Computational Analysis of Interacting Web services: a Logical Approach

Philippe Balbiani and Fahima Cheikh LILaC Irit

Outline of the talk

- Model for web services
- Web services composition
- Composition problem decidability

Introduction

Services oriented computing

What is a Web service ?

Information system

Structure of the form IF=(Obj,Att,Val,f)

f	a1	a2
01	{v1,v2}	{}
о2	{v1}	{v3}

Val={v1,v2,v3,v4,v5}

Example

Information system for manufactured goods.

f	name	price	color
01	{sweater}	{40}	{blue, white}
02	{skirt}	{80}	{black, white}

Val={sweater, skirt, dress, 40, 80, blue, white, black, red $_{5}$ }

- Web service is defined w.r.t. to an information system
- It is a structure of the form S=(Q,I,F,VarL,P, δ)
- Q: finite set of states
- I: set of initial states
- F: set of final states
- VarL: finite set of local variables
- P: finite set of ports
- δ : transition function

Web service S_i

 Transition function
 δ(q,q')= {(C, α) | C is a condition, α is a sequence
 of primitive operations}

Condition

- $C:=T|(\theta_1=\theta_2)|(\theta\in f(z,a))|\neg C|(C_1 \land C_2)|\exists z C$
- $\boldsymbol{\theta}$: local variable or a value in Val
- z : variable ranging over Obj
- a : attribute in Att

- primitive operations
 - create object Z
 - destroy object z
 - add θ to f(z,a)
 - delete θ from f(z,a)

- $x := \theta$ allocate a value
- ?M(θ1,..., θn)

- !M'(θ1,..., θm)

receive a message send a message

Example

10

Link

- C={S₀,...,S_n} set of services
- P_i , $i \in \{0, ..., n\}$ set of S_i ports
- A C-link L is a binary relation on $P_0 \cup P_1 \cup ... \cup P_n$
- L is defined such that:
 - if (M,d,m) L (M',d',m') then d=in, d'=out, m=m'
 - if (M,d,m) L (M',d',m') and (M,d,m) L (M'',d'',m'') then M'=M''

- if (M,d,m) L (M",d",m") and (M',d',m') L (M",d",m") then M=M'

Example

What is the composition problem?

Output

> The behavior of $\{S_0, S_{med}, U\}$ is equivalent to that of $\{S_0, S_{goal}\}$

Nodes

- A node, in a tree for C={S₀,...,S_n} and a Clink L, is a structure of the form
 - $\Delta = (IF, q_0, ..., q_n, int_0, ..., int_n, EntF, cl)$
 - IF: information system
 - q_i: state of S_i
 - int_i: VarL_i \rightarrow Val
 - EntF: $(M,M') \in L \rightarrow EntF(M,M')$
 - cl: finite set of values

Edges

 $(IF, q_0, ..., q_i, ..., q_n, int_0, ... int_i, ..., int_n, EntF, cl)$ $(IF', q_0, ..., q'_i, ..., q_n, int_0, ... int'_i, ..., int_n, EntF, cl)$ $(IF, q_0, ..., q_i, ..., q_n, int_0, ... int_i, ..., int_n, EntF, cl)$ $(IF, q_0, ..., q'_i, ..., q_n, int_0, ... int'_i, ..., int_n, EntF', cl)$ $(IF, q_0, ..., q'_i, ..., q_n, int_0, ... int'_i, ..., int_n, EntF', cl)$

Equivalence between trees

- Two trees T and T' are embedding equivalent if T is included in T'
- Two trees T and T' are weakly equivalent if T and T' are similar

Composition problem

- Input: client service S₀, goal service S_{goal}, link L for S₀ and S_{goal}, and finite set C={S₁,...,S_n}
- Output: determines if there exists a subset U of C, a mediator service S_{med}, a link L' for S_{med} and S₀ and, a link L" for S_{med} and U such that:
- ∀ IF tree(S₀, S_{goal}, L, IF) is embedding (resp. weakly) equivalent to tree (S₀, S_{med}, L',U, L", IF)

Theorem 1

The embedding composition problem is undecidable

Proof. We reduce the uniform halting problem of Minsky machines to the embedding composition problem

Theorem 2 The weakly composition problem is undecidable

Proof. We reduce the 0-halting problem of Minsky machines to the weakly composition problem

Some restrictions:

- There is no condition in the transitions
- Queues' length is limited to at most 1 message
- Service mediator has at most k states and b ports

- Theorem 3
 - The weakly composition problem is decidable, when restrictions above are considered
- Proof. 1- The number of all possible U, S_{med} L' and L'' is bounded and countable
 - 2- L(T) and L(T') are rational

Conclusion

Composition problem decidability

Services and safety policies

Services and cryptographic protocols