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Abstract

Given the set [n] = {1, . . . , n} for positive integer n, combinatorial
properties of Clifford algebras are exploited to count partitions and non-
overlapping partitions of [n]. The result is recovery of Stirling numbers of
the second kind, Bell numbers, and Bessel numbers.

AMS subject classification: 05A18, 11B73, 15A66

1 Introduction

For positive integer n, the number of ways of partitioning an n-set into k
nonempty equivalence classes is S(n, k), the Stirling number of the second kind.
For fixed n > 0, summing S(n, k) over k from 1 to n gives the total number of
ways of partitioning the n-set into equivalence classes, defined as the nth Bell
number, Bn.

Any n-set can be identified with the integer interval [n] = {1, 2, . . . , n}.
With the implied order structure, two blocks (equivalence classes) i, j are said
to overlap if

min(i) < min(j) < max(i) < max(j).

Given blocks i and j, define the notation i t j to indicate that i and j are
non-overlapping. A partition P of the n-set is said to be non-overlapping if
i t j whenever i 6= j ∈ P.

Let B∗
n denote the number of non-overlapping partitions of the n-set. For

n > 0, the numbers B∗
n are called the Bessel numbers [2].

We show that combinatorial properties of Clifford algebras can be employed
to generate Stirling numbers of the second kind, Bell numbers, and Bessel num-
bers. This is accomplished by considering Clifford exponentials, linear func-
tionals and canonical projections on nilpotent-generated abelian subalgebras of
Clifford algebras of particular signature.
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Formal power series expansions in unipotent-generated abelian subalgebras
of Clifford algebras have been used previously to study random walks on the
hypercube [5]. Combinatorial properties of Clifford algebras have also been used
by the authors to enumerate cycles and self-avoiding walks in random graphs
[6].

Definition 1.1. For fixed n ≥ 0, let V be an n-dimensional vector space having
orthonormal basis e1, . . . , en. The 2n-dimensional Clifford algebra of signature
(p, q), where p + q = n, is defined as the associative algebra generated by the
collection {ei} along with the scalar e∅ = 1 ∈ R, subject to the following
multiplication rules:

ei ej + ej ei = 0 for i 6= j, and (1.1)

ei
2 =

{
1, if 1 ≤ i ≤ p

−1, if p + 1 ≤ i ≤ p + q = n.
(1.2)

The Clifford algebra of signature (p, q) is denoted C`p,q.

Generally the vectors generating the algebra do not have to be orthogonal.
When they are orthogonal, as in the definition above, the resulting multivectors
are called blades. Clifford algebras have well-known geometric properties and
have connections with mathematical physics. Much more can be found in works
such as [3] and [4].

The current work requires the construction of a nilpotent-generated abelian
sub-algebra of a Clifford algebra (cf. [6]). This sub-algebra will be denoted by
C`n

nil. Generating functions and functionals for Stirling numbers of the second
kind, Bell numbers, and Bessel numbers will be defined on this algebra.

For any n > 0, let Gn denote the associative algebra generated by the ele-
ments gi = ei + en+i ∈ C`n,n. It is not difficult to see that Gn is spanned by
basis elements of the form





scalars: g0 = 1 ∈ R
vectors: g1, . . . , gn

bivectors: gi gj = gij where 0 < i < j ≤ n
...
n-vector: g1 g2 · · · gn

(1.3)

subject to the multiplication rules
{

gi gj = −gj gi

g1 g1 = g2
1 = g2

2 = · · · = g2
n = 0.

(1.4)

Let N = 2n, and let G ⊂ GN be any collection of pairwise disjoint bivectors.
In other words, G is a collection of bivectors {gij} such that

gij , gk` ∈ G⇒ {i, j} ∩ {k, `} = ∅. (1.5)
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Clearly the maximal order of such a collection is N
2 = n. Denote by Gmax the

unique (up to isomorphism) collection of maximal order. Since the bivectors
are disjoint, Gmax constitutes an abelian group.

Definition 1.2. Let C`n
nil denote the associative algebra generated by the

disjoint bivectors {εi}1≤i≤n = Gmax along with the scalar ε∅ = 1 ∈ R. Observe
that

εiεj = εjεi, for 1 ≤ i, j ≤ n, and (1.6)

ε2
i = 0, for all 1 ≤ i ≤ n. (1.7)

As shorthand, denote the product εi εj as εij . Further, allow i to represent a
canonically ordered multi-index consisting of some subset of [n] = {1, 2, . . . , n}.
Thus arbitrary elements of C`n

nil have the form

u =
∑

i∈2[n]

ui εi , (1.8)

where ui ∈ R for all i ∈ 2[n] and εi =
∏

k∈i

εk. The degree of a term ui εi is defined

as the cardinality of the index i.
The following definition is based on Berezin’s definition dealing with second

quantization [1].

Definition 1.3. Let u ∈ C`n
nil. Then the Berezin integral of u is defined by

∫
u dεn · · · dε1 =

∫ 
 ∑

i∈2[n]

ui εi


 dεn · · · dε1 = u{1,2,...n}. (1.9)

In other words,
∫

u dεn · · · dε1 is the “top-form” coefficient in the canonical

expansion of u.

2 Results

Let n ∈ N be fixed, and let C`n
nil denote the abelian algebra with nilpotent

generators {ε1, . . . , εn} along with the unit scalar ε∅ = 1.

Proposition 2.1. Let
A =

∑

∅6=j∈2[n]

εj ∈ C`n
nil. (2.1)

Then, for 1 ≤ k ≤ n,

1
k!

∫
Ak dεn · · · dε1 = S(n, k), (2.2)

where S(n, k) denotes the Stirling number of the second kind, defined as the
number of partitions of [n] into k nonempty subsets.
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Proof. For 1 ≤ k ≤ n,

 ∑

∅6=j∈2[n]

εj




k

=
∑

(j1,...,j
k
)

∅6=j
i
∈2[n],1≤i≤k

εj
1
· · · εj

k
. (2.3)

By the commutative and nilpotent properties of the generators, this reduces to
∑

{j1,...,j
k
}⊂2[n]

{j
`
} pairwise disjoint

k! εj
1
· · · εj

k
.

Taking the Berezin integral of this term further reduces to only those k-subsets of
the power set whose union is {1, . . . , n}. Dividing by k! cancels the summation
over all permutations and yields the number of k-block partitions of the n-
set.

Example 2.2. Stirling numbers of the second kind {S(6, k)}, 1 ≤ k ≤ 6,
generated using Clifford-algebraic methods and Mathematica.

H* Compute Stirling numbers S Hn,kL *L

n = 6;

B = ClBasis@nD;

A = Sum@B@@iDD, 8i, 2, 2n<D;

Table@1�k! *ClBerInt@ClPwr@A, k, n, "nil"D, nD, 8k, 1, n<D

81., 31., 90., 65., 15., 1.<

Proposition 2.3. Let
A =

∑

∅6=j∈2[n]

εj ∈ C`n
nil. (2.4)

Then, ∫
eA dεn · · · dε1 = Bn, (2.5)

where Bn denotes the nth Bell number.

Proof. By definition, eA =
∞∑

k=0

Ak

k!
. Further, noting that the nilpotent property

of the generators {εi} implies Ak = 0 for all k > n,
∫

eA dεn · · · dε1 =
∫ (

n∑

k=0

Ak

k!

)
dεn · · · dε1 =

n∑

k=0

∫ (
Ak

k!

)
dεn · · · dε1. (2.6)

By Proposition 2.1,
∫

Ak

k!
dεn · · · dε1 = S(n, k),
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so that summing over k = 1, 2, . . . , n gives the total number of partitions of
{1, . . . , n}, which is the nth Bell number.

Example 2.4. The first six Bell numbers generated with Mathematica.

In[22]:= H* Generate Bell numbers *L

L = 8<;

For@j = 1, j £ 6, j++,

B = Sum@ClBasis@jD@@iDD, 8i, 1, 2^j<D - 1;

L = Append@L, ClBerInt@ClXP@B, j, j, "nil"D, jDD;D

Print@LD

81., 2., 5., 15., 52., 203.<

Proposition 2.5. Let χ : 2[n] × 2[n] → {0, 1} be defined by

χ(i, j) =

{
0 if i t j

1 otherwise.
(2.7)

Let

A =
∑

∅≺i¹[n]

εi ⊗
∏

∅≺j¹[n]

(
χ(i, j)υf(i,j) + (1− χ(i, j))υ∅

)
∈ C`n

nil ⊗ C`(2n

2 )
nil

(2.8)
where f : 2[n] × 2[n] → [

(
2n

2

)
] is a symmetric integer-labeling of pairs of multi-

indices, and υf(i,j) is a nilpotent generator of C`(2n

2 )
nil. Then,

∫
ϑ(eA) dεn · · · dε1 = B∗

n, (2.9)

where ϑ : C`n
nil⊗C`(2n

2 )
nil → C`n

nil is canonical projection, and B∗
n denotes the

nth Bessel number.

Proof. The proof is based on the observation that non-overlapping partitions
are constructed from non-overlapping blocks. By construction of the sum in
(2.8), if multi-indices i and j are overlapping, their associated multi-vectors εi

and εj are multiplied by the same abelian nilpotent generator of C`(2n

2 )
nil. In

this way, the products of multi-vectors associated with overlapping blocks are
always zero. The remainder of the proof follows those of Propositions 2.1 and
2.3.

Example 2.6. A few Bessel numbers generated with Mathematica.
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In[19]:= H* First 6 Bessel numbers *L

L = 8<;

For@m = 1, m £ 6, m++,

V = Table@ClBasis@mD@@iDD, 8i, 2, Length@ClBasis@mDD<D;

Λ = V;

tk = 1;

For@j = 1, j £ Length@VD - 1, j++,

For@k = j + 1, k £ Length@VD, k++,

If@ClOverlap@V@@kDD, V@@jDDD � 1,

Λ@@kDD = Λ@@kDD*Υtk;

Λ@@jDD = Λ@@jDD*Υtk;

tk++;

DDD;

B* = Sum@Λ@@iDD, 8i, 1, Length@ΛD<D;

L = Append@L, ClBerInt@Q@ClXP@B*, m, m, "nil"DD, mDDD;

Print@LD;

81., 2., 5., 14., 43., 143.<
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