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Abstract. The shuffle of
�

words ��� ,. . . , ��� is the set of words obtained by interleaving the letters
of these words such that the order of appearance of all letters of each word is respected. The study
of the shuffle product of words leads to the construction of an automaton whose structure is deeply
connected to a family of trees which we call araucarias. We prove many structural properties of
this family of trees and give some combinatorial results. We introduce a family of remarkable
symmetrical polynomials which play a crucial role in the computation of the size of the araucarias.
We prove that the minimal partial automaton which recognizes the shuffle of a finite number of
special words contains an araucaria for each integer

���	�
. 1
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1. Introduction

If 
 and � are words of the free monoid ��
 , the language whose words are of the form 
�������
�������������
������
where 
 � 
 � ������
 � is a factorisation of 
 , � � � � ������� � a factorisation of � and the factors 
 � and � � are
possibly empty, is called the shuffle of the words 
 and � and is denoted 
	����� . More generally, if  
and ! are two languages of � 
 , the union of the sets 
"�#�$� for 
	%& and �"%'! is called the shuffle of
the languages  and ! and is denoted  (�#�&! . Hence the shuffle of ) words 
 �+* ����� * 
-, can be defined by
associativity.

CCorresponding author
1A preliminary version of this paper has been presented at MCU-2004 (see [16]).
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Some theoretical results on shuffle products exist (see [8, 9, 12]) but many problems remain open. The
shuffle product has been proposed as model of parallel processing [7, 13]. Few algorithmic results exist:
Spehner [17] designed an algorithm which determines the shuffle of two words 
 and � without repetition
in time

������� 
 ����� � � �
	���
�	 where 
 is the size of the shuffle 
"�#�"� . More recently, Allauzen [1] used

a suffix tree for computing the shuffle product of ) words 
 � * ����� * 
�, in time
������� ����� ������� ��� ������ ����� ������� ��� � � ���
� . Efficient

parallel algorithms which test if a word can be written as shuffle of two words are given in [10, 11].
Berstel and Boasson [2] solve the shuffle factorization problem: given a finite language  , do there exist
words 
 �+* ����� * 
�, such that  "! 
 � �#� ����� �#� 
�, ? But to the best of our knowledge, no result on the
minimal automaton of the shuffle product of words has been published. The aim of this paper is to fill
partially this gap.
In Section # we give a definition of a family of trees which we call araucarias by using properties of their
maximal paths. Then we prove the existence and the unicity, up to isomorphism, of an araucaria defined
by its arity ) which is a positive integer and by an ordered sequence of ) positive integers

�%$ �+* ����� * $ , 	
called its type. We prove that the number of successors of the root of an araucaria is an exponential
function of its arity. Finally we give a construction based on the properties of the terminal sections of the
maximal paths. Then we introduce the following family of symmetric polynomials

& , �(' �+* ����� * ' , 	 ! ��) ,*
�+)-,


/.0��1 � �(' �+* ����� * ' , 	
where 1 � �(' �+* ����� * ' , 	 is the elementary symmetric polynomial of degree 
 on variables

' �+* ����� * ' ,
and we prove that the size of an araucaria of type

�%$ �+* ����� * $ , 	 is equal to
& , �%$ �+* ����� * $ , 	 .

Section 2 is devoted to the study of the minimal automaton of the shuffle product of words. We prove
that, for every given type

�%$ ��* ����� * $ , 	 , there exists a minimal automaton of the shuffle of ) words which
contains an araucaria of this type.
In a short section 3 , we compare shuffle products of words with partial commutations. If 4 is a set of
pairs of letters of an alphabet � , the replacement of a factor 576 in a word by 685 , where

� 5 * 6 	 %94 or� 6 * 5 	 %:4 and 5<;!=6 is called a partial commutation relative to 4 . Partial commutations have been
intensively investigated over the two last decades in connection with parallel processing [3, 4, 6, 8, 18].

2. Araucarias

2.1. Basic definitions and properties

Below we give a direct definition which is independent of the minimal automaton which recognizes the
shuffle of words.

Definition 2.1. (i) Every pair >�! �@? *�A 	 where ACB ? � ? is called a directed graph.
Every � % ?

is called a vertex of > and every
�ED *�F 	 % A is called an (oriented) edge of > . For every

edge
�ED *�F 	 of A , F is called a successor of

D
and

D
is called a predecessor of F .

The graph >HGJIK! �@? *�A GJI 	 where
� F�* D 	 % A GJI if and only if

�ED *�F 	 % A is called the opposite of the graph><! �@? *�A 	 .
(ii) Every sequence LM! �ED , * ����� * D�N 	 of vertices of

?
such that

�ED , * D � 	 * ����� * �ED�NPO � * DPN 	 are edges of A
is called a path of > from

D , to
DPN

.
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The integer
�

is called the length of L and is denoted by
� L � .

If L ! �ED ,�* ����� * DPN 	 and ��! �EDPN * ����� * D�� 	 are paths of > where the last vertex of L is the first vertex of� , the path � ! �ED , * ����� * DPNPO � * D�N * DPN � � * ����� * D�� 	 is called the product of L and � and we write � !9L ��� .
(iii) A directed graph > ! �@? *�A 	 is called a directed tree if there exists a vertex � % ?

without
predecessor and such that, for every vertex

D % ?	��
 �
� , there exits a unique path from � to
D
.

The vertex � is called the root of the directed tree > .
The length of the path from the root � to

D
is called the heigth of

D
.

Every vertex
D

of > without successor is called a leaf of > .
Each path issued from the root � and whose last vertex is a leaf of > is said to be maximal.

Definition 2.2. Let L�! �ED , * ����� * DPN 	 be a path of a directed tree � .
(i) For every integers � �+* ����� * ��� O � such that ���	� � � ����������� O � � �

, the subpaths L � ! �ED , * ����� * D�� � 	 ,L � ! �ED�� � * ����� * D���� 	 , . . . , L�� ! �ED������ � * ����� * DPN 	 are called sections of L and the product L ! L � � � � L�� is
called a factorisation of L into sections.
(ii) Let


�$ ��* ����� * $ ,�� be a set of positive integers and L � � � � L�� a factorisation of a maximal path L into
sections.
Every one-to-one mapping � from the set


! * ����� *#" � into

! * ����� * )�� such that $�� % 
! * ����� *#"&%  � ,� L ���
' $�(�) ��* and

� L�� � ! $�(�) � * , is called an attribution function for L � � � � L�� .
For each � % 
! * ����� *#" � , the section L � is said to be attributable to the integer

$+(�) ��*
.

If
� L ��� ! $�(�) ��* , then L � is said to be maximal (relatively to � ).

(iii) If � is a one-to-one mapping from the set

! * ����� *#" � into


! * ����� * )�� , a sequence ,�! �.- � * ����� * - � 	 of
positive integers such that $�� % 
! * ����� *#"/%  � *  0'�-1�2'/$�(�) ��*

and
- � ! $�(�) � * is said to be linked to � .

If , is linked to � , then the pair
� � * , 	 is called an attribute of

�%$ �+* ����� * $ , 	 .
(iv) If

� � * , 	 is an attribute of
�%$ �+* ����� * $ , 	 , a maximal path L of � of length

� L � ! - � � ����� �3- � is said to
be associated to

� � * , 	 and the factorisation L � � � � L�� of L such that
� L � � ! - �+* ����� * � L�� � ! - � is called the

canonical decomposition of L defined by
� � * , 	 .

Remark 2.1. If L � � � � L�� is the canonical decomposition of a maximal path L defined by an attribute
� � * , 	

of
�%$ �+* ����� * $ , 	 , then � is an attribution function for L � � � � L�� .

Definition 2.3. (i) Let
D

be a vertex of a directed tree � . Let � �ED 	 be the maximum length of the paths
of � whose first vertex is

D
. If

�ED *�F 	 is an edge of � such that � �ED 	54 � � F 	 �6 
then

D
is called a breaking

vertex for the edge
�ED *�F 	 .

If L ! �ED , * ����� * DPN 	 is a path of � , then every nonterminal vertex
D�7

of L which is a breaking vertex of
the edge

�ED 7 * D 7 � � 	 is called a breaking vertex of L .
(ii) Let L � � � � L�� be a canonical decomposition of a maximal path L ! �ED , * ����� * D�N 	 and L 7 � * ����� * L 798 � � the
sections of


 L �+* ����� * L��
� whose first vertex is a breaking vertex of L with �:�<; � � �����=�<;?> O � � �
.

The paths � � ! L � � � � L 7 � O � , � � ! L 7 � � � � L 7@� O � , . . . , �?> !9L 798 � � � � � L�� are called the truncations associated toL � � � � L�� and the product � � � � ���A> is called the decomposition of L into truncations associated to L � � � � L�� .
(iii) Let

� � * , 	 and
� �
B * ,�B 	 be two attributes of


�$ � * ����� * $ ,�� such that there exists a path L associated
simultaneously to

� � * , 	 and to
� � B * , B 	 and let L � � � � L�� , L B � � � � L B��C be the canonical decompositions respec-

tively defined by
� � * , 	 and

� �DB * ,�B 	 and � � � � ��� > and �DB� � � ���EB>FC the decompositions into truncations respec-
tively associated to L � � � � L�� and L B � � � � L B� C .
If F B0! F and � � !G�EB� for every � % 
! * ����� *�F � , then the canonical decompositions L � � � � L�� and L�B � � � � L�B� C are
said to be equivalent.
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Remark 2.2. The definition of the notion of pseudo-permutation given in [16] (Definition 2) is incom-
plete and is replaced by the more general notion of equivalence of Definition 2.3.

Definition 2.4. Let ) be a positive integer,
�%$ �+* ����� * $ , 	 a sequence of ) positive integers and � a di-

rected tree.
(i) If there exists a mapping

��� � � * , 	�� L from the set � F F �%$ �+* ����� * $ , 	 of attributes of
�%$ �+* ����� * $ , 	

onto the set ��� � � 	 of maximal paths of � such that for every
� � * , 	 %'� F F �%$ ��* ����� * $ , 	 , the maximal

path
� � � * , 	 is associated to

� � * , 	 then � is called complete for the canonical decomposition.
(ii) If, moreover, the mapping

�
is such that

� � � * , 	 ! � � �=B * ,�B 	 if and only if the canonical decompo-
sitions defined by

� � * , 	 and
� �EB * ,�B 	 are equivalent, then � is called araucaria of type

�%$ � * ����� * $ , 	 and
arity ) . 2

Any araucaria of arity
 

is called elementary.

Example 2.1. The directed tree � given in Figure
 �	� is an araucaria of type

� 2 * # 	 since the maximal
path L ! � � * D � * D ��* D�
 * D�� * D�
 	 admits two equivalent canonical decompositions L � � L � and L B � � L B� whereL � ! � � * D �+* D ��* D�
 	 and L+B� ! �ED ��* D�
 * D�� * D�
 	 [resp. L � ! �ED�
 * D�� * D�
 	 and L�B � ! � � * D �+* D � 	 ] are attributable
to 2 [resp. 2] and every other maximal path admits only one canonical decomposition. For example the
maximal path � ! � � * D �+*�F �+*�F ��*�F 
 	 admits only the canonical decomposition L2B B� � L�B B� with L�B B� ! � � * D � 	
attributable to # and L B B� ! �ED � *�F � *�F � *�F 
 	 attributable to 2 .
Moreover L is a truncation and L B B� � L B B� is the decomposition of � into truncations.

Theorem 2.1. (i) For every positive integer ) and every sequence of ) positive integers
�%$ �+* ����� * $ , 	 ,

there exists a unique araucaria � �%$ � * ����� * $ , 	 of type
�%$ � * ����� * $ , 	 up to an isomorphism.

(ii) The araucaria � of type
�%$ �+* ����� * $ , 	 and arity ) is such that:

- � admits a unique path � of length
$ ! $ � � ����� � $ , ;

- for each part  of

! * ����� * )�� whose cardinality

�  � verifies � ' �  � � ) %  
, for each � % 
! * ����� * )�� �  

and each " such that � 7���� $E73' " ��� 7���� $
7 � $��
, � admits a subtree � ����� ��� � � whose root is the

vertex
D � of � of height " and which is an araucaria of type

�%$ � � * ����� * $ ��� 	 where ���/� �����5� � � and
 � �+* ����� * � � � ! 
! * ����� * )�� � �  �� 
 � � 	 ;
- for each part  of


! * ����� * )�� such that � ' �  � � ) % # , for all � * ; % 
! * ����� * )�� �  ( ��� ; ) and
for each integer " such that � 7�� � $E7 ' " � � 7�� � $
7 � 
 �"! �%$�� * $E7 	 , the common subtree of � ��� � � �
and � ����7 � � is a subaraucaria of type

�%$D7 � * ����� * $
7 � � � 	 whose root is
D � and where ; � � ������� ; � O � and
 ; � * ����� * ;�� O ��� ! 
! * ����� * )�� � �  #� 
 � * ;E� 	 .

Proof:
If ) !  

, for every positive integer
$ � , the directed tree reduced to a path L of length

$ � is an araucaria
of arity

 
and type

$ � since L contains a unique section which is attributable to
$ � .

Let us assume the existence of an araucaria of any arity
- % 
! * ����� * ) %  � and any type

�%$ �+* ����� * $%$ 	 ,
unique up to an isomorphism and having the properties stated in Theorem 2.1.
Let

�%$ ��* ����� * $ , 	 be a sequence of ) positive integers.
Let & be the directed tree such that:
- & admits a unique path � of length

$ ! $ � � ����� ��$ , (called the trunk);

2Araucarias are trees growing in South-America. They are also called monkey puzzle trees. Perhaps the terminology explains
the complexity of their definition!
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- for each part  of

! * ����� * )�� such that � ' �  � � ) %  

, for each � % 
! * ����� * )�� �  and each integer "
such that � 7���� $E7 ' " � � 7���� $
7 � $��

, & admits a subtree � ����� ��� � � whose root is the vertex
D � of � of

height " and which is an araucaria of type
�%$+� ��* ����� * $�� � 	 where


 � �+* ����� * � � � ! 
! * ����� * )�� � �  � 
 � � 	
and � � � �����=� � � ;
- for each such subtree, � and � � � � ��� � � have only the vertex

D � in common;
- two such subtrees � ����� � � � � and � � � �.7 � � �?C are disjoint if " ;! "�B and have only the vertex

D � in common
if " ! " B .
Let � be the subtree of & obtained by removing for each part  of


! * ����� * )�� such that � ' �  � � ) % # ,
for all � * ; % 
! * ����� * )�� �  such that �0� ; and " such that � 7�� � $
7 ' " � � 7���� $E7 � 
 �"! �%$�� * $E7 	 ,
the subtree

� ) � � 7 * of � ����7 � � which is an araucaria of type
�%$D7 ��* ����� * $
7 � � � 	 whose root is

D � and where
 ; �+* ����� * ; � O � � ! 
! * ����� * )�� � �  � 
 � * ;D� 	 and ; � � �����=�<; � O � . Since, by induction hypothesis, � � � � � �
admits a subtree

� B) � � 7 * isomorphic to
� ) � � 7�* , ��B � ��7 � � ! � � ����7 � � � � ) � � 7�* 	 � � B) � � 7�* is a subaraucaria of �

isomorphic to � � ��7 � � and this subaraucaria is unique.
Hence � has the properties stated in part

� � � 	 of Theorem 2.1.
(i) We prove first that � is complete for the canonical decomposition.

Let L�! �ED ,�* D �+* ����� * DPN 	 be a maximal path of � .
If the trunk � of � does not contain the edge

�ED , * D � 	 , there exists � % 
! * ����� * )�� such that L is a path
of the subaraucaria � � ��� � , of arity ) %  

and the property follows by induction since every attribute of�%$ ��* ����� * $�� O ��* $�� � �+* ����� * $ , 	 is also an attribute for
�%$ � * ����� * $ , 	 .

If L !G� , let � be the identity mapping from

! * ����� * )�� onto itself and , ! �%$ � * ����� * $ , 	 . Then

� � * , 	 is
an attribute of

�%$ ��* ����� * $ , 	 and � is associated to
� � * , 	 .

If � contains
�ED , * D � 	 but L ;! � , by construction of � , there exist a part  of


! * ����� * )�� and " such that� ' �  � � ) %  
, �(% 
! * ����� * )�� �  , � 7���� $E7 ' " � � 7�� � $
7 � $��

and L B ! �ED � * ����� * D�N 	 is a path
of � ����� � � � � . Since, by induction, � ��� � ��� � � is an araucaria of type

�%$ � � * ����� * $�� � 	 where � � � ����� � � �
and


 ��� * ����� * � �0� ! 
! * ����� * )�� � �  � 
 � � 	 , there exist an attribute
� �DB * ,�B 	 of

�%$ � ��* ����� * $ � � 	 where
! % 
! * ����� * 
 � , � B is a one-to-one mapping from


! * ����� * ! � into

! * ����� * 
 � and , B ! �.- �+* ����� * -�� 	

verifies, $E; % 
! * ����� * ! � , � � - 7 ' $���� C�� �	� . Let ! !  if " ! � 7���� $E7
and ! !  �� 
 � � in the opposite

case. Then ! ;!�
 and, if ! ! 
 ; �+* ����� * ; � C � where ; � � �����=� ; � C , let � be the one-to-one mapping from
! * ����� * ! � 
 B1� into

! * ����� * )�� , ,�! �.- B � * ����� * - B� � � C 	 such that $�� % 
! * ����� * 
 B � , � � � 	 !6;
� and

- B� ! $ 7��
if ; � ;! � , - B� ! " % � 7�� � $
7

in the opposite case and such that $D; % 
! * ����� * ! � , � � 
 B � ; 	 ! � B � ; 	
and

- B� C � 7 ! - 7
. Then , is linked to � and

� � * , 	 is an attribute of
�%$ �+* ����� * $ , 	 . Since

� L � ! " � � L�B � ,� L B � ! � 7�� � � ������� � � � - B� C � 7 and " ! � � � � � ������� � � C � - B� , L is associated to
� � * , 	 .

Hence there exists a mapping
�

from � F F �%$ � * ����� * $ , 	 onto ��� � � 	 such that
� � � * , 	 !<L is associated

to
� � * , 	 and � is complete for the canonical decomposition.
(ii) We prove now that in � ,

� � � * , 	 ! � � � B * , B 	 if and only if the canonical decompositions defined
respectively by

� � * , 	 and
� �EB * ,�B 	 are equivalent.

If we assume that, for any attributable section ��! �ED $ * ����� * D � 	 of a maximal path of a subaraucaria of
arity ) %  , D�7 is not a breaking vertex of � for each ; % 
�- �  * ����� * 
 %  � , then every attributable section� of � which is not supported by the trunk � belongs to a subaraucaria of arity

- � ) and has the same
property by induction. The same property holds also for any attributable section � supported by the trunk� ! � �
, * ����� * � N 	 since � is the longest path of � and $ � % 
! * ����� * � %  � , � � � � 	 ! � % ��! � � � � � � 	 �  

.
Let L ! �ED ,�* ����� * D�N 	 be a maximal path of � . Suppose that there exist attributes

� � * , 	 , � � B * , B 	 in
� F F �%$ ��* ����� * $ , 	 such that L�! � � � * , 	 ! � � �
B * ,�B 	 . Let L � � � � L�� , L�B � � � � L�B� C be the canonical decompositions
respectively defined by

� � * , 	 , � � B * , B 	 and � � � � ���A> , � B� � � ��� B> C the decompositions into truncations associated
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respectively to L ��� � � L�� and L�B � � � � L�B�?C . Hence the only breaking vertices of
� � � * , 	 are the first vertices

of � � * ����� * �A> and, possibly, the first vertex of � � and the only breaking vertices of
� � � B * , B 	 are the first

vertices of �DB� * ����� * �EB>FC and, possibly, the first vertex of ��B� . Since
� � � * , 	 ! � � �
B * ,�B 	 , these breaking

vertices are the same. This proves that F ! F B and
� � � * ����� * �A> 	 ! � � B� * ����� * � B> 	 and that the canonical

decompositions L � � � � L�� and L B � � � � L B��C are equivalent.
We have therefore proved that � is an araucaria of arity ) and type

�%$ ��* ����� * $ , 	 .
(iii) It remains to prove the unicity of such an araucaria up to an isomorphism.

Suppose that � B is an other araucaria of arity ) and type
�%$ � * ����� * $ , 	 . Since � and � B admit only one path

of length
$ � � ����� ��$ , respectively the trunk � and the trunk � B , we can define a bijective morphism

� ,
from � to �EB . Since for each subset  of


! * ����� * )�� such that � ' �  � � ) %  
, for each � % 
! * ����� * )�� �  

and for each " such that � 7���� $
7&' " � � 7���� $
7 � $��
, the subaraucarias � ����� ��� � � and � B � � � ��� � � are

isomorphic by induction,
� , can be extended to an isomorphism from � onto �0B . ��

Example 2.2. If � �%$ 	 and � ��� 	 are two elementary araucarias of type
�%$ 	 and

��� 	 respectively, the
directed tree � �%$ * � 	 formed with the trunk � of length

$ ���
,
$

paths isomorphic to � ��� 	 issued from the$
first vertices of � and

�
paths isomorphic to � �%$ 	 issued from the

�
first vertices of � is an araucaria of

type
�%$ * � 	 by Theorem 2.1.

(a) (b) (c) (d) (e)
r

s1

t1

t2

t3

s3

s2

s4

s5

Figure 1. The araucaria of type ���	��

� of Figure ����� admits a trunk of length � , 
 subtrees isomorphic to ������� (Fig-
ure ����� ) and � subtrees isomorphic to ����
�� (Figure ����� ). The directed trees of Figures ����� and ����� are isomorphic
to subtrees of the araucaria �����	��

� .

Corollary 2.1. For each permutation  of

! * ����� * )�� , the araucaria � �%$"!
) � * * ����� * $#!
) , * 	 is isomorphic

to � �%$ �+* ����� * $ , 	 .
Proof:

For each one-to-one mapping � � 
! * ����� *#" � � 
! * ����� *#" � where " ' ) ,  �$�� is also one-to-one.
Moreover the mapping which associates to the attribute

� � * , 	 of � F F �%$ ��* ����� * $ , 	 the attribute
�  %$ � * , 	 of

� F F �%$ !
) � * * ����� * $ !
) , * 	 is a bijection. It follows that the araucarias � �%$ !E) � * * ����� * $ !
) , * 	 and � �%$ �+* ����� * $ , 	
are isomorphic. ��

Hence the type
�%$ �+* ����� * $ , 	 of an araucaria can be given in the canonical form such that$ �'& $ �(& ����� & $ , .
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s0
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s

e0

e1

e2

e

s6

g1 g

g0

s2

s1

s3

s4

s5

f0

(a)

s
(c)

f

(d)

(b)

Figure 2. The araucaria �����	��
	� � � (Figure ����� ) has � subaraucarias isomorphic to ����
�� � � (Figure ����� ) with roots
respectively ��� , � � and ��� , 
 subaraucarias isomorphic to ����� � � � (Figure ����� ) with roots respectively ��� and ���
and

�
subaraucaria isomorphic to �����	��

� (Figure ����� ) with root ��� . The six canonical decompositions of the

trunk �	� �
���
���������
��� � of the araucaria �����	� 
�� � � are deduced each from the other by equivalence as, for example
� ��� � ��� ��� and ���� � ���� � ���� with � �	� �
����������� �
� � � and ���� � ��� � ������� �
��� � attributable to � , ���� � ���������������
��� � and
� ��� ��� � ������������� � attributable to 
 and ��� � �
��������� � and ���

� � �
������� � � attributable to
�
. If � �	� �
�����
�����
��� �

and ����� ������������������� � , � ��� ��� ��� is a maximal path of ����� ��
�� � � , ��� is a breaking vertex of � and ����� ��� is its
decomposition into truncations.

Definition 2.5. Let � be an araucaria of arity ) and type
�%$ ��* ����� * $ , 	 , D an internal vertex of � distinct

from the root � of � , � the path from � to
D

in � , L a maximal path of � which contains
D

and L � . . . L��
a canonical decomposition of L .
If 
 is the largest integer of


! * ����� *#" � such that L � contains at least an edge of � , for every attribution
function � of the canonical decomposition L ��� � � L � , � � 
! * ����� * 
 � 	 is called an attribution set of � .

Proposition 2.1. Let � be an araucaria of type
�%$ �+* ����� * $ , 	 , D a vertex distinct from the root � of � and

which is not a leaf of � and � the path from � to
D
.

For every attribution set

 � �+* ����� * � � � of � there exists a subaraucaria � �ED 	 of � whose root is

D
, whose

leaves are leaves of � and whose type
�%$ 7 � * ����� * $ 7 � 	 is such that
 ; �+* ����� * ; � � ! 
! * ����� * )�� � 
 � �+* ����� * � � � .

Proof:
Since, by Definition 2.4, � is complete for the canonical decomposition of maximal paths, for ev-
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ery subset

 " � * ����� *#" � � of


! * ����� * )�� � 
 ��� * ����� * � $ � and every sequence , ! �%$ B � � * ����� * $ B � � 	 such that� � $ B � � ' $ � � where
 ' � � 
 and

$ B � � ! $ � � , there exists a maximal path L having a canon-
ical decomposition L � ����� L � � L � � � ����� L � � � such that � ! L � �����8L � and, for every � % 
! * ����� * 
 � ,� � L � � � 	 ! " � and

� L � � � � ! $ B � � and this decomposition is unique up to equivalence. It follows thatL B !CL � � � ����� L � � � is a canonical decomposition of a maximal path whose first vertex is
D
. Hence, by

Definition 2.4, there exists a subaraucaria � �ED 	 of � whose root is
D

and whose type
�%$�7 � * ����� * $
7 � 	 is

such that

 ; �+* ����� * ; � � ! 
! * ����� * )�� � 
 � � * ����� * � $ � . Moreover, since L B is maximal in � �ED 	 , its last vertex

is a leaf of � �ED 	 . ��
Definition 2.6. A truncation whose last vertex is a leaf is said to be terminal.

Lemma 2.1. Every edge of an araucaria belongs to a unique terminal truncation.

Proof:
This result is trivial for ) !  

since every elementary araucaria is reduced to its trunk. Assume that
the result holds true for every arity smaller than ) with ) 4 � and let � be an araucaria of arity ) . Then
the property is verified by every edge of the trunk � of � and, by Theorem 2.1, for every edge of � which
does not belong to � , there exists a maximal arity

- % 
! * ����� * ) %  � and a unique subaraucaria & of
arity

-
whose trunk contains

�ED *�F 	 . Hence, the result follows by induction. ��
Corollary 2.2. Each maximal path of an araucaria admits a unique decomposition into truncations.
A section � of a maximal path L of an araucaria � is a truncation of L if and only if � is a maximal
section of L supported by a trunk of a subaraucaria of � .

Proof:
First part of this corollary is proved in part

� � � 	 of the proof of Theorem 2.1.
If � ! �ED�� * ����� * D�N 	 is the trunk of a subaraucaria & of � , then, for each ; % 
 � �  * ����� * � %  � ,� �ED 7 	 ! � % ; ! � �ED�7 � � 	 �  

and
D�7

is not a breaking vertex of � . But if
�ED?7 *�F 	 is an edge with F ;! DA7 � � ,

then � �ED�7 	 4 � � F 	 �	 
since, by the proof of Proposition 2.1, every path wich admits

�ED 7 *�F 	 as first edge
is a path of & and for each maximal path L9;! � of & ,

� L � � � � � . Hence
D�7

is a breaking vertex for the
edge

�ED�7 *�F 	 and for each path which contains
�ED�7 *�F 	 . It follows that each maximal section � of a maximal

path L contained in a trunk of a subaraucaria of � is a truncation of L .
Conversely, if � is a truncation of a maximal path L , there exists, by Lemma 2.1, a terminal truncation � B
which contains the first edge of � and, by the preceding argument, � is a maximal section of L contained
in �DB . ��
Definition 2.7. (i) If � � � � ���A> is the decomposition of a maximal path L into truncations, the number F of
truncations is called the rank of L .
(ii) If

D
is a vertex of a directed tree � , the number of successors of

D
is called the degree of

D
and is

denoted ����� �ED 	 .
The maximum of all ����� �ED 	 for

D % � is called the degree of � .

Proposition 2.2. Let � be an araucaria of arity ) .
(i) For each edge

�ED *�F 	 of � , �����
�ED 	 & ����� � F 	 .

(ii) The degree of � is equal to the degree ����� � � 	 of its root � and ����� � � 	 !9# , %  
.



R. Schott and J.-C. Spehner / Shuffles of words and araucarias 9

Proof:
(i) The result is trivial for every edge whose extremity is a leaf.

Let
�ED *�F 	 be an edge of � such that F is not a leaf. By Lemma 2.1, there exists a unique terminal

truncation � of � which contains
�ED *�F 	 . Let � B be the unique path from the root � of � to the vertex

D
and

� ! � B � �ED *�F 	 . Let
�

be the successor of F in � ,
� � F 	 the set of successors of F distinct from

�
and

� �ED 	 the
set of successors of

D
distinct from F .

By Lemma 2.1, $ $ % � � F 	 , there exits a unique terminal truncation � I wich contains the edge
� F�* $ 	 and,

since
$ ;! �

, � I ;! � and
� F�* $ 	 is the first edge of � I . Then L ! �DB ��� I is a maximal path of � and, by

Definition 2.4, L admits a canonical decomposition L � ����� L�� . Since
� F�* $ 	 is the first edge of � I , there

exists � % 
! * ����� *#"&%  � such that � I !=L � � � ����� L�� and � !=L � ����� L � . Let L�B� be the section of L �
whose last vertex is

D
. Since � is complete for the canonical decomposition, there exists a maximal pathL�B of � whose canonical decomposition is isomorphic to L � ����� L � O � � L�B� � L � � � ����� L�� . Then �DB is an initial

section of L+B and the successor
$ B of

D
in L+B is contained in

� �ED 	 and
�ED * $ B 	 is the first edge of the terminal

truncation � BI of L B and � BI is isomorphic to � I . This proves the unicity of the vertex
$ B and the existence

of an injective mapping from
� � F 	 into

� �ED 	 . Hence ����� � F 	 ! � � � F 	 ���	 & � � �ED 	 �
�	 ! ����� �ED 	 .
(ii) It follows from (i) that for every path L ! � � , * ����� * � � 	 of � , �����

� � , 	 & ����� & ����� � � � 	 . Hence
the degree of � is equal to the degree of its root.
By Lemma 2.1, for every successor

$
of the root � there exits a unique terminal truncation � I of �

which contains the edge
� � * $ 	 and

� � * $ 	 is the first edge of � I . By Definition 2.4 and Corollary 2.2,
there exists a unique part  I ! 
 ��� * ����� * ���D� of


! * ����� * )�� distinct from

! * ����� * )�� such that � I admits a

canonical decomposition L � � ����� L ��� where L � � * ����� * L ��� are maximal sections respectively attributable to$�� ��* ����� * $���� . Hence the degree ����� � � 	 is equal to the number of nonempty parts of

! * ����� * )�� .

Thus ����� � � 	 ! � � ) ,� ) � � ,� � !9# , %  
. ��

2.2. Shuffle product of elementary araucarias

The proof of Theorem 2.1 uses the first attributable sections although the proof of Theorem 2.2 below
uses the last attributable section. This new characterization of the auracarias will be used in the next
section.

Definition 2.8. Let �9! ��� *�� 	 be a directed tree and L�! � � , * ����� * � � 	 a path of length � .
For each vertex

D
of � , let L �ED 	 ! �ED , * ����� * D � 	 be a path isomorphic to L such that

D , ! D
,
�

and
�D ��* ����� * D � � are disjoint and such that, for each vertex F of � distinct from
D
, L �ED 	�� L � F 	 !�
 .

The directed tree obtained by connecting � with all paths L �ED 	 for
D % �

is called the ramified directed
tree of � with respect to L and is denoted ��5 
 � � � � * L 	 (see Figures

 � � ,
 � � , 2�� 5 , 2���6 and 2��	� ).

Remark 2.3. If � , is an araucaria of type
�%$ ��* ����� * $ , O � 	 and � B , the ramified tree � 5 
 � � � � , * � �%$ , 	�	 ,

Definitions 2.2 and 2.3 are applicable to �0B , . Moreover, by Definition 2.4, � B , is isomorphic to a subtree
of the araucaria � �%$ ��* ����� * $ , 	 .
The next lemma is based on this idea and shows the importance of the terminal truncations.

Lemma 2.2. Let
�%$ ��* ����� * $ , 	 be a sequence of positive integers, � and ; such that � � � ' ) , � �<; ' )

and � ;! ; , � � and � 7 araucarias of types respectively�%$�� � �+* ����� * $ , * $ �+* ����� * $�� O � 	 and
�%$E7 � ��* ����� * $ , * $ �+* ����� * $
7 O � 	 *
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� B� !	� 5 
 � � � � � * � �%$ � 	�	 and � B7 !	� 5 
 � � � � 7 * � �%$ 7 	�	 .
For each maximal path L of � B� , there exists a maximal path L B of � B7 such that L and L B admit isomorphic
canonical decompositions up to equivalence if and only if the terminal truncation � of L contains a
maximal section which is attributable to

$�7
.

Proof:
(i) By Corollary 2.2, if there exist in � B7 a maximal path L B which admits the same canonical decom-

position as L up to equivalence, then L and L2B admit the same terminal truncation � . Since the last section
of the terminal truncation of L B is attributable to

$D7
, � contains indeed a maximal section attributable to$ 7

.
(ii) Let L be a maximal path of � B� and L � ����� L�� its canonical decomposition with L�� maximal

and attributable to
$ �

. By Corollary 2.2, the terminal truncation of L is of the form L � � � � L�� with
� % 
! * ����� *#"&%  � . For each section L $ % 
 L � * ����� * L�� O � � , there exists ; % 
! * ����� * )�� � 
 � � such
that L $ is attributable to

$D7
. By Definition 2.4, � 7 contains a maximal path � ! �ED , * ����� * � 	 whose

canonical decomposition is L � � � � L $ O � L $ � � � � � L�� . Extending � with a path isomorphic to � �%$ 7 	 and L $ ,
we obtain a maximal path � B of � B7 ! ��5 
 � � � � 7 * � �%$E7 	�	 which admits the canonical decompositionL � � � � L $ O � L $ � � � � � L�� L $ which is equal to L � � � � L�� up to equivalence by Corollary 2.2. ��
Definition 2.9. Let LM! �ED ,�* ����� * D � 	 and L�B ! �ED B , * ����� * D B � 	 be two paths of equal length in a graph > .
Merging L and L B consits in merging, for all � of


 � * ����� *#" � , the vertices
D �

and
D B� into a unique vertex,

and, for all � in

 � * ����� *#"/%  � , in merging the edges

�ED � * D�� � � 	 and
�ED B� * D B� � � 	 into a unique edge.

Definition 2.10. Let ) be an integer such that
 � ) and

�%$ �+* ����� * $ , 	 a sequence of positive integers.$�� % 
! * ����� * )�� , let � � be an araucaria of type
�%$ � � ��* ����� * $ , * $ ��* ����� * $�� O � 	 and � B� ! ��5 
 � � � � � * � �%$�� 	�	

and let & be the disjoint union of the directed trees �0B � * ����� * ��B , .
The directed graph � obtained by merging, for each couple of maximal paths

� L * L B 	 of & having iso-
morphic canonical decompositions up to equivalence, the terminal truncations of L and L B , is called the
shuffle product of the elementary araucarias � �%$ � 	 * ����� * � �%$ , 	 .
Theorem 2.2. Let ) be an integer such that ) 4  

and
�%$ �+* ����� * $ , 	 any sequence of positive integers.

The shuffle product of the elementary araucarias � �%$ � 	 * ����� * � �%$ , 	 is an araucaria of type
�%$ �+* ����� * $ , 	 .

Proof:
(i) The directed graph � does not depend on the order in which the merging of the terminal trunca-

tions are realized. For every � % 
! * ����� * )�� , � B� admits a maximal path L � of length
$ � � ����� �/$ , and

if we merge such paths L � and L 7 , we merge the roots of � B� and � B7 . Hence, if we merge first all the
maximal paths of & of length

$ � � ����� � $ , , we obtain a directed tree & B . Moreover, the merging of a
maximal path L with another maximal path L2B transforms a directed tree into another since L and L2B have
the same first vertex. The same thing happens when merging two terminal truncations issued from the
same vertex. But, in each decomposition � � �������+���A> into truncations of a maximal path L of rank F 4  

,� > O � is a section of a terminal trunk �=B> O � by Lemma 2.1 and L B ! ����������� ��� > O � ���EB> O � is then a maximal
path whose rank F %  

is strictly less than the rank of L . It follows that, if we realize the mergings of the
terminal truncations for all couples of maximal paths

� L * L B 	 in increasing rank, we realize only mergings
of this type. This proves that � is a directed tree.
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Figure 3. The trees � � � � � ��� ��� �������	� 
�� ����� � � � , � �� � � ��� ��� �������	� � � ������

� � and � �� � � ��� ��� ������
�� � � ��������� �
are isomorphic to subtrees of �����	� 
�� � � . Moreover if, in the union � of � � � , � �� and � �� , we merge the maximal
paths whose extremities are respectively � � � � � � � � � � � , � � ��� � � , � � � � � � , � � ��� � � , � � �	� � � � , � � � � � � � � and

� � � � � � � � we obtain
�����	��
	� � � .

(ii) For each �&% 
! * ����� * )�� , since the araucaria � � is of type
�%$�� � �+* ����� * $ , * $ �+* ����� * $�� O � 	 , each

maximal path L of � � admits a canonical decomposition into sections L ��* ����� * L�� attributable to two by
two distinct integers of the set


�$ ��* ����� * $�� O ��* $�� � �+* ����� * $ ,!� by Definition 2.2 and Theorem 2.1 and this
decomposition is unique up to equivalence. The extremity � of L is a leaf and, if L2� � � is the path issued
from � isomorphic to � �%$ � 	 , the path L B !9L � L�� � � in the ramified directed tree � B� !	��5 
 � � � � � * � �%$�� 	�	
is maximal and admits L � � � � L�� � L�� � � as canonical decomposition and this decomposition is unique up to
equivalence in � B� . By the proof of Theorem 2.1, � B� is isomorphic to a directed subtree of the araucaria
of type

�%$ �+* ����� * $ , 	 .
(iii) Since, as in the construction of � , we join together all directed trees � B � ,. . . , � B , and then, by

Lemma 2.2, we merge all pairs of maximal paths which admit isomorphic canonical decompositions up
to equivalence, each maximal path of � admits a canonical decomposition and this decomposition is
unique up to equivalence.
Since, for each � % 
! * ����� * )�� the araucaria � � is complete for the canonical decomposition, �0B� con-
tains all maximal paths whose terminal section is attributable to

$ �
. It follows that � is complete for the
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canonical decomposition. By Definition 2.4, � is therefore an araucaria of type
�%$ � * ����� * $ , 	 . ��

2.3. The size of an araucaria

Now we introduce a family of remarkable polynomials which will be helpful for the calculation of the
size of the araucarias.

Definition 2.11. Let

�' �+* ����� * ' ,!� be a set of ) variables.

For each 
 % 
! * ����� * )�� , let 1 � �(' �+* ����� * ' , 	 be the elementary symmetric polynomial of degree 

on variables

' �+* ����� * ' , and let 1 , �(' �+* ����� * ' , 	 !  
.

The polynomial

& , �(' �+* ����� * ' , 	 ! ��) ,*
�+)-,


/.0��1 � �(' �+* ����� * ' , 	
is called the araucaria polynomial in ) variables.
The first araucaria polynomials are:& � �(' � 	 ! ' � �	 *& � �(' �+* ' � 	 !9# ' � ' � � ' � � ' � �  *& 
 �(' � * ' � * ' 
 	 ! � ' � ' � ' 
 � # �(' � ' � � ' � ' 
 � ' 
 ' � 	 � ' � � ' � � ' 
 �	 �

Lemma 2.3. If � is a cyclic permutation of the set

! * ����� * )�� , for each 
 % 
! * ����� * ) %  � ,� ) ,*

� ) �
1 � �('���� ) � * * ����� * '���� ) , O � * 	+� '���� ) , * ! � 
 �	 	+��1 � � � �(' �+* ����� * ' , 	 �

Proof:
Since � permutes circularly the integers

 * ����� * ) , �
� ) , O �� )-, 1 � �(' ��� ) � * * ����� * ' ��� ) , O � * 	+� ' ��� ) , * is a

symmetric function of
' ��* ����� * ' , .

The product
' � ' � ����� ' � ' � � � appears in 1 � �(' � � ) � * * ����� * ' � � ) , O � * 	�� ' � � ) , * if and only if the vari-

able
'�� � ) , * belongs to


�' �+* ' � * ����� * ' � � � � i.e. if and only if �
� � ) 	 % 
! * ����� * 
 �  � . This product

appears therefore 
 �  
times in the sum. By symmetry, the same thing happens for the other products

and this proves the relation. ��
Theorem 2.3. For each cyclic permutation � of the set


! * ����� * )�� ,� ) ,* � ) �
& , O � �(' � � ) � * * ����� * ' � � ) , O � * 	+� ' � � ) , * �	 ! & , �(' �+* ����� * ' , 	 �

Proof:
By Lemma 2.3, � ) ,* � ) �

& , O � �('�� � ) � * * ����� * '�� � ) , O � * 	�� '�� � ) , * �G 
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!
� ) ,* � ) �

� �+) , O �*
��)-,


/.0��1 � �(' � � ) � * * ����� * ' � � ) , O � * 	��:� ' � � ) , * �	 

! ��) , O �*
��)-,


/. � � � ) ,* � ) � 1 � �('�� � ) � * * ����� * '�� � ) , O � * 	�� '�� � ) , * � �	 

! �+) , O �*
��)-,

� 
 �	 	 . ��1 � � � �(' �+* ����� * ' , 	 �	 

! & , �(' �+* ����� * ' , 	 �
��

Theorem 2.4. An araucaria of arity ) and of type
�%$ � * ����� * $ , 	 has a size equal to

& , �%$ ��* ����� * $ , 	 and
the number of internal vertices is equal to ) . � $ � � ����� � $ ,��
Proof:

(i) If ) !  
, for each positive integer

$ � , the araucaria � �%$ � 	 is reduced to a path of length
$ � , its size

is therefore
$ � �	 ! & � �%$ � 	 .

Assume that the size of each araucaria of arity ) %  
is given by the araucaria polynomial in ) %  

variables and let � be an araucaria of arity ) and of type
�%$ �+* ����� * $ , 	 . By Theorem 2.2, � is isomorphic

to the shuffle product of the elementary araucarias � �%$ � 	 * ����� * � �%$ , 	 .
For all � % 
! * ����� * )�� , let � � be an araucaria of type

�%$ � � ��* ����� * $ , * $ ��* ����� * $�� O � 	 and considere the
ramified directed tree � B� ! ��5 
 � � � � � * � �%$�� 	�	 . By Definition 2.10, if & is the disjoint union of the
directed trees � B � * ����� * � B , , then � is obtained by merging, in & , the terminal truncations of each couple
of maximal paths

� L * L B 	 which admit isomorphic canonical decompositions up to equivalence.
For each � of


! * ����� * )�� , let
?��

be the set of vertices of � B� which do not belong to the directed subtree
� � . By Lemma 2.2 and the proof of Theorem 2.2, we can realize the merging of the terminal truncations
for all couples of maximal paths

� L * L B 	 with respect to increasing rank.
Let L be a maximal path of � and let � be its terminal truncation. Since � is a product of maxi-
mal attributable sections, there exist sections L �+* ����� * L�� respectively attributable to

$�� � * ����� * $���� where��� � �����=� ��� . $�� % 
! * ����� *#" � , let L+B� be the set of vertices of L � distinct from the first vertex.
Since L is a path of � B� if and only if � contains a section which is attributable to

$ �
, none of the setsL � ?=� ��* ����� * L � ?=�F� is empty. These sets are not disjoint but if we replace, for each � % 
 # * ����� *#" � , the

part L � ?=��� of
?=���

by the set L B� then they become two by two disjoint.
Let

? B� * ����� * ? B, be the residual sets obtained respectively from
? ��* ����� * ? , by these substitutions for all

maximal paths of � whose terminal truncations are not reduced to a unique attributable section. Then,
for each maximal path of � , the sets

? B� � L * ����� * ? B, � L which are not empty, are two by two disjoint
and

�@? B� � L 	 ������� � �@? B, � L 	 contains all vertices of L distinct from the first vertex. It follows that the
residual sets

? B� * ����� * ? B, are two by two disjoint and
? B� � ����� � ? B, contains all vertices of � out of the

root. Hence, �85 � � � � 	 !  � �
� ) ,� ) � � 5 � � �@? B� 	 .

Since, for each � % 
! * ����� * )�� , each replacement of a part of
? �

does not modify its cardinality,
� 5!� � �@? B� 	 ! � 5!� � �@?D� 	 .
Moreover each vertex F of

?��
is the extremity of an edge which belongs to a section which is attribuable

to
$��

and the set of these edges is the union of all sections attributable to
$ �

. It follows, by the induction
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hypothesis, that � 5!� � �@? � 	 ! $ � � & , O � �%$ � � � * ����� * $ , * $ � * ����� * $ � O � 	 .
Therefore,

� 5!� � � � 	 !  �� � ) ,* � ) � � 5 � �
�@?D� 	 !  �� � ) ,* � ) �

$�� � & , O � �%$�� � �+* ����� * $ , * $ �+* ����� * $�� O � 	
and, by Theorem 2.3,

�85 � � � � 	 ! & , �%$ � * ����� * $ , 	 �
(ii) We prove now, thanks to a double induction on ) and

$ , , that an araucaria of arity ) and of type�%$ � * ����� * $ , 	 has � ��) , O ���)-, 
/.0��1 � �%$ � * ����� * $ , 	 leaves.
If )M!  

, for each positive integer
$ � , the araucaria � �%$ � 	 is reduced to a path of length

$ � and has a
single leaf.
Definition 2.4 can be generalized for the value

$ ,�! � . Then an araucaria of arity ) and of type�%$ �+* ����� * $ , O � * � 	 can be identified with an araucaria of arity ) %  
and of type

�%$ �+* ����� * $ , O � 	 . If we
assume that the property is true for each araucaria of arity ) %  

, it follows that an araucaria of arity )
and of type

�%$ � * ����� * $ , O � * � 	 admits � ��) , O ���)-, 
/.0��1 � �%$ � * ����� * $ , O � 	 leaves .
Assume now that the result is true for an araucaria of type

�%$ � * ����� * $ , 	 and let & be an araucaria of type�%$ �+* ����� * $ , O � * $ , �	 	 .
By Theorem 2.1, we can identify � with a directed subtree of & and, furthermore:

� � admits a subaraucaria � , � I � of type
�%$ �+* ����� * $ , O � 	 whose root is the vertex

D I � of height
$ , on

the trunk � of � and & admits, in the place of the subaraucaria � , � I � , two subaraucarias & , � I � and
& , � I � � � such that, to each subaraucaria of arity ) % # contained in & , � I � � � � � , � I � corresponds an
isomorphic subaraucaria of root

D I � which is common to & , � I � and to � , � I � and conversely. The
number of leaves of

� &(, � I � � & , � I � � � 	 � ��, � I � is therefore, by the induction hypothesis,

� , ! ��) , O �*
��)-,


/.0��1 � �%$ �+* ����� * $ , O � 	 �
� For each � % 
! * ����� * )�� , & admits

$ �
subaraucarias & � � ,�* ����� * & � � I � O � of type

�%$ �+* ����� * $�� O �+* $�� � ��* � � � * $ , �G 	
in the place of the subaraucarias � � � ,�* ����� * � � � I � O � of type

�%$ ��* ����� * $�� O � * $�� � �+* ����� * $ , 	 of � .

Since 1 � �%$ ��* ����� * $�� O ��* $�� � �+* ����� * $ , �	 	 % 1 � �%$ ��* ����� * $�� O ��* $�� � �+* ����� * $ , 	
! 1 � O � �%$ � * ����� * $�� O ��* $�� � �+* ����� * $ , O � 	

the number
� �

of leaves of this type is, by the induction hypothesis,

� � ! ��) , O �*
�+) �


/. � $�� ��1 � O � �%$ �+* ����� * $�� O �+* $�� � ��* ����� * $ , O � 	 �
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� For each � % 
! * ����� * )�� , & admits the subaraucaria & � � I � in the place of � � � I � but each leaf of
& � � I � � � � � I � belongs to a & , � I � � � � ��, � I � and is therefore counted.

Since all these sets of leaves are two by two disjoint, it follows, by Lemma 2.3, that the number of leaves
in & � � is: � ) , O �* � )-,

� � ! �+) , O �*
��)-,

� 
 �	 	 . ��1 � �%$ �+* ����� * $ , O � 	 �
The number of leaves of & is, as expected:

��) , O �*
��) �


/.0� � 1 � �%$ ��* ����� * $ , 	 � 1 � O � �%$ ��* ����� * $ , O � 	 � �	 ! �+) , O �*
�+)-,


/.0� 1 � �%$ �+* ����� * $ , �	 	 �
This proves the result by induction and shows that the number of internal vertices is equal to

) .0� $ � � ����� � $ ,#�
��

3. On some subautomatas of the minimal automaton of the shuffle of a set
of words � ��� � 
 ��������� � �

In this section we prove that, for every sequence of positive integers
�%$ �+* ����� * $ , 	 , there exist words


 ��* 
 � * � � � * 
-, such that the minimal automaton of  C! 
 � �#� �������#� 
-, contains an araucaria of type�%$ ��* ����� * $ , 	 .
Definition 3.1. (i) Let 
 and � be two words of the free monoid � 
 .
The language whose words are of the form 
 � � � 
 � � � ������
 � � � where 
 � 
 � ������
 � is a factorisation of

 , � � � � ����� � � a factorisation of � and the factors 
 � and � � are possibly empty, is called the shuffle of
the words 
 and � and is denoted 
"�#�"� .
(ii) If  and ! are two languages of �(
 , the union of the sets 
 �#��� for 
 %  and ��% ! is called the
shuffle of the languages  and ! and is denoted  �#��! .
(iii) Let 
 �+* ����� * 
-, be ) words of � 
 . If we assume that the shuffle � of the words 
 �+* ����� * 
-, O � is
defined, the language  !�� �#�"
 , is called the shuffle of the words 
 �+* ����� * 
-, and is denoted

 ! 
 � �#� �������#�"
�,#�

Remark 3.1. If all words of a langage  have the same length, then the minimal automaton of  has a
unique terminal state and an absorbing state 	 ( $ 5	% � * 	 � 5�!
	 ). In particular, this is the case for the
langage  ! 
 � �#� �����+�#� 
-, .

Definition 3.2. (i) Let 
�!<5�� ����� 5 � be a word of length ! of �(
 . The partial automaton �(� � 
 	 whose
set of states is


�D , * ����� * D
� � , whose transitions are
�ED � * 5 � * D�� � � 	 with �(% 
 � * ����� * ! %  � , D , the initial

state and
D �

the terminal state, is called the partial minimal automaton of 
 .
(ii) Let 
 �+* ����� * 
�, be ) words of � 
 ,  ! 
 � �#� �����+�#� 
�, , � �  	 the minimal automaton of  , � its
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initial state and
�

its terminal state.
The partial automaton ��� �  	 obtained from � �  	 by deleting his absorbing state 	 and all transitions
towards 	 or issued from 	 , is called the partial minimal automaton of  .
(iii) The directed graph whose vertices are the states of �(� �  	 and whose edges are the pairs

�ED *�F 	 such
that there exists a letter 5 % � such that

�ED * 5 *�F 	 is a transition of ��� �  	 is called the graph of �(� �  	 .
Definition 3.3. (i) Let

� , be the set of states of the partial minimal automaton �(� � � 	 , � , the initial
state of �(� � � 	 , � , its unique terminal state and 
 , ! 5�� ����� 5 � .
For each � % 
 � * ����� * ! � , let

� � � D � D ) �F*
be an isomorphism from ��� � � 	 on an automaton �(� � � 	 ) �F*

such that the sets
� ) ��* ! � � ��� , 	 are two by two disjoint.

The non-deterministic automaton � � �  	 which is the disjoint union of the partial automata �(� � � 	 ) , * ,
. . . , �(� � � 	 ) � * and which admits, for each

D % � , and each � % 
 � * ����� * ! %  � , �ED ) ��* * 5 � � �+* D ) � � � * 	 as
transition, is called the shuffle product of the partial automata �(� � � 	 and �(� � 
 , 	 and is denoted
�(� � � 	 �#� �(� � 
�, 	 .
It admits

� � ! �
) , *, � ������� �

) � *
, as set of states, � � ! �

) , *, as initial state and
� � ! � ) � *, as terminal state

(see [5] for a more general definition and for complements).
Each transition of the form

�ED ) �F* * 5 � � �+* D ) � � � * 	 is called vertical and each transition of one of the partial
automata ��� � � 	 ) ��* is called horizontal.
(ii) Let � B� �  	 be the subautomaton of the automaton of subsets of �(� � � 	 �#� ��� � 
 , 	 generated by
� � ! 
 � � � .
The partial subautomaton � � �  	 of the automaton � B� �  	 obtained by deleting the empty set of

� � , is
called the determinization of � � �  	 ! ��� � � 	 �#� ��� � 
-, 	 .
Lemma 3.1. (i) The non-deterministic automaton �(� � � 	 �#� �(� � 
 , 	 recognizes language  .
(ii) There exists a morphism from � � �  	 onto the partial automaton �(� �  	 .
(iii) If the alphabet of the word 
 , is disjoint from that of the language � , then the automata �(� �  	 ,
� � �  	 and �(� � � 	 �#� �(� � 
-, 	 are isomorphic.

Proof:
The proof of this lemma is straightforward. ��
Definition 3.4. (i) Each factorisation

� � * 5 I *�� 	 of a word 
 where 5 is a letter of � which is not a right
factor of � nor a left factor of � , is called an 5 -factorisation of 
 .
Such an 5 -factorisation is called degenerate if

$ !	� .
If, for each � % 
! * � � � * )�� , � � � * 5 I � *�� � 	 is an 5 -factorisation of word 
 � and if, at least one of these5 -factorisations is not degenerate, � ! ��� � � * 5PI � *�� � 	 � � � � ��������� , � 	 is called an 5 -factorisation of

� 
 �+* ����� * 
-, 	 .
(ii) Let � be the initial state of the partial minimal automaton �(� �  	 and let � be an 5 -factorisation of� 
 �+* ����� * 
�, 	 .
Let

�
be the set of states F such that there exist

- left factors � � ,..., ��, respectively of 
 � ,..., 
-, such that, for all � of

! * � � � )�� , � � ���E' � � ���
' � � ��� ��$��

- and a word � of � � �#� ����� �#� ��, such that F ! � � � .
The partial automaton � of �(� �  	 which admits

�
as set of states and the 5 -transitions of the form� F�* 5 *�F � 5 	 such that F � 5 % �

as only transitions, is called the nest of 5 -transitions associated to the5 -factorisation � (see Figure 3���6 ).
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The number of positive integers
$ �

is called the dimension of the nest � .
(iii) For each � % 
! * � � � * )�� , such that " � ;! � and � � ;!  

, the last letter 6 � of � � is called the entry letter
of � of index � and, for each � % 
! * � � � * )�� , such that � � ;!  

, the last letter � � of � � is called the exit letter
from � of index � .
Each state F of

�
with no predecessor in

�
, is called entry state of � .

Each state F such that there exists a transition relatively to an exit letter � � of � issued from F , is called
an exit state.

Definition 3.5. (i) Let � , be a nest of 5 -transitions of �(� � � 	 associated to the 5 -factorisation
� , ! ��� � � * 5�I � *�� � 	 � � � � ��������� , O � � 	 of

� 
 ��* ����� * 
�, O � 	 , � � , * 5PI � *�� , 	 an 5 -factorisation of 
 , and � , ! � � , � .
If

� , is the set of states of � , and, if for each � % 
 � , * ����� * � , � $ ,�� , � ) ��* ! � ��� � , 	 , the partial
subautomaton � � of � � �  	 ! �(� � � 	 �#� �(� � 
�, 	 which admits

� � ! � ) � � * � ������� � ) � �8� I � * as set of
states, admits only transitions relatively to 5 and is isomorphic to � , ��� �(� � 5 I �P	 .
� � is called the non-deterministic nest of 5 -transitions of � � �  	 associated to the 5 -factorisation
� ! ��� � � * 5�I � *�� � 	 � � � � ��������� , � 	 (see Figure 3�� 5 ).
(ii) If

� � is the set of states of � � �  	 , let
� � be the set of elements of

� � which contain at least one state
of the nest � � .
The partial subautomaton � � of � � �  	 which admits

� � as set of states and only transitions relatively
to the letter 5 , is called the determinization of � � .

In the sequel of this section we will study the following particular case:$�� % 
! * ����� * )�� , the word 
 � is of the form 
 � !�6 � 5PI � � � with positive integers
$ �+* ����� * $ , and the letters

of

 6 �+* ����� * 6�,!� � 
 � �+* ����� * � ,!� are two by two distinct up to the equalities 6 � ! � � , . . . , 6�, ! � , .

Such a set
� 
 �+* ����� * 
�, 	 is called special.

Lemma 3.2. Let ��! ��� 6 � * 5 I � * � � 	 �  ' � ' ) 	 an 5 -factorisation of the special set
� 
 �+* ����� * 
-, 	 . Then

the graph of the nest � of 5 -transitions associated to � in the partial minimal automaton �(� �  	 is the
opposite of a directed tree.

Proof:
We prove this property by induction on ) .

For ) !  
, the graph of the nest of 5 -transitions of �(� � 
 � 	 is a path of length

$ � . The property is
therefore verified.
Assume that the property is verified for each special set of ) %  

words and let
� 
 �+* ����� * 
-, 	 be a special

set of ) words. We use the notations of Definition 3.5.
(i) First we study the part of the graph obtained from the entries corresponding to letter 6�, .

For all � % 
! * ����� * ) %  � , " � % 
 � * ����� * $�� � and � %/6 � 5 � � �#� ����������6�, O � 5 � � � � , � ) , *, � � is reduced to a

unique state
D ) , * of

� ) , * since 6 ,��% 
 6 �+* ����� * 6�, O � � and, therefore, �
) , *, � � 6�, ! 
�D ) � * � . Each entry relative

to 6�, is therefore reduced to a unique state of
� ) � * .

Let � , ! ��� � � * 5 I � *�� � 	 � � � � ��������� , O � � 	 be the 5 -factorisation of
� 
 �+* ����� * 
�, O � 	 . The opposite graph > , of

the graph of the nest � , associated to � , is a directed tree by induction. Let
�ED�� * D�� O ��* ����� * D , 	 be the

unique path from the root
D�� ! � , of the directed tree > , to the vertex

D , ! D
.

For each " of

 � * ����� * 
 �"! �%$ , * � 	 � ,


�D ) � * �#� 5 � ! 
�D ) � � � *, * D ) � *� ����� * D ) � *� �#�
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Figure 4. Let � � � � ����� , � � the nest of � ��� � ��� associated to the � -factorisation ��� � � � ����� of � � , � � � ���������
and � � � �����	� � . (a) The non-deterministic nest

� � �
�
�	�
��� ����� � � in � ��� ����������� ��� � � � ; (b) The

corresponding nest
�

in the partial minimal automaton � ���
�"� and its subgraph which is the opposite of an
araucaria of type ��
	� ��� .

For each " of

 
 � ! �%$ , * � 	 �	 * ����� * 
 5 � �%$ , * � 	 � ,


�D ) � * �#� 5 � ! 
�D ) � � I � *� O I � * ����� * D ) � *� � when
$ , � �

and
�D ) � * �#� 5 � ! 
�D ) � � � *, * ����� * D ) � � � O � *� � when
� � $ , .

For each " of

 
 5 � �%$ , * � 	 �	 * ����� * $ , � � � ,


�D ) � * �#� 5 � ! 
�D ) � � I � *� O I � * ����� * D ) � � � O � *� �
In particular


�D ) � * �#� 5PI � � � ! 
�D ) � � I � *� � and this proves that there exists, in the opposite graph > � of the

graph of the nest � � , a path from the vertex

 �
) � � I � *, � to the vertex


�D ) � * � .
(ii) We study now the part of the graph obtained from entries corresponding to a letter 6 7 distinct

from 6 , .
As $��(% 
! * ����� * )�� � 
 ;E� and $ � % 6 ��5 � � ��� �������#� 6 7 O ��5 � � � � �#� 6 7 � ��5 � ��� � �#� ����� �#� 6�,�5 � � , where" � % 
 � * ����� * $�� � there exists a left factor � of � and a right factor 	 of � such that � ! � 6 , 	 and the set

�
) , *, � � 6�, is reduced to a unique state

D ) � * of
� ) � * . Each occurrence of a letter 6 � in 	 induces a horizontal

transition in � � �  	 although each occurrence of the letter 5 in 	 induces simultaneously a horizontal
transition and a vertical transition and, when this vertical transition is used, the corresponding horizontal
transition is occulted.
Let � � � 	 be the set of pairs

� 	�� * ��� 	 such that 	�� is obtained by deleting ��� occurrences of the letter 5 in
	 with � ' ��� ' $ , .

�
) , *, � � 6 7 ! 
 �ED � 	�� 6 7 	 ) � � ��� * � � 	�� * ��� 	 %�� � � 	 �
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is then an entry relative to letter 6 7 in the nest � � and, for each integer � & � ,

�
) , *, � � 6 7 5 � ! �)��

� � ��� * ��� )�� *
�ED � 	�� 6 7 	 ) � � � � * � 5 � �

Since > , is a directed tree, for each state F of > , there exists a path from the root � , of > , to F and
therefore, if

�
is the length of this path, then F � 5 � !	� , and


 F ) � * �#� 5 � � I � ! 
 �
) � � I � *, � . Since all states of' ! �

) , *, � � 6 7 have the same rank, there exists therefore also an integer
�

such that
' � 5 � � I � ! 
 �

) � � I � *, � .
There exists therefore also a path from


 �
) � � I � *, � to

'
in the opposite graph > � of the graph of the nest

� � .
(iii) By (i) and (ii), for each state

D
of > � , there exists a path

�ED ,�* ����� * D�� 	 from
D , !��

) � � I � *, to
D � ! D

and, since $���% 
! * ����� * � � , D � � 5�! D � O � in the automaton � � �  	 , this path is unique. This proves that> � is a directed tree.
Since, by Lemma 3.1, there exists a morphism � from � � �  	 on the partial automaton �(� �  	 , the
opposite graph >:!�� � > � 	 of the nest associated to the 5 -factorisation � is also a directed tree. ��
Definition 3.6. The word 
 is called left factor of the language � if there exists a word � such that

�� % � .
Let � B ! ��� 
�, , 	 the set of states

D
of

�
such that there exists a left factor 
 of � such that

D ! � B � 
 in
�(� �  	 and, for such an

D
, �

�ED 	 the set of transitions
�ED * 5 * D � 5 	 with 5$% � such that 
 5 is a left factor

of � .
The partial subautomaton �

- F �  	 of �(� �  	 which admits 	 as set of states and, for each
D %
	 , �

�ED 	
as set of transitions issued from

D
, is called the ultimate face of �(� �  	 .

Lemma 3.3. For each special set
� 
 �+* ����� * 
-, 	 , the ultimate face of ��� �  	 with �
B as initial state and

�
as terminal state, is isomorphic to �(� � � 	 .
Proof:

Since ��, does not belong to the alphabet of � ,

 �
) , *, �#� 
�,H! 
 �

) I � � � *, � in � � �  	 .
Assume that there exists a left factor 
 of � such that



�
) I � � � *, �#� 
 contains a state F ) � * of

� � � � ) I � � � * .
Then there exists a right factor � � of 
-, distinct from the empty word and a right factor � � of � such that
 F ) I � � � * �#� � � � � ! 
 � ) I � � � *, � . Then



�
) , *, �#� 
�,�
�� � � � ! 
 � ) I � � � *, � and, by Lemma 3.1, � ! 
 , 
�� � � � %� 

which is not possible because � contains an excess occurrence of � , . It follows that, for each left
factor 
 of � ,


 �
) I � � � *, �#� 
 B � ) I �8� � * and, since

� I � � � is a morphism from �(� � � 	 on �(� � � 	 ) I � � � * ,
 �
) I � � � *, �#� 
 is reduced to the unique element

� ) I � � � * � � , � 
 	 .
If � is the morphism from � � �  	 on �(� �  	 of Lemma 3.1, � ��� ) I � � � * � � , 	�	 !�� � 
 � ) , *, �#� 
-, 	 ! � � 
-, ! ��B
and, for each left factor 
 of � , � ��� ) I � � � * � � , � 
 	�	 !�� � 
 � ) I � � � *, �#� 
 	 ! �!B � 
 . ��
 � ) I � � � * is therefore a
morphism from �(� � � 	 on �(� �  	 whose image is the ultimate face �

- F �  	 of ��� �  	 and, since this
morphism is injective, �

- F �  	 is isomorphic to ��� � � 	 . ��
Lemma 3.4. Let � be the nest of 5 -transitions associated to the 5 -factorisation � ! ��� � � * 5 I � *�� � 	 ��� � � , 	
of the special set

� 
 � * ����� * 
-, 	 in the automaton �(� �  	 and let � , be the nest of 5 -transitions associated
to the 5 -factorisation � , ! ��� � � * 5 I � *�� � 	 � � � � ��������� , O � � 	 of

� 
 �+* ����� * 
-, O � 	 in the automaton �(� � � 	 .
If > , is the opposite graph of the graph of the nest � , , then the opposite graph > of the graph of the nest
� admits a subgraph which is isomorphic to the ramified directed tree ��5 
 � � � > , * � �%$ , 	�	 .
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Proof:
(i) By the proof of Lemma 3.2, each entry of � � ! � , �#� �(� � 
�, 	 relative to letter 6 , is of the form
�D ) � * � with

D % � , and, the sets

�D ) � * �#� 5 � for " % 
 � * ����� * $ ,�� , are two by two disjoint. There exists

therefore a path � �ED 	 from

�D ) � * �#� 5 I � to


�D ) � * � in the graph > � which is the opposite of the graph of the
nest � � in the determinization � � �  	 of � � �  	 and, since the length of � �ED 	 is equal to

$ , , � �ED 	 is a
path isomorphic to the elementary araucaria � �%$ , 	 .
Consider the mapping

� � D � 
�D �#� 5 I � from � , to � � . For each edge
� F�* D 	 of > , , �ED * 5 *�F ! D � 5 	 is a

transition and, therefore

� � F 	 ! 
 F ) � * �#� 5 I � ! 
 �ED � 5 	 ) � * �#� 5 I � ! � 
�D ) � * �#� 5 I � 	 � 5�! ��� �ED 	�	 � 5��
Hence

��� � F 	 * � �ED 	�	 in an edge of the graph > � and
�

is a morphism from the graph > , to the graph > � .
Since

�
is injective, the subgraph

� � > , 	 of > � is isomorphic to >K, .
Moreover, for all states

D
and

D B of > , , the paths � �ED 	 and � �ED B 	 are disjoint if
D ;! D B .

It results from them that the graph > � admits a subgraph
� � which is isomorphic to the ramified directed

tree ��5 
 � � � > , * � �%$ , 	�	 .
(ii) By Lemma 3.1, there exists a morphism � from � � �  	 to �(� �  	 . For all states

D
and

D B of the
nest � , such that

D ;! D B , � �ED 	 �	� , ! 
�D ) � � I � * � and
� �ED B 	 �	� , ! 
�D B ) � � I � * � . But by the proof of Lemma

3.3, the states
D ) � � I � * and

D B ) � � I � * of �(� � � 	 ) � � I � * are not equivalent.
� �ED 	 and

� �ED B 	 are not equivalent
in � � �  	 and, therefore, � ��� �ED 	�	 ;! � ��� �ED B 	�	 .
Moreover, for each state

D
of the nest � , , the states of the path � �ED 	 form a sequence of 5 -transitions from
�D ) � * � to


�D ) � * �#� 5PI � in � � �  	 . The states of the path � �ED 	 are therefore not equivalent, nor equivalent to
a state of another path � �ED B 	 .
The restriction of � to the subgraph

� � of the graph > � and to the graph > which is the opposite of the
graph of the nest � of �(� �  	 is therefore injective and this proves that > admits also a subgraph which
is isomorphic to a ramified directed tree � 5 
 � � � > , * � �%$ , 	�	 . ��

Theorem 3.1. If the set
� 
 �+* ����� * 
�, 	 is special, the graph of the nest � of 5 -transitions associated to the5 -factorisation �"! ��� 6 � * 5PI � * � � 	 ��� � � , 	 of

� 
 �+* ����� * 
-, 	 in the automaton �(� �  	 is the opposite of an
araucaria of type

�%$ � * ����� * $ , 	
Proof:

(i) The property is trivial for ) !  
.

Assume that, for each sequence
�%$ � * ����� * $ , O � 	 of positive integers, the graph of the nest associated to

the 5 -factorisation � , ! ��� 6 � * 5 I � * � � 	 � � � � ��������� , O � � 	 of
� 
 �+* ����� * 
-, O � 	 in the partial minimal automaton

�(� � � 	 is the opposite of an araucaria of type
�%$ ��* ����� * $ , O � 	 .

By Lemma 3.2, the opposite graph > of the graph of the nest � contains a directed subtree � B , which is
isomorphic to the ramified directed tree ��5 
 � � � �(, * � �%$ , 	�	 where � , ! � �%$ �+* ����� * $ , O � 	 .
Since, for each permutation � of


! * ����� * )�� , the languages 
 � ) � * �#� �����+�#��
 � ) , * and 
 � �#� �����+�#�	
�,
are the same, the graph > contains also, for each � % 
! * � � � * ) %  � , a directed subtree � B� which is
isomorphic to � 5 
 � � � � � * � �%$ � 	�	 where � � is an araucaria of type

�%$ � � � * ����� * $ , * $ � * ����� * $ � O � 	 .
Since � B , contains all entries relative to letter 6+, , the same thing happens for the other entry letters6 ��* ����� * 6�, O � . Therefore > is covered by the directed trees �0B � * ����� * � B , .

(ii) For each entry � relative to a letter 6 � in the nest � , associated to the 5 -factorisation � , in the
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Figure 5. Let � � � � ����� , � � � ��������� , � � � ����� , � � �����
�$� � �
�"� � , � the nest of � ��� �"� associated to
the � -factorisation � ����� � � ����� � ����� � � � ����� ��� � � ����� � of � � ��� � � � � � � . The directed subtree of the graph

�
opposite of

the graph of the nest
�

which is isomorphic to � � � � � ��� ��� ������
����
� ����� � � � of an araucaria of type ��
	� �
� and the
exit transitions of the states supported by the trunk of this araucaria. Only the � -transitions have been drawn with
unbroken lines and some � -transitions and � -transitions with dotted lines.

automaton ��� � � 	 , � ) � * is simultaneously an entry for 6 � and for 6�, (see the proof of Lemma 3.2). If �
is a morphism from � � �  	 on �(� �  	 , there exists therefore, in > , a maximal path L from the root � of> to vertex � � � ) � * 	 and this vertex is common to subtrees � B� and � B , . The directed trees � B� and � B , are
therefore merged with respect to the maximal path L . The same argument applies for each common entry
letter of any number of entry letters of


 6 �+* ����� * 6�, O � � and, permuting the words 
 ��* ����� * 
�, , to each part
of

 6 �+* ����� * 6�,!� .

First we merge the paths issued from the root which end with the unique entry common to all entry
letters 6 ��* ����� * 6�, , then we do the same thing for the entries common to ) %  

letters and so forth until the
common entries of two letters. The operation consists then in merging the terminal truncations.> is therefore isomorphic to the shuffle product of the elementary araucarias � �%$ � 	 * ����� * � �%$ , 	 and is,
by Theorem 2.2, isomorphic to an araucaria of type

�%$ � * ����� * $ , 	 . ��

4. Shuffle products of words and partial commutations

Definition 4.1. Given an alphabet � and a set 4 of pairs
� 5 * 6 	 of letters of � such that 5�;!96 , let � and

��B be words of � 
 such that ��! 
 576�� and � B0! 
 685�� with
� 5 * 6 	 % 4 or

� 6 * 5 	 % 4 : the transformation
of � in � B is called a partial commutation.
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If � is a word of � 
 , the set of words � B % � 
 such that there exists a sequence of partial commuta-
tions which transforms � in � B is called the commutation class of � .

The present authors have designed an efficient sequential algorithm for the generation of commu-
tation classes [14] and two optimal parallel algorithms on the commutation class of a given word [15].
During our investigation, it became clear to us that some of our results extend to the shuffle product of
words. In particular, we have been motivated by the fact that all words in a commutation class have the
same length as in shuffle products of words and by the following result.

Proposition 4.1. If the respective alphabets � �+* ����� * � , of the words 
 �+* ����� * 
�, are two by two disjoint,
then the shuffle product  ! 
 � ��� �������#�'
-, is equal to the commutation class of the word 
 � � � � 
�,
relative to 4�! �

��� ��� 7 � , � � � �5; .

Proof:
The proof of this proposition is straightforward. ��
Remark 4.1. This result does not remain true if the words 
 �+* ����� * 
�, share a common letter. In the
case where the words 
 � * ����� * 
-, are special (see Section 2 ), we are far away from the assumptions of
Proposition 4.1 and it appears that the study of the shuffle of words is much more intricate than the study
of commutation classes.
Partial commutation theory assumes that a letter never commutes with itself but, in the shuffle product,
the occurrences of the same letter of two distinct words still commute. This fundamental difference
implies that the minimal automaton of the shuffle of words contains graphs such as araucarias.

5. Conclusion

In this paper we have investigated directed trees which appear in the construction of the minimal automa-
ton of the shuffle of words. We hope to be able to prove that, if the set of words is special, then the size
of the partial minimal automaton of the shuffle of words is maximal. The design of an optimal algorithm
for the construction of this automaton is under investigation by the present authors.

Acknowledgments: The authors are grateful to anonymous referees for pertinent comments and sugges-
tions.
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