

Verification and Validation of Web Service Compositions

Raman Kazhamiakin <u>raman@dit.unitn.it</u> DIT, University of Trento, Italy

Joint work with Marco Pistore, Paritosh Pandya, and Luca Santuari

Context

ASTRO project

Any method that prevents the programmer writing code, is a good method T. Reenskaug

- Goal
 - Development of formal techniques and (semi) automated tools that support the design, evolution, and execution of Web service compositions
- Tasks
 - Service composition verification and analysis
 - Service monitoring
 - Service **synthesis**
- Means
 - **BPEL** as a Web service description language: business processes and business protocols
 - Formal techniques substantially extended in order to address WS-specific problems (model checking, AI planning and synthesis, etc.)
 - Integrated environment

a

In the beginning...

- Problem domain: Web service compositions
 - distributed business processes
 - stateful, long-running component services (e.g., **WS-BPEL** services)
- Goal: analysis of correctness of the composition behavior
 - deadlock, livelock freeness
 - behavioral requirements (Message Sequence Charts, LTL properties)

If the customer makes request, eventually he will receive an offer

If the customer cancels the transaction, all the other participants should also cancel

Successful termination of the process is possible

a

In the beginning...

- Problem domain: Web service compositions
 - distributed business processes
 - stateful, long-running component services (e.g., **WS-BPEL** services)
- Goal: analysis of correctness of the composition behavior
 - deadlock, livelock freeness
 - behavioral requirements (Message Sequence Charts, LTL properties)
- Initial approach: model checking
 - components as State Transition Systems
 - composition as **synchronous** product
 - variables of finite ranges, no functions
 - behavior is **timeless**

- Analysis of communication models
- Data-flow analysis
- Analysis of time-related properties
- Ongoing work and future directions

........

...

.

• Analysis of communication models

- Data-flow analysis
- Analysis of time-related properties
- Ongoing work and future directions

.....

Problem #1: Interactions

Synchronous model of communications is not adequate!

Virtual Travel Agency

- Provide combined flight and hotel booking service
- Integrate separate Hotel and Flight booking services
- Participants are represented with their **BPEL** specifications

.

27.06.2006

Workshop on Constraints for Composing Web services - LORIA

Composition properties

- The composition is **synchronizable**
 - At any moment of time only one component emits a message
 - The receiver is immediately ready to consume the message

• Synchronous communication model

- Components synchronize on shared actions
- Efficient reasoning techniques
- Universally used in verification tools for web service compositions
- The synchronous communication model is adequate for synchronizable compositions
 - The presence of queues in the implementation does not add new behaviors

VTA Processes – cancellation

• • • • • • • •

The synchronous communication model is violated

VTA Processes – cancellation

The real execution is correct

Problem #1: Interactions

Synchronous model of communications is not adequate!

- Wide range of advanced scenarios
 - concurrent emissions, message losses, message reordering
- Complex queue and message management mechanisms

We cannot apply one communication model for all compositions!

- Diversity of middleware and protocol implementations
- Tradeoff between expressiveness and analysis complexity

Our approach [Kazhamiakin,Pistore, Santuari, WWW'06]

• Define a set of communication models

- Different levels of complexity
- Different interaction mechanisms
- Common framework
- Given a certain composition scenario determine an adequate communication model
 - Represents all real executions of the composition
 - Preserves behavioral properties
- Incremental analysis process
 - From simple to complex communication models
 - Check if the communication model is adequate w.r.t. the scenario
 - If yes, perform the formal verification against this model

- Three main ingredients:
 - Component services are formally modeled as State Transition Systems
 - The modalities of the communications are formalized as a Communication Model
 - The composite behavior of the component services according to a specific communication model is formally described as a Global State Transition System

From BPEL to STS

State Transition System Σ = <S,S₀,I,O,R> where

- S finite set of states
- S₀ set of initial states
- *I* set of input actions
- O set of output actions
- $R \subseteq S \times (I \cup O \cup \{t\}) \times S$ transition relation

Communication model

A communication model △ is defined by a set of queues

<**Q**₁, **Q**₂, ..., **Q**_n>

where each queue Q_i has associated:

- A set of messages M_i
- A (finite or infinite) bound *B_i* on the messages it can contain
- An ordering constraint: ordered or unordered
- Allows for the definition of various interaction mechanisms
 - Synchronous (1 ordered queue with bound 1)
 - Ordered asynchronous (1 ordered unbounded queue for each actor)
 - Unordered asynchronous (1 unordered unbounded queue)
 - Mixed synchronous/asynchronous, mixed bounded unbounded, ...

Global State Transition System

- A Global State Transition System (GSTS):
 - defines the composite behavior of the system.
 - is parametric w.r.t. a communication model Δ
- A GSTS is a tuple G = <GS,GS₀,A,T>, where:
 - **GS** are the global states; each state has the form $gs = (\langle s_1, s_2, ..., s_n \rangle, \langle q_1, q_2, ..., q_m \rangle)$, where:
 - *s_i* is the state of the i-th component STS
 - **q**_i describes the content of the j-th queue
 - **GS**₀ are the initial global states
 - A are the input-output actions
 - *T* ⊆ *GS x A x GS* is the transition relation

GSTS: transitions

The transition relation T
 GS x A x GS is defined as follows:

.........

- If the i-th STS performs an output:
 - update the status of the STS
 - add the message to the associated queue (if the bound allows)
- If the i-th STS performs an input:
 - consume a message from the associated queue (the queue has to be non-empty!)
 - update the status of the STS
- If the i-th STS performs a TAU action:
 - update the status of the STS

Hierarchy of communication models

- Relation between models
 - $\Delta_1 < \Delta_2$

Model 2 simulates model 1 if for any composition scenario $G_{\Delta 1} < G_{\Delta 2}$

- Defined by the structure of the communication model (bounds, ordering and alphabets)
- There exists the **most general** model that simulates any other model
- Hierarchy of communication models
 - Partially ordered set of models with the MG model as top element and the synchronous model as the bottom element

Finding an appropriate model

Given a set of STS, and a communication model △, build a reachability graph of the GSTS (DFS algorithm)

- On every state of the search compare the set of enabled transitions with the one under the MG model
- If the sets are different, the model is not adequate
- Efficient analysis algorithm
- The resulting graph is used for further analysis
- On-the-fly boundedness analysis
- Allows for partial order reduction techniques
- Implemented as a part of the Astro verification toolkit

- Analysis of communication models
- Data-flow analysis
- Analysis of time-related properties
- Ongoing work and future directions

..........

....

Problem #2: Data flow

Data flow should be properly modeled and analyzed!

....

Ignoring data affects control flow:

.

Ignoring data affects control flow:

.

Ignoring data affects control flow:

.

Ignoring data affects control flow:

Bad scenario: amount> 10000, approve.result = 'no', assess.risk = 'low', result = 'yes'

27.06.2006

.

Virtual Travel Agency

Incomplete information on service implementations and functions

Additional assumptions on the internal of the service implementations are needed

.

Problem #2: Data flow

Data flow should be properly modeled and analyzed!

- **Complex data model** of WS compositions
 - Infinite ranges, custom types, custom functions

• Necessity to manage information incompleteness

- Put additional assumptions on unknown functions/operations
- Often ignored in analysis frameworks
 - Only control-flow analysis
 - Finite data ranges

Our approach [Kazhamiakin,Pistore, ICWS'06]

- Extend a composition model with data flow
 - Variables, functions, expressions
 - Extended behavioral semantics
- Provide a set of **analysis techniques**
 - Abstraction-based approach
 - Support for universal (hold for all system executions) and existential (hold for some system executions) properties

Iterative analysis process

- Allow to put additional constraints on unknown functions
- Combine the verification and the elicitation of requirements

Our approach: formal definitions

- **Data context**: <*V*,*T*,*F*> variables, types, functions
 - **Expressions**: $E:=(t_1=t_2) | !E | E_1 \text{ or } E_2$, where $t:=x | f(t_1,...,t_n)$
 - **Ground state**: $g = \{\langle x, v \rangle\}$ set of valuations of the variables
- **Extended Transition System** Σ = <**V**,**S**,S₀,I,O,**R**> where
 - *V* finite set of variables
 - S set of pairs <s,g>
- transition relation

- How can we define abstractions?
 - Define a set of propositions representing certain facts
 - Valuation of propositions instead of valuation of variables finite model
- Conservative (branching) abstraction
 - Concrete system *C* is over-approximated: when the fact can not be determined, both states are allowed
 - Allow for more behaviors than the real system

$L(A) \geq L(C)$

• Applicable for universal properties but **not for existential** properties

The model is infinite...

- How can we define abstractions?
 - Define a **set of propositions** representing certain facts
 - Valuation of propositions instead of valuation of variables finite model
- **Conservative** (branching) **abstraction**

- How can we define abstractions?
 - Define a set of propositions representing certain facts
 - Valuation of propositions instead of valuation of variables finite model
- Conservative (branching) abstraction
 - Interpretation of the valuation: *set of states, where the true propositions evaluate to true, false to false*
 - Applicability of the transition: the transition is applicable, if its condition evaluates to true in **some state** of the interpretation
 - The effect of the transition: *the resulting valuation is a valuation, obtained by modifying some state* of the initial valuation

The model is infinite...

- How can we define abstractions?
 - Define a set of propositions representing certain facts
 - Valuation of propositions instead of valuation of variables finite model

Knowledge level abstraction

- Concrete system C is under-approximated
- The fact may be either known to be true, or unknown
- The safest information on the propositions is used
- Allow for less behaviors than the real system

$L(C) \geq L(A)$

• Applicable for **existential properties**

The model is infinite...

- How can we define abstractions?
 - Define a **set of propositions** representing certain facts
 - Valuation of propositions instead of valuation of variables finite model

• Knowledge level abstraction

- How can we define abstractions?
 - Define a set of propositions representing certain facts
 - Valuation of propositions instead of valuation of variables finite model

Knowledge level abstraction

- Interpretation of the valuation: set of states, where the "known" facts are true, "unknown" facts may be true or false
- Applicability of the transition: *the transition is applicable, if its condition evaluates to true in all the states of the interpretation*
- The effect of the transition: the resulting valuation is the most conservative valuation with respect to the set of facts that can be deduced

a

Abstract model

• Abstract Transition System Σ = <**B**,**S**,S₀,I,O,**R**> where

- *B* finite set of propositions
- *S* set of pairs *<s,Val>*, where *Val* is a valuation of propositions
- transition relation

.

Analysis approach

- Hybrid approach both models are used
 - B-model: over-approximation, for universal properties
 - K-model: under-approximation, for existential properties
- For the **universal** property (assertion):
 - Prove that B-model satisfies assertion (return TRUE)
 - If not, prove that K-model violates assertion (return FALSE)
 - If not, refine (return UNKNOWN)
- For the **existential** property (possibility):
 - Prove that K-model satisfies possibility (return TRUE)
 - If not, prove that B-model violates possibility (return FALSE)
 - If not, refine (return UNKNOWN)

Implementation

- Preliminary implementation
 - Support for both models
 - Automated abstraction generation
 - Allows for the definition of assumptions on uninterpreted functions
 - NuSMV model checker verification

Experiments

- Analysis of communication models
- Data-flow analysis
- Analysis of time-related properties
- Ongoing work and future directions

...........

Problem #3: Time-related properties

Timed behavior should be properly modeled and analyzed!

e-Government Application

authorization for the establishment and operation of a waste disposal or recycling plant

- Settings
 - **complex distributed process** involving various actors
- Scenario
 - **long-term** process (~3 monthes) with time-consuming activities
- Requirements
 - Local (internal constraints) + global (state regulations, normative acts)
 - Functional + timed

Problem #3: Time-related properties

Timed properties should be properly modeled and analyzed!

- Timed constructs of WS-* languages
 - BPEL **onAlarm**, **wait** activities
- Time-specific requirements, constraints commitments
 - simple properties: activity durations
 - complex properties: constraints on intervals between events, activities, states

Our approach [Kazhamiakin,Pandya,Pistore ARES'06,ICWS'06]

- Extend the **formal model** of the composition with **time**
 - TTS model (close to timed automata network with urgency)
 - formalize BPEL timed constructs and activity durations annotations
 - formalize complex requirements: (subset of) **Duration Calculus**
- Provide a set of **analysis techniques**
 - Verification of timeless properties on timed model
 - Verification of timed properties
 - Computation of timed properties
- Provide a formal **analysis framework**
 - Discrete model of time (finite timers, QDDC [Pandya, RTTOOLS'01])
 - NuSMV symbolic model checking

Our approach: formal definitions

- Timed Transition System Σ = <X,S,S₀,I,O,R,Inv where
 - X finite set of timers
 - Inv function that associates invariants to states
- Transition relation

.

Our approach: formal definitions

• **Timed Transition System** $\Sigma = \langle X, S, S_0, I, O, R, Inv \rangle$ where

- X finite set of **timers**
- Inv function that associates invariants to states
- Semantics: composition behavior
 - Time elapsing transition:
 - global state is not changed
 - all timers synchronously increment

Action of some TTS:

- transition of some TTS is executed
- timers are not changes

From BPEL to TTS

Instant activities

<invoke operation="op"/>

• Duration annotations

• BPEL timeout

<pick> <onMessage operation="op">...</> <onAlarm for="PT5D">...</>

Interval Specifications

- Duration Calculus
 - Properties over intervals
 - Allows to express complex timed requirements of behavioral specifications

[P] ⁰	Single state satisfying propositional formula P	P
[[P]	P is satisfied in all states of the behavior	
$D_1^D_2$	$\rm D_1$ is satisfied in the $1^{\rm st}$ subinterval of behavior and $\rm D_2$ in the $2^{\rm nd}$	D ₁ D ₂
$D_1 AND D_2$	Interval satisfies both formulae	D ₁ D ₂
٦D	Interval does not satisfy the formula	
len ~ c	The duration of interval is $\sim c$	x =a x =a+c

• • • • • • • • • • • • • • • • •

The conference call should happen within 30 days after the registration and at least 10 days before the conference.


```
[] (
([registration]<sup>0</sup> ^ true ^ [conference]<sup>0</sup>) ->
    ( (len ≤ 30) ^ [call]<sup>0</sup> ^ (len ≥ 10) )
)
```


Quantitative analysis

• Extremal bounds algorithm

- Compute minimal/maximal bounds of the intervals, where the property holds
- Asynchronous versions of the algorithms presented in [Pandya05,Campos et al.96]
- Symbolic prototype implementation
- Often more effective than verification-based search

Property	Time	States
Assertion	5.56sec	2919
Max	0.28sec	1005
Possibility	2.28sec	2919
Min	0.32sec	1005

- Assertion: Procedure always terminates within given period
- *Possibility*: It is possible to receive a conference call within given period

- Analysis of communication models
- Data-flow analysis
- Analysis of time-related properties
- Ongoing work and future directions

...........

Analysis of communication models

- Better **integration** with the **data flow** analysis
 - Currently: conservative analysis results on skeletons, additional verification on complete model
- The role of communication models in the conformance testing
 - Validation of BPEL compositions against WS-CDL specifications [WS-FM'06]
 - Realizability of choreography specifications [FORTE'06]

Ongoing and future work on...

Data-flow analysis

- Better abstraction-based reasoning techniques
 - Performance of the generation of K-model
 - Alternative encodings and verifiers

• Counterexample analysis

- How can we extract the missing assumptions and constraints?
- Application to run-time monitoring

Timed analysis

- Translation optimizations and better analysis techniques
 - State space clustering
 - Alternative encodings (mat-sat,...)
- Alternative encoding
 - E.g., UPPAAL model checking
- Again, application to run-time monitoring

••••••••••••••••••••••••••••••••••••