on the kind of radio
network. For example, in radiobroadcasting the weight as-
signed to an edge stands for the gap between the frequencies
assigned to the vertices at the two endpoints. For example,
it is represented by an integer value ranging from 1 to 5.
Consequently, at the end of the dimensionning step we are
provided with a weighted graph.

In the second step, which is the frequency assignment
itself, we look for a best frequency to be assigned to each
transmitter. This problem is the same as the well known
graph colouring problem that we recall in the next section.

3 The Graph Colouring Problem

Let G=(W, E) be an undirected graph, where
W = {w1, ..., wn} is the set of vertices and E =

Figure 2. Influence of a transmitter beyond of
its service area

{(wi, wj)/wi, wj ∈ W} is the set of edges.
Let M = (mi,j)n∗n be a symmetric compatibility matrix

defined by:

• n represents the number of vertices of the graph,

• mi,j with i 6= j represents the minimum colour separa-
tion required to satisfy the constraint between vertices
wi and wj ,

Informally, a graph colouring assignment is a mapping
f : W → C (where C is a set of consecutive inte-
gers 0,..,k representing colours) such that the constraints
| f(wi)− f(wj) |> mi,j are satisfied for all wi, wj ∈ E.
A feasible solution of this problem is represented by a vec-
tor −→C (c0, c2, ..., ck) where ci ∈ C for all i ∈ [0, k]. The
components of−→C are essentially the colours assigned to the
vertices of G. This solution must satisfy all constraints if
possible, otherwise the number of violated constraints must
be minimized. In this case, our priority is to satisfy all high-
est level constraints.

4 Background

4.1 Genetic algorithms

Genetic algorithms were developed by Holland [9] to
study the adaptative process of natural systems and to de-
velop artificial systems that mimic the adaptative mecha-
nism of natural systems. A review of their theoretical and
practical aspects can be found in [10].



Figure 3. Constraints graph.

Recently, genetic algorithms have been successfully ap-
plied to various optimization problems, such as the fre-
quency assignment problem [1]. Genetic algorithms dif-
fer from traditionnal optimization methods in the following
ways.

1. Genetic algorithms use a coding of the parameter set
rather than the parameters themselves.

2. Genetic algorithms search from a population of search
solutions instead from a single one.

3. Genetic algorithms use probabilistic transition rules.

A genetic algorithm consists of a string representation
(“genes”) of the solutions (called individuals) in the search
space, a set of genetic operators for generating new search
individuals, and a stochastic assignment to control the ge-
netic operators.

Tipically, a genetic algorithm consists of the following
steps.

1. Initialization - an initial population of the search solu-
tions is randomly generated.

2. Evaluation of the fitness function - the fitness value of
each individual is calculated according to the fitness
function (objective function).

3. Genetic operators - new individuals are generated ran-
domly by examining the fitness value of the search in-
dividuals and applying the genetic operators to the in-
dividuals.

4. Repeat steps 2 and 3 until the algorithm converges.

From the above description, we can see that genetic al-
gorithms use the notion of survival of the fittest by passing

“good” genes to the next generation of strings and combin-
ing different strings to explore new search solutions. The
construction of genetic algorithm for any problem can be
separated into four distinct and yet related tasks.

1. The choice of the representation of the strings,

2. The design of the genetic operators,

3. The determination of the fitness function, and

4. The determination of the probabilities controlling the
genetic operators.

Each of the above four components greatly affects the
solution obtained as well as the performance of the genetic
algorithm.

In Section 5, we examine each of them for the frequency
assignment problem.

4.2 Markov Decision Processes

Markov Decision Processes [11] are one tool of Artificial
Intelligence that can be used to get optimal action policies
under a stochastic domain. Markov decision processes are
utilized as a stochastic model of an agent that is interacting
with the world. Given an action executed in a known state
of the world, it is possible to calculate the probability of the
next state in the world. The probability of reaching a state
s′ when the action a has occurred is calculated by the sum-
mation of the conditional probability of reaching a state s′

from every possible state si of the world given the action a.
A formal description of an MDP is the tuple (S, A, T,R)

where:

• S is a finite set of states of the world,

• A is a finite set of actions,

• T : S x A → P is the transition function of states and
P represents the transition matrix. For each action and
state of the world, there is a probabilistic distribution
over states of the world that can be reached by exe-
cuting this action. The function T (s, a, s′) is defined
as the probability ps,s′ of reaching state s′ starting in
state s and given the action a.

• R : S x A → < is a reward function. To each action in
each state of the world, is assigned a real number. The
function R(s, a) is defined as the reward of executing
action a in the state s.

MDP techniques provide policy actions such that the sum
of rewards obtained when the actions are executed is maxi-
mal. MDPs provide an optimal policy for solving a specific
problem if the state of the world is known in every step of
the policy.



GA-PI algorithm
• Intitialize pm, pc ∈ ]0,1], K > 0, maxGen > 0, cpt := 0 and i := 1

• Construct constraints graph

• Generate population P0

• Evaluate P0 and find the best solution π∗

• πElite ← π∗

• Repeat

– Pi ← ∅
– For j:= 1 to PopSize/2 do

∗ Select two parents p1 and p2 from Pi−1 offspring ←
(p1, p2)

∗ With a probability pc, perform offspring :=
crossover(p1,p2)

∗ With a probability pm, mutate offspring by using the
Policy Iteration algorithm

∗ Evaluate offspring and add it to Pi

– Add Pi−1 to Pi

– Sort Pi

– Delete the PopSize worst offspring in Pi

– Stop criteria

∗ if πElite = π∗ then cpt← cpt + 1

∗ π∗ is better than πElite then cpt := 0 and πElite ← π∗

∗ if fitness(πElite) = 0 OR cpt = K OR i =
maxGen then terminate GA-PI

• Return πElite

Figure 4. GA-MDP Algorithm that uses PI ap-
proach as a mutation operator

Two main algorithms are usually used to compute such
an optimal policy for an MDP, Policy Iteration [12] and
Value Iteration [11] (more details are given in section 5)
.

5 GA-MDP Algorithm

As indicated above, genetic algorithms have been intro-
duced by Holland [9] to mimic some of the processes of
natural evolution and selection. A genetic algorithm can be
implemented in several different ways.

In this section we describe two approaches: GA-PI (re-
spectively GA-VI) whose principle consists in using in the
genetic algorithm a Policy Iteration (respectively Value It-
eration) algorithm as mutation opertor. Figure 4 shows a
high-level description of GA-PI, where some steps are de-
scribed at a conceptual level with details provided in the
following subsections.

5.1 Description of an individual

Each individual represents a possible solution to the
problem and is composed of a string of genes. In our imple-
mentation a gene is coded by an integer array. A possible
solution represents one graph colouring. ith value corre-
sponds to the colour assigned to vertex wi. In such graph,
some vertices would have fixed colours. These vertices are
placed at the end of the string. The size of each individual
is | W |.

5.2 Initial Population

Each genetic algorithm requires an initial population P0

to serve as the starting point. This initial population is cre-
ated randomly. In figure 4, PopSize is the size of every pop-
ulation Pi. During each of the maxGen generations, PopSize
offsprings are generated through the crossover of parents se-
lected from the population.

5.3 Fitness evaluation

The fitness function in genetic algorithms is typically the
objective function that we want to optimize in the problem.
It serves for each individual to be tested for suitability to the
environment under consideration. Our objective function is
defined as follows: F =

∑
i,j ρi,jδi,j , where ρi,j is a

weight associated with constraint mi,j (ρi,j and mi,j are
positive integers). δi,j is defined by:

δi,j =

{
0 if | f(wi)− f(wj) |≥ mi,j

mi,j− | f(wi)− f(wj) | otherwise

5.4 Selection

The tournament selection principle increases the chances
for poor quality individuals to take part in the improvement
of the population. Several individuals are randomly chosen
in the population, the winner of the tournament is granted
with the highest quality.

5.5 Crossover operator

The crossover is a random process defined by a proba-
bility pc and applied sequentially to pairs of parents chosen
randomly in the population. It consists in exchanging parts
of the genetic material of the parents in order to create two
childs (offspring).

In our approach we have used the uniform crossover [13]
obtained from a binary mask which possesses a number of
genes equal to the number of genes of the individuals of
the population. This mask is usually uniformly randomly
generated: each bit has value 0 or 1 with equal probability.
The used uniform crossover is parameterized by a function



of the probability p0 = 0.5 [14], corresponding to appear-
ance of the values (0 and 1) in each bit of the mask. The
first child is created by taking the genes of the first parent
corresponding to value 1 in the mask. The second child is
obtained similarly but the complementary part of the mask
is used.

5.6 Mutation operators

5.6.1 PI-mutation operator

The first mutation operator that we have used is based on
Policy Iteration algorithm.

Policy Iteration iteratively maximizes (in our approach)
the value function, which is formulated as follows:

Vπ(s) = R(s, πt(s)) − γ
∑

s′∈S
T (s, πt(s), s′) Vπt−1 (s′) (1)

where γ (0 ≤ γ < 1) is a discount factor that is used
to give more or less importance to the future rewards. This
factor is required to consider an infinite-horizon discounted
model [15] in wich the number of iterations is in principle
infinite. However, the discount factor γ provokes the con-
vergence in a polynomial number of steps [16]. πt(s) is the
action executed at state s in step t in the policy π. To find a
policy, a set of |S| linear equations in |S| unknowns has to
be solved. The initial policy is successively improved until
an optimal one is found. The principle of PI is summarized
in Figure 5.

- π′:= any policy
- While π 6= π′

π := π′

For all s ∈ S
Compute Vπ(s) by solving the system of |S|

equations in |S| unknowns given by equations (1)
For all s ∈ S

If there exist an action a ∈ A such that:
R(s, a)− γ

∑
s′∈S

T (s, a, s′)Vπ(s′) > Vπ(s)

Then
π′(s) := a

Else
π′(s) := π(s)

- Return π

Figure 5. Policy Iteration Algorithm

Each iteration of the algorithm consists of two steps:
solving the linear equations system, which can be done in
O(|S3|) operations, and the improvement of the current pol-
icy, wich needs O(|A||S2|) operations [17]. The algorithm
is guaranted to converge [12], and generally tends to do so
over a few number of iterations [18].

The reward function used in this algorithm is defined as
follows: R(s, a) = −

∑
s,s′ ρs,s′δs,s′ , where ρs,s′ is a

weight associated to constraint ms,s′ (ρs,s′ and ms,s′ are
positive integers). δs,s′ is defined by:

δs,s′ =
{

0 if | a− π(s′) |≥ ms,s′

ms,s′− | a− π(s′) | otherwise

An optimal policy π defines for each transmitter of S an
optimal frequency to be assigned. Several optimality crite-
ria can be used; here we will focus on infinite horizon dis-
counted decision problems. The optimal policy maximizes
the gain of each transmitter (R(s, π(s)) = 0 for all s ∈ S ).
This means that we satisfy all constraints.

5.6.2 VI-mutation operator

A second mutation operator that we used is the Value Itera-
tion [11] algorithm. The principle of this mutation operator
is given in Figure 6.

t := 0
// Initialize state value at 0
For all s ∈ S

V0(s) := 0
Repeat

t← t + 1
For all s ∈ S

Vt(s) = maxa{R(s, a)− γ
∑

s′∈S
T (s′/s, a)Vt−1(s′)}

π(s) = argmaxa{R(s, a)− γ
∑

s′∈S
T (s′/s, a)Vt−1(s′)}

End For
until maxs|Vt(s)− Vt−1(s)| < ε

Figure 6. Value Iteration Algorithm

This algorithm works by computing the optimal value
function assuming first a one-stage finite horizon, then a
two-stage finite-horizon, and so on. The values functions
so computed are guaranteed to converge in the limit to the
value function V ∗. In addition, the policy associated with
the successive values functions will converge to the optimal
policy π∗ in a finite number of iterations [19], and in prac-
tice this convergence can be quite rapid.

6 Experimental results

This section presents the main results obtained after sev-
eral runs performed over two real instances of frequency
assignment problems provided by TDF-C2R Broadcasting
and Wireless Research Center:

• instance1: more than 970 transmitters and more than
12900 constraints,

• instance2: more than 970 transmitters and more than
25550 constraints,



HGA HMDP ANT
Total violated

constraints 68 68 70
constraints 1 23 23 17
constraints 2 38 38 41
constraints 3 6 3 9
constraints 4 1 4 3
constraints 5 0 0 0

run time 37 s 8 s 71s

GA-VI GA-PI CSA
Total violated

constraints 69 66 142
constraints 1 22 16 37
constraints 2 39 38 68
constraints 3 4 7 15
constraints 4 3 5 6
constraints 5 1 0 16

run time 11s83 6s27 -

Table 1. Comparison of the results obtained
by different methods used to solve instance1.

Each vertex of the contraints graph may take m = 200
possible values (bandwidth 87.5-107.5 MHz, | 107.5 - 87.5
MHz | = 20 MHz = m x 100 kHz).

We recall that the main objective is to satisfy all con-
straints (interference constraints) if it is possible, otherwise
high level constraints would have to be satisfied first.

The results produced by the approach presented in this
paper and those obtained by other approaches [1, 2, 8] com-
pared to the best operating solution in the field of radio-
broadcasting given by CSA [20] in France are given in Ta-
ble 1, Table 2, Table 3 and Table 4.

In these tables:

• HGA: means that we use a hybrid genetic algo-
rithm [1], this aghorithm uses a probabilistic tabu
search algorithm as a mutation operator,

• HMDP: means that we use hybrid MDP algorithm [2]
that uses a probabilistic tabu search to generate an ini-
tial policy, and next we use a Policy Iteration algorithm
to find the best solution.

• ANT: means that we use an ant algorithm [8]. This
algorithm is a multiagent system based on the idea of
parallel search. In this algorithm, a given number of
ants move around the vertices of the graph and change
the colour of each visited vertex according to a local
criterion. At each iteration each ant k moves from ver-
tex i to vertex j and changes its colour, it remains there

HGA HMDP ANT
Total violated

constraints 93 93 99
constraints 1 44 47 47
constraints 2 45 39 42
constraints 3 2 2 8
constraints 4 2 5 2
constraints 5 0 0 0

run time 92s 27s 408s

GA-VI GA-PI CSA
Total violated

constraints 89 87 271
constraints 1 38 44 92
constraints 2 44 35 117
constraints 3 4 5 27
constraints 4 3 3 10
constraints 5 0 0 25

run time 18s46 13s77 -

Table 2. Comparison of the results obtained
by different methods used to solve instance2.

until the next iteration, when it will move again to-
wards one of the vertices of j’s neighbourhood. Each
ant can “remember” at each step the former changes
performed by the algorithm, and takes into account that
these changes may have modified the cost function of
the neighbourhood of j. Therefore, at the next step,
the ant k will normally try to arrange the colouring
of the worst adjacent vertex to j. Any single action
depends strongly on the last move of each ant; this
dependence reinforces the results of recent modifica-
tions. At a given iteration each ant moves from the
current vertex to the adjacent vertex with the highest
level of violations, and replaces the old colour of the
vertex with a new colour that minimizes these viola-
tions. For a given vertex, the highest level of viola-
tions is computed by using the Cost function described
in Section 4. This action is randomly repeated for each
ant: the ant moves to the worst adjacent vertex with a
certain probability pn (otherwise it moves to any other
adjacent vertex randomly chosen), and assigns the best
possible colour with a probability pc (otherwise any
colour is assigned at random). The probabilistic na-
ture of the algorithm allows the ants to escape from lo-
cal minima and to obtain bounds close to the absolute
minimum. This process, which is carried out simulta-
neously by the set of ants, is repeated until the optimal
solution is found or the algorithm converges. The num-



ber of ants that move along the graph is an adjustable
parameter and increases with the order of the graph.

• GA-VI: means that the genetic algoritm uses a Value
Iteration (VI) algorithm as mutation operator.

• GA-PI: means that the genetic algoritm uses a Policy
Iteration (PI) algorithm as mutation operator.

• CSA: corresponds to the best operating solution in the
field of radiobroadcasting given by the CSA [20] in
France,

• The second row gives the total number of constraints
that are violated by each approach,

• The next five rows give the details of the number of
total violated constraints for each constraint type,

• The last row gives the run time of each algorithm.

By analysing the results given in these tables, several ob-
servations can be made:

• First, by comparing the run time of all algorithms we
can observe that by using GA-PI the best results are
obtained quicker.

• Second, the results obtained by GA-VI approach are
still competitive with those obtained by GA-PI algo-
rithm but GA-PI ,nevertheless, outperforms GA-VI.

• Third, we observe that both algorithms produce a bet-
ter solution than the best existing operating solution in
the field of radiobroadcasting in France,

• Another interesting observation is that the results ob-
tained by GA-PI are competitive with those obtained
by HMDP and constraints with high level are firstly
satisfied,

7 Concluding remarks

This paper has described a new hybrid GA-MDP algo-
rithm applied to solve the frequency assignment problem
in the radiobroadcasting domain. This algorithm uses two
mutation operators. The first mutation operator uses a Pol-
icy Iteration algorithm (approach called GA-PI). The sec-
ond mutation operator is based on Value Iteration algorithm
(approach called GA-VI).

A comparison of the results obtained by using the the de-
signed GA-PI algorithm shows that we improve the quality
of the solution and time performances of the hybrid algo-
rithms.

Currently, we are studying more hybridization possibili-
ties for solving the frequency assignment problem. We are
also working on the implementation and experimentation of
the algorithms proposed by Chang et al. ([21, 22]) on our
application.

References

[1] M. Alabau and L. Idoumghar and R. Schott, New Hy-
brid Genetic Algorithms for the Frequency Assignment
Problem, Journal of IEEE Transactions on Broadcast-
ing, March 2002, Vol.48, N.1, 27-34.

[2] L. Idoumghar and R. Schott and J.Y Greff, Applica-
tion of Markov Decision Processes to the Frequency
Assignment Problem, Journal of Applied Artificial In-
telligence, pp. 761-773, Vol. 18, N 8, September 2004.

[3] S. Hurley and D.H. Smith and S.U. Thiel, Fasoft: A
System for Discrete Frequency Assignment, Radio Sci-
ence, 32(5), 1997, 1921-1939.

[4] M.R. Garey and D.S. Johnson, Computers and In-
tractability: A Guide to the Theory of NP-completeness,
W.H. Freeman and Co., 1979.

[5] J.M. Coupé, “Using a Tabu Search to Solve the
Frequency Assignment Problem”, Patent TDF, N.
9902768, 1999.

[6] F. Glover and E. Taillard, A User’s Guide to Tabu
Search, Annals of Operations Research, 41, 1993, 3-28.

[7] L. Idoumghar and Ph. Debreux, New Modeling Ap-
proach for the Frequency Assignment Problem in
Broadcasting, Journal of IEEE Transactions on Broad-
casting, pp. 293-298, Vol. 48, N 4, December 2002.

[8] F. Comellas and J. Ozón, An Ant Algorithm for the
Graph Colouring Problem, Proc. ANTS’98- From Ant
Colonies to Artificial Ants: First International Work-
shop on Ant Colony Optimiszation, Brussels, Belgium,
October 1998.

[9] J. H. Holland, Adaptation in Natural and Artificial Sys-
tems, PhD thesis, University of Michigan press., 1974.

[10] D.E. Goldberg, Genetic Algorithms in Search, Opti-
mization and Machine Learning, Addison Wesley, 1989.

[11] R. Bellman,Dynamic Programming, Princeton Uni-
versity Press 1957.

[12] R. A. Howard, Dynamic Programming and Markov
Processes, Cambridge, Massachussets: MIT Press,
1960.

[13] G. Syswerda, Uniform Crossover in Genetic Algo-
rithms, Proc. of Int. Conf. on Genetic Algorithms
(ICGA’89), pp. 2-9, 1989.

[14] W.M. Spears and K.A. De Jong, On the Virtues of
Parametrized Uniform Crossover, Proc. of the 4th Int.
Conf. on Genetic Algorithms and Their Applications,



University of California, San Diego, Morgan Kauff-
mann Publishers, pp. 230-236, 1991.

[15] L.P. Kaelbling, M.L. Littman and A.R Cassandra,
Planning and Acting in Partially Observable Stochas-
tic Domains, Artificial Intelligence, 101(1-2), 1998, 99-
134.

[16] R. Givan, S. Leach and T. Dean, Bounded-parameter
Markov Decision Processes, Artificial Intelligence,
122(1-2), 2000, 71-109.

[17] Michael L. Littman and Thomas L. Dean and Leslie
Pack Kaelbling, On the Complexity for Solving Markov
Decision Problems, Proc. of Int. Conf. on Uncertainty
in Artificial Intelligence, 1995, 394-402.

[18] M.L. Puterman, Markov Decision Processes, New
York: John Wiley & Sons, 1994.

[19] Bertsekas, D.P, Dynamic Programming: Determinis-
tic and Stochastic Models. Prentice-Hall, Englewood
Cliffs, N.J, 1987.

[20] The “Conseil suprieur de l’audiovisuel” is
an independent administrative authority that
was created in France to guarantee broadcast-
ing freedom in the conditions laid down by
the modified Law of September 30th, 1986.
“http://www.csa.fr/multi/introduction/intro.php?l=uk”

[21] Hyeong Soo Chang and Hong-Gi Lee and Michael
C. Fu and Steven I. Marcus, Evolutionary Policy Iter-
ation for Solving Markov Decision Processes, Journal
of IEEE Trans. on Automatic Control, 50, Nov. 2005,
pp. 1804-1808.

[22] Hyeong Soo Chang and Walter J. Gutjahr and Jihoon
Yang and Sungyong Park, An Ant System Approach to
Markov Decision Processes, September 2003.


