From Admissibility to a New Hierarchy of Unification Types

Leonardo Manuel Cabrer
joint work with George Metcalfe

Università degli Studi di Firenze
Dipartimento di Statistica, Informatica, Applicazioni “G. Parenti”
Marie Curie Intra-European Fellowship – FP7

UNIF – 2014
Motivation

Does unification type reflect the connection between unification and admissible rules?
Motivation

Does unification type reflect the connection between unification and admissible rules?

("Counter") Examples:
Motivation

Does unification type reflect the connection between unification and admissible rules?

(“Counter”) Examples:

Motivation

Does unification type reflect the connection between unification and admissible rules?

(“Counter”) Examples:

Motivation
Framework

Let us fix:

- $\mathcal{L} :=$ algebraic language;
- $\mathcal{V} :=$ class of \mathcal{L}-algebras.
Motivation
Framework

Let us fix:

- \(\mathcal{L} := \) algebraic language;
- \(\mathcal{V} := \) class of \(\mathcal{L} \)-algebras.

Let \(\text{Fm}_\mathcal{L}(X) \) denote the \textbf{formula algebra} (also known as term algebra or absolutely free algebra) of \(\mathcal{L} \) over a set of variables \(X \).
A substitution (homomorphism)

$$\sigma : \text{Fm}_L(X) \to \text{Fm}_L(Y)$$

is called a \mathcal{V}-unifier (over X) of a set of L-identities Σ with variables in X if

$$\mathcal{V} \models \sigma(\varphi) \approx \sigma(\psi) \text{ for all } \varphi \approx \psi \in \Sigma.$$
Motivation

Unifiers

A substitution (homomorphism)

\[\sigma : \text{Fm}_\mathcal{L}(X) \rightarrow \text{Fm}_\mathcal{L}(Y) \]

is called a \(\mathcal{V} \)-unifier (over \(X \)) of a set of \(\mathcal{L} \)-identities \(\Sigma \) with variables in \(X \) if

\[\mathcal{V} \models \sigma(\varphi) \approx \sigma(\psi) \text{ for all } \varphi \approx \psi \in \Sigma. \]

Let \(U_\mathcal{V}(\Sigma, X) \) denote the set of \(\mathcal{V} \)-unifiers of \(\Sigma \) over \(X \).
Motivation

Unifiers

If \(\sigma_1, \sigma_2 \in U_{\mathcal{V}}(\Sigma, X) \), we say that \(\sigma_1 \) is more general than \(\sigma_2 \)

\[\sigma_2 \preceq \sigma_1 \]

if there exists a substitution \(\lambda \) defined on the variables of \(\sigma_1(X) \) such that \(\sigma_2 \simeq_{\mathcal{V}} \lambda \circ \sigma_1 \).
Motivation

Unifiers

If \(\sigma_1, \sigma_2 \in U_{\mathcal{V}}(\Sigma, X) \), we say that \(\sigma_1 \) is more general than \(\sigma_2 \)

\[
\sigma_2 \preceq \sigma_1
\]

if there exists a substitution \(\lambda \) defined on the variables of \(\sigma_1(X) \) such that \(\sigma_2 \cong \mathcal{V} \lambda \circ \sigma_1 \).

A complete set for \((U_{\mathcal{V}}(\Sigma, X), \preceq)\) is a subset \(M \subseteq U_{\mathcal{V}}(\Sigma, X) \) such that for every \(\sigma \in U_{\mathcal{V}}(\Sigma, X) \), there exists \(\sigma' \in M \) such that \(\sigma \preceq \sigma' \).
If $\sigma_1, \sigma_2 \in U_V(\Sigma, X)$, we say that σ_1 is more general than σ_2

$$\sigma_2 \preceq \sigma_1$$

if there exists a substitution λ defined on the variables of $\sigma_1(X)$ such that $\sigma_2 \simeq_V \lambda \circ \sigma_1$.

A complete set for $(U_V(\Sigma, X), \preceq)$ is a subset $M \subseteq U_V(\Sigma, X)$ such that for every $\sigma \in U_V(\Sigma, X)$, there exists $\sigma' \in M$ such that $\sigma \preceq \sigma'$.

M is called a μ-set for $(U_V(\Sigma, X), \preceq)$ if $\sigma_1 \not\preceq \sigma_2$ and $\sigma_2 \not\preceq \sigma_1$ for all distinct $\sigma_1, \sigma_2 \in M$.
Motivation
Unifiers and Admissibility

If Σ, Δ are finite sets of \mathcal{L}-identities, the clause $\Sigma \Rightarrow \Delta$ is \mathcal{V}-admissible if for every \mathcal{V}-unifier σ of Σ there exists $\varphi \approx \psi \in \Delta$ such that $\mathcal{V} \models \sigma(\varphi) \approx \sigma(\psi)$.
If Σ, Δ are finite sets of \mathcal{L}-identities, the clause $\Sigma \Rightarrow \Delta$ is \mathcal{V}-admissible if for every \mathcal{V}-unifier σ of Σ there exists $\varphi \approx \psi \in \Delta$ such that $\mathcal{V} \models \sigma(\varphi) \approx \sigma(\psi)$.

Let Σ, and Δ be finite sets of \mathcal{L}-identities, $X = \text{Var}(\Sigma \cup \Delta)$ and M be a complete (or μ-set) for $U_{\mathcal{V}}(\Sigma, X)$.

The clause $\Sigma \Rightarrow \Delta$ is \mathcal{V}-admissible if for every \mathcal{V}-unifier $\sigma \in M$

there exists $\varphi \approx \psi \in \Delta$ such that $\mathcal{V} \models \sigma(\varphi) \approx \sigma(\psi)$.
Motivation

Given a clause $\Sigma \Rightarrow \Delta$ is there any procedure to obtain a “small” set M of unifiers of Σ such that:

$$\Sigma \Rightarrow \Delta \text{ is } \forall\text{-admissible}$$

if $\forall \sigma \in M, \exists \varphi \approx \psi \in \Delta$ such that $\forall |\sigma(\varphi) \approx \sigma(\psi)$?
Main Definition
What should we change?

If $\sigma_1, \sigma_2 \in U_V(\Sigma, X)$, we say that σ_1 is more general than σ_2

$$\sigma_2 \preceq \sigma_1$$

if there exists a substitution λ defined on the variables of $\sigma_1(X)$ such that $\sigma_2 \cong \lambda \circ \sigma_1$.

A complete set for $(U_V(\Sigma, X), \preceq)$ is a subset $M \subseteq U_V(\Sigma, X)$ such that for every $\sigma \in U_V(\Sigma, X)$, there exists $\sigma' \in M$ such that $\sigma \preceq \sigma'$.

M is called a μ-set for $(U_V(\Sigma, X), \preceq)$ if $\sigma_1 \not\preceq \sigma_2$ and $\sigma_2 \not\preceq \sigma_1$ for all distinct $\sigma_1, \sigma_2 \in M$.
Main Definition

More Exact Unifiers

Let Σ be a finite set of \mathcal{L}-equations and σ_1, σ_2 be \mathcal{V}-unifiers of Σ. We say that σ_1 is more exact than σ_2 (in symbols $\sigma_2 \sqsubseteq \sigma_1$) if σ_1 unifies fewer identities than σ_2.
Main Definition
More Exact Unifiers

Let \(\Sigma \) be a finite set of \(\mathcal{L} \)-equations and \(\sigma_1, \sigma_2 \) be \(\mathcal{V} \)-unifiers of \(\Sigma \). We say that \(\sigma_1 \) is more exact than \(\sigma_2 \) (in symbols \(\sigma_2 \sqsubseteq \sigma_1 \)) if \(\sigma_1 \) unifies fewer identities than \(\sigma_2 \).

More precisely:

\[
\sigma_2 \sqsubseteq \sigma_1
\]

if

\[
\mathcal{V} \models \sigma_2(\varphi) \approx \sigma_2(\psi) \text{ whenever } \mathcal{V} \models \sigma_1(\varphi) \approx \sigma_1(\psi).
\]
Main Definition

Exact Type

Immediately,

\[\subseteq \text{ determines a preorder on the } \forall \text{-unifiers of } \Sigma. \]
Main Definition

Exact Type

Immediately,

\sqsubseteq determines a preorder on the \forall-unifiers of Σ.

Lemma

For each $X \supseteq \text{Var}(\Sigma)$,

$$\text{type}(U_\forall(\Sigma, \text{Var}(\Sigma)), \sqsubseteq) = \text{type}(U_\forall(\Sigma, X), \sqsubseteq).$$
Main Definition

Exact Type

Immediately,

\sqsubseteq determines a preorder on the \forall-unifiers of Σ.

Lemma

For each $X \supseteq \text{Var}(\Sigma)$,

$$\text{type}(U_\forall(\Sigma, \text{Var}(\Sigma)), \sqsubseteq) = \text{type}(U_\forall(\Sigma, X), \sqsubseteq).$$

We define the **exact type of Σ in \forall** to be

$$\text{type}(U_\forall(\Sigma, \text{Var}(\Sigma)), \sqsubseteq) \quad \text{(for } U_\forall(\Sigma, \text{Var}(\Sigma)) \neq \emptyset).$$
Main Definition

Consequences

Let Σ, and Δ be finite sets of \mathcal{L}-identities, $X = \text{Var}(\Sigma \cup \Delta)$ and

\[M \text{ be a complete (or } \mu\text{-set) for } (U_{\mathcal{V}}(\Sigma, X), \sqsubseteq). \]

The clause $\Sigma \Rightarrow \Delta$ is \mathcal{V}-admissible if for every \mathcal{V}-unifier $\sigma \in M$ there exists $\varphi \approx \psi \in \Delta$ such that $\mathcal{V} \models \sigma(\varphi) \approx \sigma(\psi)$.
Main Definition

Consequences

\[\sigma_2 \preceq \sigma_1 \; \text{implies} \; \sigma_2 \subseteq \sigma_1. \]
Main Definition

Consequences

► \(\sigma_2 \preceq \sigma_1 \) implies \(\sigma_2 \sqsubseteq \sigma_1 \).

► For each \(X \supseteq \text{Var}(\Sigma) \), if \(M \) is a complete set for \((U \vee (\Sigma, X), \preceq)\), then \(M \) is a complete set for \((U \vee (\Sigma, X), \sqsubseteq)\).
Main Definition

Consequences

- $\sigma_2 \preceq \sigma_1$ implies $\sigma_2 \subseteq \sigma_1$.

- For each $X \supseteq \text{Var}(\Sigma)$, if M is a complete set for $(U\forall(\Sigma, X), \preceq)$, then M is a complete set for $(U\forall(\Sigma, X), \subseteq)$.

Proposition

If we consider the the set of types $\{1, \omega, \infty, 0\}$ preordered as follows $1 \leq \omega \leq \infty \leq 0 \leq \infty,$
Main Definition

Consequences

- $\sigma_2 \nleq \sigma_1$ implies $\sigma_2 \sqsubseteq \sigma_1$.
- For each $X \supseteq \text{Var}(\Sigma)$, if M is a complete set for $(U_\nu(\Sigma, X), \nleq)$, then M is a complete set for $(U_\nu(\Sigma, X), \sqsubseteq)$.

Proposition

If we consider the set of types $\{1, \omega, \infty, 0\}$ preordered as follows $1 \leq \omega \leq \infty \leq 0 \leq \infty$, then

$$\text{type}(U_\nu(\Sigma), \sqsubseteq) \leq \text{type}(U_\nu(\Sigma), \nleq).$$
Examples

<table>
<thead>
<tr>
<th>Class of Algebras</th>
<th>Unification Type</th>
<th>Exact Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean Algebras</td>
<td>Unitary</td>
<td>Unitary</td>
</tr>
<tr>
<td>Heyting Algebras</td>
<td>Finitary</td>
<td>Finitary</td>
</tr>
<tr>
<td>Semigroups</td>
<td>Infinitary</td>
<td>Infinitary or Nullary</td>
</tr>
<tr>
<td>Modal algebras</td>
<td>Nullary</td>
<td>Nullary</td>
</tr>
<tr>
<td>Distributive Lattices</td>
<td>Nullary</td>
<td>Unitary</td>
</tr>
<tr>
<td>Stone Algebras</td>
<td>Nullary</td>
<td>Unitary</td>
</tr>
<tr>
<td>Idempotent Semigroups</td>
<td>Nullary</td>
<td>Finitary</td>
</tr>
<tr>
<td>MV-algebras</td>
<td>Nullary</td>
<td>Finitary</td>
</tr>
</tbody>
</table>
Algebraic Translation
Ghilardi’s Algebraic Translation

\[\mathsf{Fm}_\mathcal{L}(X) \xrightarrow{\sigma} \mathsf{Fm}_\mathcal{L}(Y) \]

\[
\begin{align*}
\text{Fm}_\mathcal{L}(X) \xrightarrow{\sigma} & \text{Fm}_\mathcal{L}(Y) \\
\downarrow /\nu & \quad \downarrow /\nu \\
\text{F}_\nu(X) \xrightarrow{\sigma\nu} & \text{F}_\nu(Y)
\end{align*}
\]
Algebraic Translation
Ghilardi’s Algebraic Translation

\[
\begin{align*}
\text{Fm}_\mathcal{L}(X) &\xrightarrow{\sigma} \text{Fm}_\mathcal{L}(Y) \\
\downarrow / \mathcal{V} & & \downarrow / \mathcal{V} \\
\text{F}_\mathcal{V}(X) &\xrightarrow{\sigma \mathcal{V}} \text{F}_\mathcal{V}(Y) \\
\downarrow / \Sigma & & \uparrow \\
\text{F}_\mathcal{V}(X)/(\Sigma) &\xrightarrow{h} P
\end{align*}
\]
Algebraic Translation
Ghilardi’s Algebraic Translation

Unification Problem: Finitely presented algebra A
Algebraic Translation
Ghilardi’s Algebraic Translation

Unification Problem: Finitely presented algebra A

Solution (Unifier): $h: A \rightarrow P$

P is projective
Algebraic Translation
Ghilardi’s Algebraic Translation

Unification Problem: Finitely presented algebra A

Solution (Unifier): $h: A \rightarrow P$

P is projective

Pre-order:

$A \xymatrix{ & P_1 \ar[dd]^-{f} \\ h_1 \ar[ru] & }$

$A \xymatrix{ & P_2 \\ \ar[lu]^-{h_2} & }$
Theorem (S. Ghilardi)

For each \(\forall \)-unifiable finite set of identities \(\Sigma \),

\[
\text{type}(U_\forall(\Sigma), \preceq) = \text{type}(U_\forall(F_\forall(X)/(\Sigma)), \leq)
\]
We call an algebra E exact in \mathcal{V} if it is finitely generated and embeds into $F_\mathcal{V}(X)$ for some set X.
Algebraic Translation
Algebraic Co-Exact Unifiers

We call an algebra \(E \) **exact in** \(V \) if it is finitely generated and embeds into \(F_V(X) \) for some set \(X \).

Unification Problem: Finitely presented algebra \(A \)
Algebraic Translation
Algebraic Co-Exact Unifiers

We call an algebra \(E \) **exact in** \(\mathcal{V} \) if it is finitely generated and embeds into \(F_{\mathcal{V}}(X) \) for some set \(X \).

Unification Problem: Finitely presented algebra \(A \)

Solution (Unifier): \(h: A \rightarrow E \)

\(E \) is exact in \(\mathcal{V} \)
We call an algebra E **exact in** \forall if it is finitely generated and embeds into $F\forall(X)$ for some set X.

Unification Problem: Finitely presented algebra A

Solution (Unifier): $h: A \rightarrow E$

E is exact in \forall

Pre-order:

$A \xrightarrow{h_1} E_1$

$A \xrightarrow{h_2} E_2$

$f: E_1 \rightarrow E_2$
Theorem

Let \mathcal{V} be an equational class Σ a finite set of \mathcal{V}-unifiable \mathcal{L}-identities and A the algebra finitely presented by Σ. Let $EU_{\mathcal{V}}(A)$ denote the preorder set of co-exact unifiers of A. Then

$$\text{type}(U_{\mathcal{V}}(\Sigma), \sqsubseteq) = \text{type}(EU_{\mathcal{V}}(A)).$$
Corollary

If A the finitely presented algebra by Σ has a finitely many congruences, then $\text{type}(U_V(\Sigma), \sqsubseteq)$ is unitary or finitary.
Algebraic Translation
Algebraic Co-Exact Unifiers

Corollary

If A the finitely presented algebra by Σ has a finitely many congruences, then $\text{type}(U_{\mathcal{V}}(\Sigma), \sqsubseteq)$ is unitary or finitary.

Corollary

If \mathcal{V} is a locally finite variety, then \mathcal{V} has exact unification type unitary or finitary.
Future Work

- Obtain separating examples.
Future Work

- Obtain separating examples.
- Procedures to determine μ-sets.
Future Work

- Obtain separating examples.
- Procedures to determine μ-sets.
- Applications to admissible rules.
Future Work

- Obtain separating examples.
- Procedures to determine μ-sets.
- Applications to admissible rules.
- Purpose designed types.
Thank you for your attention!

l.cabrer@disia.unifi.it