Generalised Eden growth model and random planar trees

Marco Longfils Sergei Zuyev

Chalmers University of Technology, Gothenburg, Sweden

CG Week 2015, Eindhoven

Sergei Zuyev Generalised Eden growth model and random planar trees

• • • • • • • • • • • • •

Notation

Given a finite subset C of Z² which we call a crystal, its (external) boundary ∂C are these nodes of Z² \ C which have at least one neighbour in C:

$$\partial C = \{ y \in \mathbb{Z}^2 \setminus C : \exists x \in C \text{ such that } ||x - y|| = 1 \}.$$

A B > A B > A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Notation

Given a finite subset C of Z² which we call a crystal, its (external) boundary ∂C are these nodes of Z² \ C which have at least one neighbour in C:

$$\partial C = \{ y \in \mathbb{Z}^2 \setminus C : \exists x \in C \text{ such that } \|x - y\| = 1 \}.$$

• Four types of nodes: $\partial C = \partial_1 C \cup \partial_2 C \cup \partial_3 C \cup \partial_4 C$, where

 $\partial_i C = \{ y \in \mathbb{Z}^2 \setminus C : \text{ exactly } i \text{ neighbours of } y \text{ lie in } C \},\ i = 1, 2, 3, 4.$

Crystal and its boundary

Growth model

• At time t = 0 we start with a fixed connected set $C_0 \subset \mathbb{Z}^2$ – the initial crystal.

A D N A D N A D N A D

Growth model

- At time t = 0 we start with a fixed connected set $C_0 \subset \mathbb{Z}^2$ the initial crystal.
- Let C_n is the crystal at time t = n. At time t = n + 1 one of the external boundary nodes z ∈ ∂C_n will become crystallised, i.e. a new crystal is C_{n+1} = C_n ∪ {z}, where z is chosen randomly with probability depending on the number of neighbouring crystallised nodes, i.e. their type.

Generalised Eden model

We consider the following Generalised Eden model: given 4 non-negative parameters r_1, \ldots, r_4 not all equal 0, the probability that $z \in \partial_i C_n$, i = 1, 2, 3, 4 is crystallised at time n + 1 is given by

$$\frac{r_i}{\sum_{i=1}^4 r_i |\partial_i C_n|}$$

Once crystallised, nodes stay crystallised forever.

Generalised Eden model

Shape result Flake model Open problems

Sergei Zuyev

Generalised Eden growth model and random planar trees

æ

Continuous time version

At time t = 0, each boundary node z ∈ ∂_iC₀ is given independently an exponentially Exp(r_i) distributed clock and the one z₁ with the minimal time t₁ is crystallised. Neighbours of z₁ have their clocks reset depending on their new type.

イロト イヨト イヨト イヨ

Continuous time version

- At time t = 0, each boundary node z ∈ ∂_iC₀ is given independently an exponentially Exp(r_i) distributed clock and the one z₁ with the minimal time t₁ is crystallised. Neighbours of z₁ have their clocks reset depending on their new type.
- Classical Eden model is the one with parameters $r_i = i$. Equivalently, every node retains its Exp(1) clock.

It is equivalent to first-passage percolation model: the crystal C_t at time t are the nodes which are "wet" at time t when the water source is C_0 and the water speed along each edge is independent 1/Exp(1) r.v.'s.

Infinite growth

• If $r_1 > 0$, the crystal cannot stop growing. Let $z(C_n)$ be the leftmost among the lowest nodes of C_n and $|C_0| = n_0$. Then $|\partial C_n| \le 4(n + n_0)$, probability that the node $f(C_n) \in \partial C_n$ just below $z(C_n)$ crystallise is at least $1/(4(n + n_0))$ and by the Borel-Cantelli lemma, this would happen infinitely often.

We consider only the case $r_1 > 1$ and, without loss of generality, assume $r_1 = 1$.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Infinite growth

- If r₁ > 0, the crystal cannot stop growing. Let z(C_n) be the leftmost among the lowest nodes of C_n and |C₀| = n₀. Then |∂C_n| ≤ 4(n + n₀), probability that the node f(C_n) ∈ ∂C_n just below z(C_n) crystallise is at least 1/(4(n + n₀)) and by the Borel-Cantelli lemma, this would happen infinitely often.
- If r₁ = 0, the crystal can got stuck (e.g., when r₂ = 1 and C₀ = {0, 1}²).

We consider only the case $r_1 > 1$ and, without loss of generality, assume $r_1 = 1$.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Shape result

Assume $C_0 = 0$. One speaks of a Shape result if there exist a compact set *D* containing the origin, such that

$$\lim_{n\to\infty}\operatorname{dist}_H(n^{-1/2}C_n,D)=0\ a.s.,$$

where $dist_H(A, B) = \sup_{x \in A} \inf_{y \in B} ||x - y||$ is the Hausdorff distance between sets.

A D N A D N A D N A D

Non-decreasing rates

For the case $r_1 \le r_2 \le r_3 \le r_4$ the main tool is Kingman's subadditivity theorem for time t(x, y) when *y* crystallises from initial crystal $C_0 = \{x\}$:

Show that for co-linear 0, x, y along each rational direction θ ∈ [0, 2π)

$$t(0,y) \le t(0,x) + t(x,y).$$
 (1)

This is proved by coupling two crystallisation processes, starting from $\{0\}$ and from $\{x\}$. Eq. (1) implies existence of an a.s. limit

$$\lim_{\|y\| \to \infty} \|y\|^{-1} t(0, y) = \rho(\theta)$$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

• Then show continuity of $\rho(\theta)$ using subadditivity again:

$$t(0, y) \le t(0, x) + t(x, y)$$
 and $t(0, x) \le t(0, y) + t(x, y)$

for
$$||x|| = ||y|| = n$$
 and $||x - y|| = n\varepsilon$.

Theorem

When $r_1 \le r_2 \le r_3 \le r_4$ the Shape result holds.

Flake model

Consider now an extreme case $r_1 = 1$, $r_2 = r_3 = r_4 = 0$: a node can crystallise if only one of its neighbour is crystallised.

The crystal is a tree: a node which would close a cycle has at least two crystallised neighbours and so will never crystallise.

• • • • • • • • • • • • •

Types of nodes

One may distinguish

- The crystallised nodes: C_n the crystal
- 2 The nodes $\partial_1 C_n$ which can be crystallised at the next step (their clocks are set)

Types of nodes

One may distinguish

- The crystallised nodes: C_n the crystal
- 2 The nodes $\partial_1 C_n$ which can be crystallised at the next step (their clocks are set)
- **o** forbidden nodes: $F_n = \partial_2 C_n \cup \partial_3 C_n \cup \partial_4 C_n$

A B > A B > A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Types of nodes

One may distinguish

- The crystallised nodes: C_n the crystal
- 2 The nodes $\partial_1 C_n$ which can be crystallised at the next step (their clocks are set)
- **o** forbidden nodes: $F_n = \partial_2 C_n \cup \partial_3 C_n \cup \partial_4 C_n$
- All the rest: $\mathbb{Z}^2 \setminus (C_n \cup \partial C_n)$ among which are the nodes which will never get crystallised since they belong to holes.

Definition

A hole is a finite connected set $H \subset \mathbb{Z}^2 \setminus (C_n \cup \partial C_n)$ such that $\partial H \subset F_n$.

Holes

Holes

Geometry of a hole

Consider $F = \partial H$ of a hole H and let f(H) be the leftmost of its lowest nodes.

• *F* contains no more than 2 neighbouring horizontally or vertically aligned nodes. If there are 3, the central one cannot be forbidden, since its neighbours are 2 forbidden and 1 node from the hole.

Consider $F = \partial H$ of a hole H and let f(H) be the leftmost of its lowest nodes.

- *F* contains no more than 2 neighbouring horizontally or vertically aligned nodes. If there are 3, the central one cannot be forbidden, since its neighbours are 2 forbidden and 1 node from the hole.
- Connect the consecutive nodes from *F* by arrows going counter-clockwise starting from f(H) so that the hole stays "on the left". The angle these arrows form with the abscissa cannot decrease and can increase only by $\pi/4$ or $\pi/2$.

• • • • • • • • • • • • •

Impossible turns

Geometry of hole's boundary

There are O(n) possible configurations of holes with perimeter $|\partial H| = n$ with a fixed f(H).

Sergei Zuyev Generalised Eden growth model and random planar trees

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

There are O(n) possible configurations of holes with perimeter $|\partial H| = n$ with a fixed f(H).

Probability to observe a hole with diameter at least *n* with a fixed f(H) is at most $\exp\{-\beta n\}$ for some $0 < \beta < \log 2$.

Idea of the proof

- Consider continuous time version and let $F = \bigcup_{t \ge 0} F(C_t)$ all the forbidden nodes.
- Consider a hole *H* with breadth along (1, 1) and (1, -1) directions *n* and centroid *f*(*H*) at a fixed node *x*₁. For definitiveness, let the longest boundary is along (1, -1) direction.
- Enumerate each second node going clockwise from $x_1: x_1, x_2, \ldots, x_{[n/2]}$ and on the opposite side $x_{[n/2]+1}, \ldots, x_n$. Let y_i, z_i be their boundary nodes at the left and below.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Generalised Eden model Shape result Flake model

Open problems

Sergei Zuyev Generalised Eden growth model and random planar trees

æ

Let $\tau_i = \min\{t(y_i), t(z_i)\}$ be the time the first neighbour of x_i crystallises, $\tau_{(1)} \leq \tau_{(2)} \dots$ and $x_{(i)}$ the *i*-th among *x*'s whose neighbour crystallises.

$$\mathbf{P}\{\partial H \in F \mid x_{1} = f(H)\} \\
\leq \mathbf{P}\{x_{1}, x_{2}, \dots, x_{n} \in F \mid x_{1} = f(H)\} \\
= \mathbf{E}\,\mathbf{P}\{x_{(1)} \in F \mid \tau_{(1)}, x_{1} = f(H)\} \\
\times \mathbf{P}\{x_{(2)} \in F \mid \tau_{(1)}, \tau_{(2)}, x_{(1)} \in F, x_{1} = f(H)\} \\
\dots$$

× **P**{ $x_{(n)} \in F \mid \tau_{(1)}, \ldots, \tau_{(n)}, x_{(1)}, \ldots, x_{(n-1)} \in F, x_1 = f(H)$ }

(日)

By the strong Markov property, since $\{\tau_{(i)}\}$ are stopping times,

$$\mathbf{P}\{x_{(i)} \in F \mid x_{(1)}, \dots, x_{(i-1)} \in F, \tau_{(1)}, \dots, \tau_{(i)}, x_1 = f(H)\} = \mathbf{P}\{x_{(i)} \in F \mid x_{(1)}, \dots, x_{(i-1)} \in F, \tau_{(i)}, x_1 = f(H)\}$$

Moreover, $x_{(i)} \in F$ depends on the clocks at nodes $y_{(i)}$, $z_{(i)}$ which are reset at time $\tau_{(i)}$ by memoryless of the Exponential distribution. Thus

 $= \mathbf{P}\{x_{(i)} \in F \mid \tau_{(i)}\}$

(日)

Omitting index (*i*), let ε_x be the clock started at node *x* at time t(z) so that *x* is set to crystallise at time $t(z) + \varepsilon_x$. Let ε_y is the clock started at node *y* when the first of its neighbours, say *w* crystallised. We have two cases:

- at time t(z), both neighbours of y was not yet crystallised so y did not have clock set yet: t(z) < t(w);</p>
- 2 at time t(z), y was not crystallised, but had a clock ε_y already ticking: t(w) < t(z).

 $x \in F$ if $t(z) + \varepsilon_x > t(w) + \varepsilon_y$. By memoryless of the exponential r.v.'s, this is equivalent $\varepsilon_x > \varepsilon_y$ so that

$$\mathbf{P}\{x_{(i)} \in F \mid \tau_{(i)}\} = 1/2.$$

• • • • • • • • • • • • •

Thus for a given configuration of H with diameter n,

$$\mathbf{P}\{\partial H \in F \mid x_1 = f(H)\} \le 2^{-n}$$

$$\mathbf{P}\{\text{there is a hole } H \text{ with } f(H) = x_1$$

with diameter $\ge n\} \le C \sum_{m=n}^{\infty} \frac{m}{2^m}$

so by Borel-Cantelli, the probability that there is always a hole of diameter $\alpha \sqrt{N}$ in C_N is 0. Thus

If the shape result still holds, *D* is 1-connected.

Open problems

Does the shape result still hold for non-monotonely growing rates?

Problem: coupling argument does not work – crystal at 0 inhibits growth of crystal at x!

• • • • • • • • • • • • •

Sergei Zuyev

Generalised Eden growth model and random planar trees

Sergei Zuyev Generalised Eden growth model and random planar trees

Limiting shape is not a ball

Square root law for boundary size

Sergei Zuyev Generalised Eden growth model and random planar trees

Long memory

Sergei Zuyev Generalised Eden growth model and random planar trees

Connctivity

Let $C_0 = \{0\}$ and grow the crystal to infinity. Let L(x, y) be the length of the path from *x* to *y* given they are crystallised. Will an a.s. limit exist:

$$\lim_{n \to \infty} (2n)^{-1} L((-n, 0), (n, 0)) ?$$

If yes, will it be different from

$$\lim_{n\to\infty}(2n)^{-1}L\bigl((-n,N),(n,N)\bigr) ?$$

(I)

Random forest

If C₀ = {x, y} with ||x - y|| > 1 then the trees connected to x and y are disjoint. How does 'interface' looks like? If the shape result then like a bisector up to o(r) at distance r?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Random forest

- If C₀ = {x, y} with ||x − y|| > 1 then the trees connected to x and y are disjoint. How does 'interface' looks like? If the shape result then like a bisector up to o(r) at distance r?
- Choose nodes to C₀ independently with prob. p.
 When p ↓ 0, would the trees converge to the Voronoi cells when the grid size is √p?

• • • • • • • • • • • • •

References

 Klaus Schürger On the asymptotic geometrical behavior of a class of contact interaction process with a monotone infection rate, Z. Wahrsch. verw Gebiete, 48, 35–48, 1979

▲ □ ▶ ▲ □ ▶

Thank you!

Questions?

Sergei Zuyev Generalised Eden growth model and random planar trees