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Poisson process in [0, 1]d

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

(Xi)1≤i≤M with independent X1,X2, . . . ∼ Uniform([0, 1]d ) and
M ∼ Poisson(t), t ≥ 0, i.e. P(M = k) = tk

k!e
−t , k ∈ N ∪ {0}.
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(Xi)1≤i≤M with independent X1,X2, . . . ∼ Uniform([0, 1]d ) and
M ∼ Poisson(t), t ≥ 0, i.e. P(M = k) = tk

k!e
−t , k ∈ N ∪ {0}.

Define η =
∑M

i=1 δXi , where δx is the Dirac measure at x ∈ Rd , i.e.,
η(A) is the number of points of (Xi)1≤i≤M in A ∈ B(Rd ).
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Observe that

η(A1), . . . , η(An) independent for disjoint A1, . . . ,An ∈ B(Rd )
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Observe that

η(A1), . . . , η(An) independent for disjoint A1, . . . ,An ∈ B(Rd )

η(A) ∼ Poisson(t Vol(A ∩ [0, 1]d )), A ∈ B(Rd )

M. Schulte – Central limit theorems for random tessellations and random graphs June 25, 2015 2/22



Poisson process

Definition:
A random counting measure η on a measurable space (X,X ) is a
Poisson process with σ-finite intensity measure λ if

η(A1), . . . , η(An) are independent for all disjoint sets
A1, . . . ,An ∈ X , n ∈ N,

η(A) is Poisson distributed with parameter λ(A) for all A ∈ X .

In the following we identify η with its support and think of it as a random
configuration of points.

Example:
X = Rd , λ = t Vol, t ≥ 0: stationary Poisson process of intensity t in Rd
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k-Nearest Neighbour Graph
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What is the edge length of the k -nearest neighbour graph?
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What is the edge length of the k -nearest neighbour graph?
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Poisson-Voronoi tessellation
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What is the edge length of the Poisson-Voronoi tessellation within the
observation window?
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What is the edge length of the Poisson-Voronoi tessellation within the
observation window?
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Classical central limit Theorem

Theorem:

Let (Yi)i∈N be i.i.d. random variables with EY 2
1 <∞, let Sn =

∑n
i=1 Yi ,

n ∈ N, and let N be a standard Gaussian random variable, i.e.,

P(N ≤ x) =

∫ x

−∞

1√
2π

exp(−u2/2) du, x ∈ R.

Then
Sn − ESn√

Var Sn
→ N in distribution as n→∞,

that is,

lim
n→∞

P
(

Sn − ESn√
Var Sn

≤ x
)

= P(N ≤ x), x ∈ R.

Does something similar hold for the edge length of the k-nearest
neighbour graph or the Poisson-Voronoi tessellation?
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Probability distances

For two random variables X1 and X2 we define the Kolmogorov distance

dK (X1,X2) := sup
x∈R
|P(X1 ≤ x)− P(X2 ≤ x)|

and the Wasserstein distance

dW (X1,X2) := sup
h∈Lip(1)

|Eh(X1)− Eh(X2)|,

where Lip(1) is the set of all functions h : R→ R with a Lipschitz constant
not greater than one.

Convergence in dK or dW implies convergence in distribution.
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Berry-Esseen-Bound

Theorem: Berry 1941, Esseen 1942

Let (Yi)i∈N be i.i.d. random variables with E|Y1|3 <∞, let Sn =
∑n

i=1 Yi ,
n ∈ N, and let N be a standard Gaussian random variable. Then there is a
constant C > 0 such that

dK

(
Sn − ESn√

Var Sn
,N
)
≤ C√

n
E|Y1 − EY1|3√

Var Y1
3 , n ∈ N.

Aim of this talk:
Berry-Esseen bounds for problems from stochastic geometry
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k-Nearest Neighbour Graph

ηt homogeneous Poisson process of intensity t in a compact convex set H

L(α)t =
1
2

∑
(x1,x2)∈η2

t,6=

1{ edge between x1 and x2 in NNGk (ηt)}‖x1 − x2‖α

Theorem: Last/Peccati/S. 2014+
Let N be a standard Gaussian random variable. Then there are constants
Cα, α ≥ 0, only depending on k , H and α such that

dK

L(α)t − EL(α)t√
Var L(α)t

,N

 ≤ Cαt−1/2, t ≥ 1.

This improves the rates (ln(t))1+3/4t−1/4 by Avram/Bertsimas (1993) and
(ln(t))3d t−1/2 by Penrose/Yukich (2005).
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Radial spanning tree
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Radial spanning tree

ηt homogeneous Poisson process of intensity t in a compact convex set H
with 0 ∈ H

L(α)t =
1
2

∑
(x1,x2)∈η2

t,6=

1{ edge between x1 and x2 in RST (ηt)}‖x1 − x2‖α

Theorem: Schulte/Thäle 2014
Let N be a standard Gaussian random variable. Then there are constants
Cα, α ≥ 0, only depending on H and α such that

dK

L(α)t − EL(α)t√
Var L(α)t

,N

 ≤ Cαt−1/2, t ≥ 1.
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Intrinsic Volumes

Kd compact convex sets in Rd

The intrinsic volumes Vi : Kd → R are given by the Steiner formula

Vol(Kr ) = Vol(K + rBd ) =
d∑

i=0

κd−i rd−iVi(K ), K ∈ Kd , r ≥ 0.

V0: Euler characteristic, Vd−1: half the surface area, Vd : volume

K

r

Kr
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Poisson-Voronoi tessellation
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Poisson-Voronoi tessellation

ηt stationary Poisson process of intensity t in Rd , X k
t k -faces of the

induced Voronoi tessellation, H compact convex set with Vol(H) > 0,

V (k ,i)
t :=

∑
G∈X k

t

Vi(G ∩ H).

Theorem: Last/Peccati/S. 2014+
Let N be a standard Gaussian random variable. Then there are constants
ci,k , k ∈ {0, . . . , d}, i ∈ {0, . . . ,min{k , d − 1}}, such that

dK

(
V (k ,i)

t − EV (k ,i)
t√

Var V (k ,i)
t

,N
)
≤ ck ,i t−1/2, t ≥ 1.

See also Avram/Bertsimas 1993, Heinrich 1994, Penrose/Yukich 2005.
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Poisson hyperplane tessellation

Let ηt be a Poisson hyperplane process with intensity measure tΛ, t ≥ 1.
Let Λ be such that the hyperplanes of ηt are in general position a.s.
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Poisson hyperplane tessellation

Let X k
t be the k -faces of the hyperplane tessellation induced by ηt , H

compact convex set with Vol(H) > 0,

V (k ,i)
t :=

∑
G∈X k

t

Vi(G ∩ H).

Theorem: S. 2015
Let N be a standard Gaussian random variable. Then there are constants
ci,k , k ∈ {0, . . . , d − 1}, i ∈ {0, . . . , k}, such that

dK

(
V (k ,i)

t − EV (k ,i)
t√

Var V (k ,i)
t

,N
)
≤ ck ,i t−1/2, t ≥ 1.
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Framework

(X,X ) measurable space with σ-finite measure λ

N set of all σ-finite counting measures on X
η Poisson process with intensity measure λ

Poisson functional F = f (η) with f : N→ R measurable

For x , x1, x2 ∈ X we define

DxF = f (η + δx )− f (η)

D2
x1,x2

F = f (η + δx1 + δx2)− f (η + δx1)− f (η + δx2) + f (η).

We write F ∈ dom D if F ∈ L2
η and

E
∫
X

(DxF)2 λ(dx) <∞.
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Variance inequalities

Theorem: Wu 2000, Last/Penrose 2011

For F ∈ L2
η, ∫

X
(EDxF)2 λ(dx) ≤ Var F ≤ E

∫
X

(DxF)2 λ(dx).

The upper bound is called Poincaré inequality.

M. Schulte – Central limit theorems for random tessellations and random graphs June 25, 2015 19/22



Second order Poincaré inequality

Theorem: Last/Peccati/S. 2014+
Let F ∈ dom D be such that EF = 0 and Var F = 1, and let N be a
standard Gaussian random variable. Then,

dW (F ,N) ≤ γ1 + γ2 + γ3,

where

γ1 := 2
[ ∫

X3

(
E[(Dx1F Dx2F)2]E[(D2

x1,x3
F)2(D2

x2,x3
F)2]

) 1
2λ3(d(x1, x2, x3))

] 1
2

,

γ2 :=

[ ∫
X3

E(D2
x1,x3

F)2(D2
x2,x3

F)2 λ3(d(x1, x2, x3))

] 1
2

,

γ3 :=

∫
X
E|DxF |3 λ(dx).
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Second order Poincaré inequality

Theorem: Last/Peccati/S. 2014+
Let F ∈ dom D be such that EF = 0 and Var F = 1, and let N be a
standard Gaussian random variable. Then,

dK (F ,N) ≤ γ1 + γ2 + γ3 + γ4 + γ5 + γ6,

where

γ4 :=
1
2

[
EF 4] 1

4

∫
X

[
E(DxF)4] 3

4 λ(dx),

γ5 :=

[ ∫
X
E(DxF)4 λ(dx)

] 1
2

,

γ6 :=

[ ∫
X2

6
[
E(Dx1F)4] 1

2
[
E(D2

x1,x2
F)4] 1

2 + 3E(D2
x1,x2

F)4 λ2(d(x1, x2))

] 1
2

.
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Thank you!
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