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Abstract. Solving analytic systems using inversion can be implemented
in a variety of ways. One method is to use Lagrange inversion and varia-
tions. Here we present a different approach, based on dual vector fields.

For a function analytic in a neighborhood of the origin in the complex
plane, we associate a vector field and its dual, an operator version of
Fourier transform. The construction extends naturally to functions of
several variables.

We illustrate with various examples and present an efficient algorithm
readily implemented as a symbolic procedure in Maple while suitable as
well for numerical computations using languages such as C or Java.

1 Introduction

We introduce the operator calculus necessary to present our ap-
proach to (local) inversion of analytic functions. It is important to
note that this is different from Lagrange inversion and is based on
the flow of a vector field associated to a given function. It appears
to be theoretically appealing as well as computationally effective.

Acting on polynomials in x, define the operators:

D =
d

dx
and X = multiplication by x.

They satisfy commutation relations [D, X] = I, where I, the identity
operator commutes with both D and X. Abstractly, the Heisenberg-
Weyl algebra is the associative algebra generated by operators {A, B, C}
satisfying [A, B] = C, [A, C] = [B, C] = 0. The standard HW alge-
bra is the one generated by the realization A = D, B = X, C = I.



An Appell system is a system of polynomials {yn(x)}n≥0 that is a
basis for a representation of the standard HW algebra with the fol-
lowing properties:

1. yn is of degree n in x
2. D yn = n yn−1

In several variables, x = (x1, . . . , xN), with multi-indices n = (n1, . . . , nN),
and corresponding monomials
xn = xn1

1 xn2

2 · · ·xnN

N . Denote the partial derivative operators by Di =
∂

∂xi

and corresponding multiplication operators by Xi. Then [Dj, Xi] =

δij I. An Appell system is a system of polynomials {yn} in the vari-
ables x such that:

1. the top degree term of yn is a constant multiple of xn

2. Di yn = ni yn−ei
, where ei has all components zero except for 1

in the ith position

G.-C. Rota [3] is well-known for his umbral calculus development of
special polynomial sequences, called basic sequences. From our per-
spective, these are “canonical polynomial systems” in the sense that
they provide polynomial representations of the Heisenberg-Weyl al-
gebra, in realizations different from the standard one. Our idea [2,
1] is to illustrate explicitly the rôle of vector fields and their duals,
using operator calculus methods for working with the latter (in our
volumes — this viewpoint is prefigured in [3]).

The main feature of our approach is that the action of the vector field
may be readily calculated while the action of the dual vector field
on exponentials is identical to that of the vector field. Then we note
that acting iteratively with a vector field on polynomials involves
the complexity of the coefficients, while acting iteratively with the
dual vector field always produces polynomials from polynomials. So
we can switch to the dual vector field for calculations.

Specifically, fix a neighborhood of 0 in C. Take an analytic func-
tion V (z) defined there, normalized to V (0) = 0, V ′(0) = 1. Denote
W (z) = 1/V ′(z) and U(v) the inverse function, i.e., V (U(v)) = v,
U(V (z)) = z. Then V (D) is defined by power series as an operator on



polynomials in x and [V (D), X] = V ′(D) so that [V (D), XW (D)] =
I. In other words, V = V (D) and Y = XW (D) generate a rep-
resentation of the HW algebra on polynomials in x. The basis for
the representation is yn(x) = Y n1, i.e., Y is a raising operator. And
V yn = n yn−1 so that V is the corresponding lowering operator.

The {yn}n≥0 form a system of canonical polynomials or general-
ized Appell system. The operator of multiplication by x is given by
X = Y V ′(D) = Y U ′(V )−1, which is a recursion operator for the
system.

We identify vector fields with first-order partial differential opera-
tors. Consider a variable A with corresponding partial differential op-
erator ∂A. Given V as above, let Ỹ be the vector field Ỹ = W (A)∂A.
Then we observe the following identities

Ỹ eAx = xW (A) eAx = xW (D) eAx

as any operator function of D acts as a multiplication operator on
eAx. The important property of these equalities is that Y and Ỹ
commute, as they involve independent variables. So we may iterate
to get

exp(tỸ )eAx = exp(tY )eAx (1)

On the other hand, we can solve for the left-hand side of this equation
using the method of characteristics. Namely, if we solve

Ȧ = W (A) (2)

with initial condition A(0) = A, then for any smooth function f ,

etỸ f(A) = f(A(t))

Thus,

exp(tY )eAx = exA(t)

To solve equation (2), multiply both sides by V ′(A) and observe that
we get

V ′(A) Ȧ =
d

dt
V (A(t)) = 1



Integrating yields,

V (A(t)) = t + V (A) or A(t) = U(t + V (A))

Or, writing v for t,

exp(vY )eAx = exU(v+V (A)) (3)

We can set A = 0 to get

exp(vY )1 = exU(v)

on the one hand while

evY 1 =
∞

∑

n=0

vn

n!
yn(x)

In summary, we have the expansion of the exponential of the inverse
function

exU(v) =
∞

∑

n=0

vn

n!
yn(x)

or
∞

∑

m=0

xm

m!
(U(v))m =

∞
∑

n=0

vn

n!
yn(x) (4)

This yields an alternative approach to inversion of the function V (z)
rather than using Lagrange’s formula. We see that the coefficient of
xm/m! yields the expansion of (U(v))m. In particular, U(v) itself is
given by the coefficient of x on the right-hand side.

Specifically, we have :

Theorem 1. The coefficient of xm/m! in Y n1 is equal to Ỹ nAm
∣

∣

A=0
,

each giving the coefficient of vn/n! in the expansion of U(v)m.

Proof. Expand both sides of equation (1), using v for t, in powers of
x and v, and let A = 0:

∞
∑

n=0

vn

n!
Ỹ n

∞
∑

m=0

xm

m!
Am

∣

∣

A=0
=

∞
∑

n=0

vn

n!
Y n1

and compare with equation (4).



The same idea works in several variables.
We have V(z) = (V1(z1, . . . , zN), . . . , VN(z1, . . . , zN)) analytic in a

neighborhood of 0 in CN . Denote the Jacobian matrix

(

∂Vi

∂zj

)

by V ′

and its inverse by W . The variables

Yi =

N
∑

k=1

xkWki(D)

commute and act as raising operators for generating the basis yn(x).
I.e., Yiyn = yn+ei

. And Vi = Vi(D), D = (D1, . . . , DN), are lowering
operators: Viyn = ni yn−ei

.

Denote
∑

i aibi by a ·b. With variables Ai and corresponding partials
∂i, define the vector fields

Ỹi =
∑

k

Wki(A)∂k

For a vector field Ỹ =
∑

i Wi(A)∂i, we have the identities

Ỹ eA·x = x · W (A) eA·x = x · W (D) eA·x

The method of characteristics applies as in one variable and as in
equation (3)

exp(v · Y )eA·x = ex·U(v+V (A))

Thus, we have the expansion

exp
(

x · U(v)
)

=
∑

n

vn

n!
yn(x) (5)

In particular, the kth component, Uk, of the inverse function is given
by the coefficient of xk in the above expansion.

An important feature of our approach is that to get an expansion
to a given order requires knowledge of the expansion of W just to
that order. The reason is that when iterating xW (D), at step n it is
acting on a polynomial of degree n−1, so all terms of the expansion
of W (D) of order n or higher would yield zero acting on yn−1. This



allows for streamlined computations.

For polynomial systems V, V ′ will have polynomial entries, and W
will be rational in z. Hence raising operators will be rational func-
tions of D, linear in x. Thus the coefficients of the expansion of the
entries Wij of W would be computed by finite-step recurrences.

Remark 1. Note that to solve V (z) = v for z near z0, with V (z0) =
v0, apply the method to V1(z) = V (z + z0) − v0, so that V1(0) = 0.
The inverse is U1(v) = U(v + v0)− z0. Then U(v) = z0 + U1(v − v0).

2 One-variable Case

In this section we focus on the one-variable case. We illustrate the
method with examples, then present an algorithm suitable for sym-
bolic computation.

Example 1. In one variable, solving a cubic is interesting as the ex-
pansion of W can be expressed in terms of Chebyshev polynomials.

Let V = z3/3 − αz2 + z. Then V ′ = z2 − 2αz + 1. Thus

W =
1

1 − 2αz + z2
=

∞
∑

n=0

znUn(α)

where Un are Chebyshev polynomials of the second kind.

Specializing α provides interesting cases. For example, let α = cos(π/4),
or V = z3/3 − z2/

√
2 + z. Then the coefficients in the expansion of

W are periodic with period 8 and, in fact,

W =
1 + z2 +

√
2 z

1 + z4

The coefficient of x in the polynomials yn yield the coefficients in
the expansion of the inverse U . Here are some polynomials starting
with y0 = 1, y1 = x :

y2 = x2 + x
√

2, y3 = x3 + 3 x2
√

2 + 4 x,

y4 = x4 + 6 x3
√

2 + 22 x2 + 10 x
√

2,

y5 = x5 + 10 x4
√

2 + 70 x3 + 90 x2
√

2 + 40 x

y6 = x6 + 15 x5
√

2 + 170 x4 + 420 x3
√

2 + 700 x2 − 140 x
√

2



This gives to order 6:

U(v) =

(

v +
2

3
v3 +

1

3
v5 + . . .

)

+
√

2

(

1

2
v2 +

5

12
v4 − 7

36
v6 + . . .

)

This expansion will give approximate solutions to

z3/3 − z2/
√

2 + z − v = 0

for v near 0.

Example 2. Inversion of the Chebyshev polynomial T3(z) = 4z3−3z
can be used as the basis for solving general cubic equations ([4]).

To get started we have, with V (z) = 4z3 − 3z,

W (z) =
−1

3

1

1 − 4z2
=

−1

3

∞
∑

n=0

4nz2n

So y1 = (−1/3)x, y2 = (1/9)x2, y3 = (−1/27)(x3 + 8x), etc. We find

U(v) = −1

3
v − 4

81
v3 − 16

729
v5 − 256

19683
v7 − · · ·

In this case, we can find the expansion analytically. To solve T3(z) =
v, write

T3(cos θ) = cos(3θ) = v

Invert to get, for integer k, θ = (1/3)(2πk ± arccos v), with arccos
denoting the principal branch. Then

z = cos((1/3)(2πk ± arccos v))

We want a branch with v = 0 corresponding to z = 0. With arccos 0 =
π/2, we want the argument of the cosine to be π/2 + πl, for some

integer l. This yields the condition
1

3
=

2l + 1

4k ± 1
. Taking l = 0, we get

k = 1, with the minus sign. I.e.,

U(v) = cos((1/3)(2π − arccos v))



Using hypergeometric functions (see next example) and rewriting,
we find the form

U(v) = −1

3

∞
∑

n=0

(

3n

n

) (

4

27

)n
v2n+1

2n + 1

If we generate the polynomials yn, we can find the expansion of
U(v)m to any order.

Example 3. A similar approach is interesting for the Chebyshev poly-
nomial Tn(z).

F (v) = cos(λ(µ ± arccos v)) satisfies the hypergeometric differential
equation

(1 − v2) F ′′ − v F ′ + λ2 F = 0

which can be written in the form

[(vDv)
2 − D2

v ]F = λ2 F

with here Dv denoting d/dv. For integer λ, this is the differential
equation for the corresponding Chebyshev polynomial. In general,
these are Chebyshev functions. As noted above, for F (0) = 0, we
take µ = 2πk, and, as above, we require

λ =
2l + 1

4k ± 1

With F ′(0) = ±λ, we have the solution

F (v) = ±λv 2F1







1 + λ
2

,
1 − λ

2
3
2

∣

∣

∣

∣

∣

v2







2.1 Using Maple

For symbolic computation using Maple, one can use the Ore Algebra
package.

1. First fix the degree of approximation. Expand W as a polynomial
to that degree.



2. Declare the Ore algebra with one variable, x, and one derivative,
D.

3. Define the operator xW (D) in the algebra.
4. Iterate starting with y0 = 1 using the applyopr command.
5. Extract the coefficient of xm/m! to get the expansion of U(v)m.

3 Algorithm as a matrix computation

Here is a matrix approach that can be implemented numerically.
Fix the order of approximation n.
Cut off the expansion

W (z) = w0 + w1z + w2w
2 + · · ·+ wkz

k + · · ·
at wnz

n.
Let the matrix

W =















w1 w0 0 . . . 0
w2 w1 w0 . . . 0
...

...
...

. . .
...

wn−1 wn−2 wn−3 . . . w0

wn wn−1 wn−2 . . . w1















Define the auxiliary diagonal matrices

P =











1! 0 . . . 0
0 2! . . . 0
...

...
. . .

...
0 0 . . . n!











M =











1 0 . . . 0
0 2 . . . 0
...

...
. . .

...
0 0 . . . n











Q =











1/Γ (1) 0 . . . 0
0 1/Γ (2) . . . 0
...

...
. . .

...
0 0 . . . 1/Γ (n)













Note that QP = M .

Denoting yk(x) =
∑

c
(k)
j xj , we have the recursion

[c
(k+1)
1 , c

(k+1)
2 , . . . , c(k+1)

n ] = [c
(k)
1 , c

(k)
2 , . . . , c(k)

n ]PWQ

The condition U(0) = 0 gives y0 = 1. Then y1 = XW (D)y0 yields

y1 = w0x. We see that c
(k)
0 = 0 for k > 0. We iterate as follows:

1. Start with w0 times the unit vector [1, 0, . . . , 0] of length n.
2. Multiply by W .
3. Iterate, multiplying on the right by MW at each step.
4. Finally, multiply on the right by Q.

The top row will give the coefficients of the expansion of U(v) to
order n.

4 Higher-order Example

Here is a simple 2 × 2 system for illustration.

V1 = z1 + z2
2/2

V2 = z2 − z1z2

So

V ′ =

(

1 z2

−z2 1 − z1

)

and W =
1

1 − z1 + z2
2

(

1 − z1 −z2

z2 1

)

The raising operators are

Y1 =
(

x1(1 − D1)) + x2D2

)

(1 − D1 + D2
2)

−1

Y2 = (−x1D2 + x2) (1 − D1 + D2
2)

−1

Expanding (1 − D1 + D2
2)

−1 =
∞
∑

n=0

(D1 − D2
2)

n yields, with y00 = 1,

y01 = x2, y10 = x1

y02 = x2
2 − x1, y11 = x2 + x1x2, y20 = x2

1



Thus

exp
(

x · U(v)
)

= 1 + x1v1 + x2v2

+(x2 + x1x2)v1v2 + (x2
2 − x1)

v2
1

2
+ x2

1

v2
2

2
+ . . .

so

U1(v) = v1 − v2
1/2 + . . .

U2(v) = v2 + v1v2 + . . .

5 Another matrix approach

For any given order n, the polynomials of degree n are an invariant
subspace for the operator Y up until the last step. We can formulate
an alternative matrix computation as follows. Let D̄ and X̄ denote
the matrices of the operators of differentiation and multiplication by
x respectively on polynomials of degree less than or equal to n. The
space is invariant under differentiation, and we cut off multiplication
by x to be zero on xn. We get

D̄ij = i δi+1,j, and X̄ij = δi−1,j

with the first row of X̄ all zeros. We then compute the matrix X̄
times W (D̄), where W (D̄) is computed as a matrix polynomial by
substituting in W (z) up to order n. Then Y has a matrix represen-
tation, Ȳ = X̄W (D̄), on the space and we iterate multiplying by
Ȳ acting on the unit vector e1. These give the coefficients of the
polynomials yn.

In several variables, one constructs matrices for Dj and Xi using
Kronecker products of D̄ and X̄ with the identity. For example,

D̄j = I ⊗ I ⊗ · · · ⊗ D̄ ⊗ I · · · ⊗ I

with D̄ in the jth spot. Similarly for X̄i. Then one has explicit matrix
representations for the dual vector fields and the polynomials can be
found accordingly.
This approach is explicit, but seems to much slower than using the
built-in Ore algebra package.



6 Worksheets
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