Generalised Eden growth model and random planar trees

Marco Longfils Sergei Zuyev

Chalmers University of Technology, Gothenburg, Sweden

CG Week 2015, Eindhoven

Notation

- Given a finite subset C of \mathbb{Z}^{2} which we call a crystal, its (external) boundary ∂C are these nodes of $\mathbb{Z}^{2} \backslash C$ which have at least one neighbour in C :

$$
\partial C=\left\{y \in \mathbb{Z}^{2} \backslash C: \exists x \in C \text { such that }\|x-y\|=1\right\}
$$

Notation

- Given a finite subset C of \mathbb{Z}^{2} which we call a crystal, its (external) boundary ∂C are these nodes of $\mathbb{Z}^{2} \backslash C$ which have at least one neighbour in C :

$$
\partial C=\left\{y \in \mathbb{Z}^{2} \backslash C: \exists x \in C \text { such that }\|x-y\|=1\right\}
$$

- Four types of nodes: $\partial C=\partial_{1} C \cup \partial_{2} C \cup \partial_{3} C \cup \partial_{4} C$, where

$$
\begin{array}{r}
\partial_{i} C=\left\{y \in \mathbb{Z}^{2} \backslash C: \text { exactly } i \text { neighbours of } y \text { lie in } C\right\} \\
i=1,2,3,4
\end{array}
$$

Crystal and its boundary

Growth model

- At time $t=0$ we start with a fixed connected set $C_{0} \subset \mathbb{Z}^{2}$ - the initial crystal.

Growth model

- At time $t=0$ we start with a fixed connected set $C_{0} \subset \mathbb{Z}^{2}$ - the initial crystal.
- Let C_{n} is the crystal at time $t=n$. At time $t=n+1$ one of the external boundary nodes $z \in \partial C_{n}$ will become crystallised, i.e. a new crystal is $C_{n+1}=C_{n} \cup\{z\}$, where z is chosen randomly with probability depending on the number of neighbouring crystallised nodes, i.e. their type.

Generalised Eden model

We consider the following Generalised Eden model: given 4 non-negative parameters r_{1}, \ldots, r_{4} not all equal 0 , the probability that $z \in \partial_{i} C_{n}, i=1,2,3,4$ is crystallised at time $n+1$ is given by

$$
\frac{r_{i}}{\sum_{i=1}^{4} r_{i}\left|\partial_{i} C_{n}\right|}
$$

Once crystallised, nodes stay crystallised forever.

Continuous time version

- At time $t=0$, each boundary node $z \in \partial_{i} C_{0}$ is given independently an exponentially $\operatorname{Exp}\left(r_{i}\right)$ distributed clock and the one z_{1} with the minimal time t_{1} is crystallised. Neighbours of z_{1} have their clocks reset depending on their new type.

Continuous time version

- At time $t=0$, each boundary node $z \in \partial_{i} C_{0}$ is given independently an exponentially $\operatorname{Exp}\left(r_{i}\right)$ distributed clock and the one z_{1} with the minimal time t_{1} is crystallised. Neighbours of z_{1} have their clocks reset depending on their new type.
- Classical Eden model is the one with parameters $r_{i}=i$. Equivalently, every node retains its $\operatorname{Exp}(1)$ clock.
It is equivalent to first-passage percolation model: the crystal C_{t} at time t are the nodes which are "wet" at time t when the water source is C_{0} and the water speed along each edge is independent $1 / \operatorname{Exp}(1)$ r.v.'s.

Infinite growth

- If $r_{1}>0$, the crystal cannot stop growing. Let $z\left(C_{n}\right)$ be the leftmost among the lowest nodes of C_{n} and $\left|C_{0}\right|=n_{0}$. Then $\left|\partial C_{n}\right| \leq 4\left(n+n_{0}\right)$, probability that the node $f\left(C_{n}\right) \in \partial C_{n}$ just below $z\left(C_{n}\right)$ crystallise is at least $1 /\left(4\left(n+n_{0}\right)\right)$ and by the Borel-Cantelli lemma, this would happen infinitely often.

We consider only the case $r_{1}>1$ and, without loss of generality, assume $r_{1}=1$.

Infinite growth

- If $r_{1}>0$, the crystal cannot stop growing. Let $z\left(C_{n}\right)$ be the leftmost among the lowest nodes of C_{n} and $\left|C_{0}\right|=n_{0}$. Then $\left|\partial C_{n}\right| \leq 4\left(n+n_{0}\right)$, probability that the node $f\left(C_{n}\right) \in \partial C_{n}$ just below $z\left(C_{n}\right)$ crystallise is at least $1 /\left(4\left(n+n_{0}\right)\right)$ and by the Borel-Cantelli lemma, this would happen infinitely often.
- If $r_{1}=0$, the crystal can got stuck (e.g., when $r_{2}=1$ and $C_{0}=\{0,1\}^{2}$).
We consider only the case $r_{1}>1$ and, without loss of generality, assume $r_{1}=1$.

Shape result

Assume $C_{0}=0$. One speaks of a Shape result if there exist a compact set D containing the origin, such that

$$
\lim _{n \rightarrow \infty} \operatorname{dist}_{H}\left(n^{-1 / 2} C_{n}, D\right)=0 \text { a.s. }
$$

where $\operatorname{dist}_{H}(A, B)=\sup _{x \in A} \inf _{y \in B}\|x-y\|$ is the Hausdorff distance between sets.

Non-decreasing rates

For the case $r_{1} \leq r_{2} \leq r_{3} \leq r_{4}$ the main tool is Kingman's subadditivity theorem for time $t(x, y)$ when y crystallises from initial crystal $C_{0}=\{x\}$:

- Show that for co-linear $0, x, y$ along each rational direction $\theta \in[0,2 \pi)$

$$
\begin{equation*}
t(0, y) \leq t(0, x)+t(x, y) . \tag{1}
\end{equation*}
$$

This is proved by coupling two crystallisation processes, starting from $\{0\}$ and from $\{x\}$. Eq. (1) implies existence of an a.s. limit

$$
\lim _{\|y\| \rightarrow \infty}\|y\|^{-1} t(0, y)=\rho(\theta)
$$

- Then show continuity of $\rho(\theta)$ using subadditivity again:

$$
\begin{aligned}
& \qquad t(0, y) \leq t(0, x)+t(x, y) \text { and } t(0, x) \leq t(0, y)+t(x, y) \\
& \text { for }\|x\|=\|y\|=n \text { and }\|x-y\|=n \varepsilon .
\end{aligned}
$$

Theorem

When $r_{1} \leq r_{2} \leq r_{3} \leq r_{4}$ the Shape result holds.

Flake model

Consider now an extreme case $r_{1}=1, r_{2}=r_{3}=r_{4}=0$: a node can crystallise if only one of its neighbour is crystallised.

The crystal is a tree: a node which would close a cycle has at least two crystallised neighbours and so will never crystallise.

Types of nodes

One may distinguish
(1) The crystallised nodes: C_{n} - the crystal
(2) The nodes $\partial_{1} C_{n}$ which can be crystallised at the next step (their clocks are set)

Types of nodes

One may distinguish
(1) The crystallised nodes: C_{n} - the crystal
(2) The nodes $\partial_{1} C_{n}$ which can be crystallised at the next step (their clocks are set)
(3) forbidden nodes: $F_{n}=\partial_{2} C_{n} \cup \partial_{3} C_{n} \cup \partial_{4} C_{n}$

Types of nodes

One may distinguish
(1) The crystallised nodes: C_{n} - the crystal
(2) The nodes $\partial_{1} C_{n}$ which can be crystallised at the next step (their clocks are set)
(3) forbidden nodes: $F_{n}=\partial_{2} C_{n} \cup \partial_{3} C_{n} \cup \partial_{4} C_{n}$
(4) All the rest: $\mathbb{Z}^{2} \backslash\left(C_{n} \cup \partial C_{n}\right)$ among which are the nodes which will never get crystallised since they belong to holes.

Definition

A hole is a finite connected set $H \subset \mathbb{Z}^{2} \backslash\left(C_{n} \cup \partial C_{n}\right)$ such that $\partial H \subset F_{n}$.

Holes

Holes

Geometry of a hole

Consider $F=\partial H$ of a hole H and let $f(H)$ be the leftmost of its lowest nodes.

- F contains no more than 2 neighbouring horizontally or vertically aligned nodes. If there are 3 , the central one cannot be forbidden, since its neighbours are 2 forbidden and 1 node from the hole.

Consider $F=\partial H$ of a hole H and let $f(H)$ be the leftmost of its lowest nodes.

- F contains no more than 2 neighbouring horizontally or vertically aligned nodes. If there are 3 , the central one cannot be forbidden, since its neighbours are 2 forbidden and 1 node from the hole.
- Connect the consecutive nodes from F by arrows going counter-clockwise starting from $f(H)$ so that the hole stays "on the left". The angle these arrows form with the abscissa cannot decrease and can increase only by $\pi / 4$ or $\pi / 2$.

Impossible turns

Geometry of hole's boundary

Big holes

There are $O(n)$ possible configurations of holes with perimeter $|\partial H|=n$ with a fixed $f(H)$.

Big holes

There are $O(n)$ possible configurations of holes with perimeter $|\partial H|=n$ with a fixed $f(H)$.

Probability to observe a hole with diameter at least n with a fixed $f(H)$ is at most $\exp \{-\beta n\}$ for some $0<\beta<\log 2$.

Idea of the proof

- Consider continuous time version and let $F=\cup_{t \geq 0} F\left(C_{t}\right)$ - all the forbidden nodes.
- Consider a hole H with breadth along $(1,1)$ and $(1,-1)$ directions n and centroid $f(H)$ at a fixed node x_{1}. For definitiveness, let the longest boundary is along $(1,-1)$ direction.
- Enumerate each second node going clockwise from $x_{1}: x_{1}, x_{2}, \ldots, x_{[n / 2]}$ and on the opposite side $x_{[n / 2]+1}, \ldots, x_{n}$. Let y_{i}, z_{i} be their boundary nodes at the left and below.

Let $\tau_{i}=\min \left\{t\left(y_{i}\right), t\left(z_{i}\right)\right\}$ be the time the first neighbour of x_{i} crystallises, $\tau_{(1)} \leq \tau_{(2)} \ldots$ and $x_{(i)}$ the i-th among x 's whose neighbour crystallises.

$$
\begin{gathered}
\mathbf{P}\left\{\partial H \in F \mid x_{1}=f(H)\right\} \\
\leq \mathbf{P}\left\{x_{1}, x_{2}, \ldots, x_{n} \in F \mid x_{1}=f(H)\right\} \\
=\mathbf{E} \mathbf{P}\left\{x_{(1)} \in F \mid \tau_{(1)}, x_{1}=f(H)\right\} \\
\times \mathbf{P}\left\{x_{(2)} \in F \mid \tau_{(1)}, \tau_{(2)}, x_{(1)} \in F, x_{1}=f(H)\right\} \\
\ldots \\
\times \mathbf{P}\left\{x_{(n)} \in F \mid \tau_{(1)}, \ldots, \tau_{(n)}, x_{(1)}, \ldots, x_{(n-1)} \in F, x_{1}=f(H)\right\}
\end{gathered}
$$

By the strong Markov property, since $\left\{\tau_{(i)}\right\}$ are stopping times,

$$
\begin{aligned}
\mathbf{P}\left\{x_{(i)} \in\right. & \left.F \mid x_{(1)}, \ldots, x_{(i-1)} \in F, \tau_{(1)}, \ldots, \tau_{(i)}, x_{1}=f(H)\right\} \\
& =\mathbf{P}\left\{x_{(i)} \in F \mid x_{(1)}, \ldots, x_{(i-1)} \in F, \tau_{(i)}, x_{1}=f(H)\right\}
\end{aligned}
$$

Moreover, $x_{(i)} \in F$ depends on the clocks at nodes $y_{(i)}, z_{(i)}$ which are reset at time $\tau_{(i)}$ by memoryless of the Exponential distribution. Thus

$$
=\mathbf{P}\left\{x_{(i)} \in F \mid \tau_{(i)}\right\}
$$

Omitting index (i), let ε_{x} be the clock started at node x at time $t(z)$ so that x is set to crystallise at time $t(z)+\varepsilon_{x}$. Let ε_{y} is the clock started at node y when the first of its neighbours, say w crystallised. We have two cases:
(1) at time $t(z)$, both neighbours of y was not yet crystallised so y did not have clock set yet: $t(z)<t(w)$;
(2) at time $t(z), y$ was not crystallised, but had a clock ε_{y} already ticking: $t(w)<t(z)$.

$x \in F$ if $t(z)+\varepsilon_{x}>t(w)+\varepsilon_{y}$. By memoryless of the exponential r.v.'s, this is equivalent $\varepsilon_{x}>\varepsilon_{y}$ so that

$$
\mathbf{P}\left\{x_{(i)} \in F \mid \tau_{(i)}\right\}=1 / 2
$$

Thus for a given configuration of H with diameter n,

$$
\mathbf{P}\left\{\partial H \in F \mid x_{1}=f(H)\right\} \leq 2^{-n}
$$

$\mathbf{P}\left\{\right.$ there is a hole H with $f(H)=x_{1}$

$$
\text { with diameter } \geq n\} \leq C \sum_{m=n}^{\infty} \frac{m}{2^{m}}
$$

so by Borel-Cantelli, the probability that there is always a hole of diameter $\alpha \sqrt{N}$ in C_{N} is 0 . Thus

If the shape result still holds, D is 1 -connected.

Open problems

Does the shape result still hold for non-monotonely growing rates?

Problem: coupling argument does not work - crystal at 0 inhibits growth of crystal at x !

10^{5} steps

Courtesy of Arvind Singh (Orsay)

10^{7} steps

10^{9} steps

Limiting shape is not a ball

Square root law for boundary size

Long memory

Connctivity

Let $C_{0}=\{0\}$ and grow the crystal to infinity. Let $L(x, y)$ be the length of the path from x to y given they are crystallised. Will an a.s. limit exist:

$$
\lim _{n \rightarrow \infty}(2 n)^{-1} L((-n, 0),(n, 0)) ?
$$

If yes, will it be different from

$$
\lim _{n \rightarrow \infty}(2 n)^{-1} L((-n, N),(n, N)) ?
$$

Random forest

- If $C_{0}=\{x, y\}$ with $\|x-y\|>1$ then the trees connected to x and y are disjoint. How does 'interface' looks like? If the shape result then like a bisector up to $o(r)$ at distance r ?

Random forest

- If $C_{0}=\{x, y\}$ with $\|x-y\|>1$ then the trees connected to x and y are disjoint. How does 'interface' looks like? If the shape result then like a bisector up to $o(r)$ at distance r ?
- Choose nodes to C_{0} independently with prob. p. When $p \downarrow 0$, would the trees converge to the Voronoi cells when the grid size is \sqrt{p} ?

References

© Klaus Schürger On the asymptotic geometrical behavior of a class of contact interaction process with a monotone infection rate, Z. Wahrsch. verw Gebiete, 48, 35-48, 1979

Thank you!

