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Notation

Given a finite subset C of Z2 which we call a crystal,
its (external) boundary ∂C are these nodes of Z2 \ C
which have at least one neighbour in C:

∂C = {y ∈ Z2 \ C : ∃x ∈ C such that ‖x− y‖ = 1}.

Four types of nodes: ∂C = ∂1C ∪ ∂2C ∪ ∂3C ∪ ∂4C,
where

∂iC = {y ∈ Z2\C : exactly i neighbours of y lie in C},
i = 1, 2, 3, 4.
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Crystal and its boundary
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Growth model

At time t = 0 we start with a fixed connected set
C0 ⊂ Z2 – the initial crystal.

Let Cn is the crystal at time t = n. At time t = n + 1
one of the external boundary nodes z ∈ ∂Cn will
become crystallised, i.e. a new crystal is
Cn+1 = Cn ∪ {z}, where z is chosen randomly with
probability depending on the number of neighbouring
crystallised nodes, i.e. their type.
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Generalised Eden model

We consider the following Generalised Eden model: given
4 non-negative parameters r1, . . . , r4 not all equal 0, the
probability that z ∈ ∂iCn, i = 1, 2, 3, 4 is crystallised at time
n + 1 is given by

ri∑4
i=1 ri|∂iCn|

Once crystallised, nodes stay crystallised forever.
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Continuous time version

At time t = 0, each boundary node z ∈ ∂iC0 is given
independently an exponentially Exp(ri) distributed
clock and the one z1 with the minimal time t1 is
crystallised. Neighbours of z1 have their clocks reset
depending on their new type.

Classical Eden model is the one with parameters
ri = i. Equivalently, every node retains its Exp(1)
clock.
It is equivalent to first-passage percolation model: the
crystal Ct at time t are the nodes which are “wet” at
time t when the water source is C0 and the water
speed along each edge is independent 1/Exp(1) r.v.’s.
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Infinite growth

If r1 > 0, the crystal cannot stop growing. Let z(Cn) be
the leftmost among the lowest nodes of Cn and
|C0| = n0. Then |∂Cn| ≤ 4(n + n0), probability that the
node f (Cn) ∈ ∂Cn just below z(Cn) crystallise is at
least 1/(4(n + n0)) and by the Borel-Cantelli lemma,
this would happen infinitely often.

If r1 = 0, the crystal can got stuck (e.g., when r2 = 1
and C0 = {0, 1}2).

We consider only the case r1 > 1 and, without loss of
generality, assume r1 = 1.
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Shape result

Assume C0 = 0. One speaks of a Shape result if there
exist a compact set D containing the origin, such that

lim
n→∞

distH(n−1/2Cn,D) = 0 a.s.,

where distH(A,B) = supx∈A infy∈B ‖x− y‖ is the Hausdorff
distance between sets.
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Non-decreasing rates
For the case r1 ≤ r2 ≤ r3 ≤ r4 the main tool is Kingman’s
subadditivity theorem for time t(x, y) when y crystallises
from initial crystal C0 = {x}:

Show that for co-linear 0, x, y along each rational
direction θ ∈ [0, 2π)

t(0, y) ≤ t(0, x) + t(x, y). (1)

This is proved by coupling two crystallisation
processes, starting from {0} and from {x}. Eq. (1)
implies existence of an a.s. limit

lim
‖y‖→∞

‖y‖−1t(0, y) = ρ(θ)
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Then show continuity of ρ(θ) using subadditivity
again:

t(0, y) ≤ t(0, x) + t(x, y) and t(0, x) ≤ t(0, y) + t(x, y)

for ‖x‖ = ‖y‖ = n and ‖x− y‖ = nε.

Theorem
When r1 ≤ r2 ≤ r3 ≤ r4 the Shape result holds.
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Flake model

Consider now an extreme case r1 = 1, r2 = r3 = r4 = 0: a
node can crystallise if only one of its neighbour is
crystallised.

The crystal is a tree: a node which would close a cycle
has at least two crystallised neighbours and so will never
crystallise.
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Types of nodes

One may distinguish
1 The crystallised nodes: Cn – the crystal
2 The nodes ∂1Cn which can be crystallised at the next

step (their clocks are set)

3 forbidden nodes: Fn = ∂2Cn ∪ ∂3Cn ∪ ∂4Cn

4 All the rest: Z2 \ (Cn ∪ ∂Cn) among which are the
nodes which will never get crystallised since they
belong to holes.

Definition
A hole is a finite connected set H ⊂ Z2 \ (Cn ∪ ∂Cn) such
that ∂H ⊂ Fn.
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Geometry of a hole
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Consider F = ∂H of a hole H and let f (H) be the leftmost
of its lowest nodes.

F contains no more than 2 neighbouring horizontally
or vertically aligned nodes. If there are 3, the central
one cannot be forbidden, since its neighbours are 2
forbidden and 1 node from the hole.

Connect the consecutive nodes from F by arrows
going counter-clockwise starting from f (H) so that the
hole stays “on the left”. The angle these arrows form
with the abscissa cannot decrease and can increase
only by π/4 or π/2.
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Impossible turns
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Geometry of hole’s boundary
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Big holes

There are O(n) possible configurations of holes with
perimeter |∂H| = n with a fixed f (H).

Probability to observe a hole with diameter at least n with
a fixed f (H) is at most exp{−βn} for some 0 < β < log 2.
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Idea of the proof

Consider continuous time version and let
F = ∪t≥0F(Ct) – all the forbidden nodes.
Consider a hole H with breadth along (1, 1) and
(1,−1) directions n and centroid f (H) at a fixed node
x1. For definitiveness, let the longest boundary is
along (1,−1) direction.
Enumerate each second node going clockwise from
x1: x1, x2, . . . , x[n/2] and on the opposite side
x[n/2]+1, . . . , xn. Let yi, zi be their boundary nodes at the
left and below.
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Let τi = min{t(yi), t(zi)} be the time the first neighbour of xi

crystallises, τ(1) ≤ τ(2) . . . and x(i) the i-th among x’s
whose neighbour crystallises.

P{∂H ∈ F x1 = f (H)}

≤ P{x1, x2, . . . , xn ∈ F x1 = f (H)}

= E P{x(1) ∈ F τ(1), x1 = f (H)}

× P{x(2) ∈ F τ(1), τ(2), x(1) ∈ F, x1 = f (H)}
. . .

× P{x(n) ∈ F τ(1), . . . , τ(n), x(1), . . . , x(n−1) ∈ F, x1 = f (H)}
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By the strong Markov property, since {τ(i)} are stopping
times,

P{x(i) ∈ F x(1), . . . , x(i−1) ∈ F, τ(1), . . . , τ(i), x1 = f (H)}

= P{x(i) ∈ F x(1), . . . , x(i−1) ∈ F, τ(i), x1 = f (H)}

Moreover, x(i) ∈ F depends on the clocks at nodes y(i), z(i)
which are reset at time τ(i) by memoryless of the
Exponential distribution. Thus

= P{x(i) ∈ F τ(i)}
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Omitting index (i), let εx be the clock started at node x at
time t(z) so that x is set to crystallise at time t(z) + εx. Let
εy is the clock started at node y when the first of its
neighbours, say w crystallised. We have two cases:

1 at time t(z), both neighbours of y was not yet
crystallised so y did not have clock set yet: t(z) < t(w);

2 at time t(z), y was not crystallised, but had a clock εy

already ticking: t(w) < t(z).
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εx

t(z)

t(w) εy

εx

εyt(w)

t(z)

x ∈ F if t(z) + εx > t(w) + εy. By memoryless of the
exponential r.v.’s, this is equivalent εx > εy so that

P{x(i) ∈ F τ(i)} = 1/2.
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Thus for a given configuration of H with diameter n,

P{∂H ∈ F x1 = f (H)} ≤ 2−n

P{there is a hole H with f (H) = x1

with diameter ≥ n} ≤ C
∞∑

m=n

m
2m

so by Borel-Cantelli, the probability that there is always a
hole of diameter α

√
N in CN is 0. Thus

If the shape result still holds, D is 1-connected.
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Open problems

Does the shape result still hold for non-monotonely
growing rates?

Problem: coupling argument does not work – crystal at 0
inhibits growth of crystal at x!
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105 steps

Courtesy of Arvind Singh (Orsay)
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Limiting shape is not a ball
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Square root law for boundary size
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Long memory
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Connctivity

Let C0 = {0} and grow the crystal to infinity. Let L(x, y) be
the length of the path from x to y given they are
crystallised. Will an a.s. limit exist:

lim
n→∞

(2n)−1L
(
(−n, 0), (n, 0)

)
?

If yes, will it be different from

lim
n→∞

(2n)−1L
(
(−n,N), (n,N)

)
?
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Random forest

If C0 = {x, y} with ‖x− y‖ > 1 then the trees
connected to x and y are disjoint. How does
‘interface’ looks like? If the shape result then like a
bisector up to o(r) at distance r?

Choose nodes to C0 independently with prob. p.
When p ↓ 0, would the trees converge to the Voronoi
cells when the grid size is √p?
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Thank you!

Questions?
Sergei Zuyev Generalised Eden growth model and random planar trees


	Generalised Eden model
	Shape result
	Flake model
	Open problems

