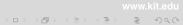
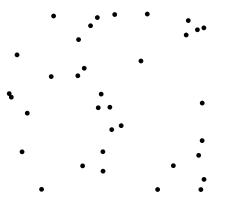


Central limit theorems for random tessellations and random graphs

Matthias Schulte

KIT - University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association





• $(X_i)_{1 \le i \le M}$ with independent $X_1, X_2, \ldots \sim$ Uniform([0, 1]^d) and $M \sim$ Poisson(t), $t \ge 0$, i.e. $\mathbb{P}(M = k) = \frac{t^k}{k!} e^{-t}$, $k \in \mathbb{N} \cup \{0\}$.

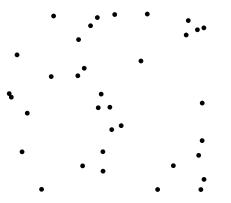
M. Schulte - Central limit theorems for random tessellations and random graphs

June 25, 2015

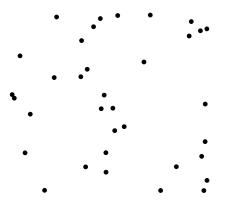
くロト く得り くほり くほう

2/22

Ξ



- $(X_i)_{1 \le i \le M}$ with independent $X_1, X_2, \ldots \sim$ Uniform([0, 1]^d) and $M \sim$ Poisson(t), $t \ge 0$, i.e. $\mathbb{P}(M = k) = \frac{t^k}{k!}e^{-t}$, $k \in \mathbb{N} \cup \{0\}$.
- Define $\eta = \sum_{i=1}^{M} \delta_{X_i}$, where δ_x is the Dirac measure at $x \in \mathbb{R}^d$, i.e., $\eta(A)$ is the number of points of $(X_i)_{1 \le i \le M}$ in $A \in \mathcal{B}(\mathbb{R}^d)$.



Observe that

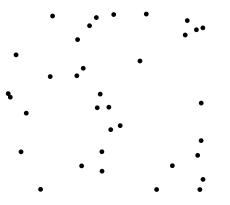
•
$$\eta(A_1), \ldots, \eta(A_n)$$
 independent for disjoint $A_1, \ldots, A_n \in \mathcal{B}(\mathbb{R}^d)$

M. Schulte - Central limit theorems for random tessellations and random graphs

b) < 3 = b.</p> June 25, 2015 2/22

 \equiv

< □ > < □ > <</p>



Observe that

 \equiv

< □ > < □ > <</p>

Poisson process

Definition:

A random counting measure η on a measurable space (X, X) is a Poisson process with σ -finite intensity measure λ if

- $\eta(A_1), \ldots, \eta(A_n)$ are independent for all disjoint sets $A_1, \ldots, A_n \in \mathcal{X}, n \in \mathbb{N},$
- $\eta(A)$ is Poisson distributed with parameter $\lambda(A)$ for all $A \in \mathcal{X}$.

Poisson process

Definition:

A random counting measure η on a measurable space (X, X) is a Poisson process with σ -finite intensity measure λ if

- $\eta(A_1), \ldots, \eta(A_n)$ are independent for all disjoint sets $A_1, \ldots, A_n \in \mathcal{X}, n \in \mathbb{N},$
- $\eta(A)$ is Poisson distributed with parameter $\lambda(A)$ for all $A \in \mathcal{X}$.

In the following we identify η with its support and think of it as a random configuration of points.

Poisson process

Definition:

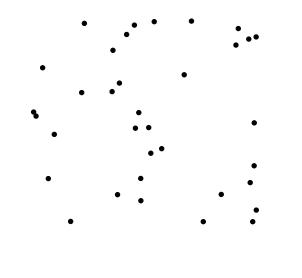
A random counting measure η on a measurable space (X, X) is a Poisson process with σ -finite intensity measure λ if

- $\eta(A_1), \ldots, \eta(A_n)$ are independent for all disjoint sets $A_1, \ldots, A_n \in \mathcal{X}, n \in \mathbb{N},$
- $\eta(A)$ is Poisson distributed with parameter $\lambda(A)$ for all $A \in \mathcal{X}$.

In the following we identify η with its support and think of it as a random configuration of points.

Example:

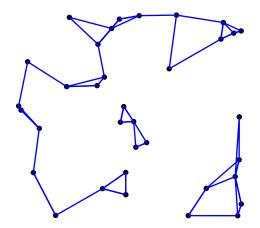
 $\mathbb{X} = \mathbb{R}^d$, $\lambda = t$ Vol, $t \ge 0$: stationary Poisson process of intensity t in \mathbb{R}^d

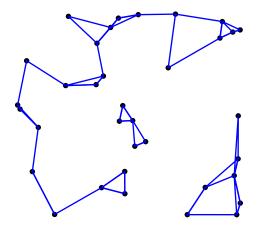


M. Schulte - Central limit theorems for random tessellations and random graphs

June 25, 2015 4/22

< D > < P > <</p>

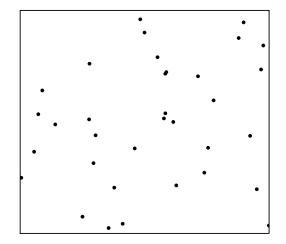




What is the edge length of the k-nearest neighbour graph?

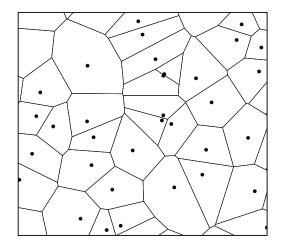
M. Schulte - Central limit theorems for random tessellations and random graphs

June 25, 2015

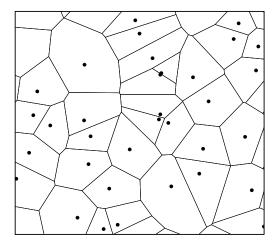


Ξ

 $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$



<ロ> <目> <目> <目> <目> <目> <日> <日> <日</p>



What is the edge length of the Poisson-Voronoi tessellation within the observation window?

Classical central limit Theorem

Theorem:

Let $(Y_i)_{i \in \mathbb{N}}$ be i.i.d. random variables with $\mathbb{E}Y_1^2 < \infty$, let $S_n = \sum_{i=1}^n Y_i$, $n \in \mathbb{N}$, and let N be a standard Gaussian random variable, i.e.,

$$\mathbb{P}(N\leq x)=\int_{-\infty}^xrac{1}{\sqrt{2\pi}}\exp(-u^2/2)\;\mathrm{d} u,\quad x\in\mathbb{R}.$$

Then

$$\frac{S_n - \mathbb{E}S_n}{\sqrt{\operatorname{Var} S_n}} \to N \quad \text{in distribution as} \quad n \to \infty,$$

that is,

$$\lim_{n \to \infty} \mathbb{P} \bigg(\frac{S_n - \mathbb{E}S_n}{\sqrt{\operatorname{Var} S_n}} \leq x \bigg) = \mathbb{P}(\mathsf{N} \leq x), \quad x \in \mathbb{R}.$$

M. Schulte – Central limit theorems for random tessellations and random graphs

June 25, 2015

Classical central limit Theorem

Theorem:

Let $(Y_i)_{i \in \mathbb{N}}$ be i.i.d. random variables with $\mathbb{E} Y_1^2 < \infty$, let $S_n = \sum_{i=1}^n Y_i$, $n \in \mathbb{N}$, and let *N* be a standard Gaussian random variable, i.e.,

$$\mathbb{P}(N\leq x)=\int_{-\infty}^xrac{1}{\sqrt{2\pi}}\exp(-u^2/2)\;\mathrm{d} u,\quad x\in\mathbb{R}.$$

Then

$$\frac{S_n - \mathbb{E}S_n}{\sqrt{\operatorname{Var} S_n}} \to N \quad \text{in distribution as} \quad n \to \infty,$$

that is.

$$\lim_{n \to \infty} \mathbb{P} \bigg(\frac{S_n - \mathbb{E}S_n}{\sqrt{\operatorname{Var} S_n}} \leq x \bigg) = \mathbb{P}(\mathsf{N} \leq x), \quad x \in \mathbb{R}.$$

Does something similar hold for the edge length of the k-nearest neighbour graph or the Poisson-Voronoi tessellation?

M. Schulte – Central limit theorems for random tessellations and random graphs

June 25, 2015

Probability distances

For two random variables X_1 and X_2 we define the Kolmogorov distance

$$d_{\mathcal{K}}(X_1,X_2) := \sup_{x \in \mathbb{R}} |\mathbb{P}(X_1 \leq x) - \mathbb{P}(X_2 \leq x)|$$

and the Wasserstein distance

$$d_W(X_1,X_2) := \sup_{h \in \operatorname{Lip}(1)} |\mathbb{E}h(X_1) - \mathbb{E}h(X_2)|,$$

where Lip(1) is the set of all functions $h : \mathbb{R} \to \mathbb{R}$ with a Lipschitz constant not greater than one.

Convergence in d_K or d_W implies convergence in distribution.

= nac

トイヨトイヨト

(口) (句

Theorem: Berry 1941, Esseen 1942

Let $(Y_i)_{i \in \mathbb{N}}$ be i.i.d. random variables with $\mathbb{E}|Y_1|^3 < \infty$, let $S_n = \sum_{i=1}^n Y_i$, $n \in \mathbb{N}$, and let *N* be a standard Gaussian random variable. Then there is a constant C > 0 such that

$$d_{\mathcal{K}}\left(\frac{S_n - \mathbb{E}S_n}{\sqrt{\operatorname{Var} S_n}}, N\right) \leq \frac{C}{\sqrt{n}} \frac{\mathbb{E}|Y_1 - \mathbb{E}Y_1|^3}{\sqrt{\operatorname{Var} Y_1^3}}, \quad n \in \mathbb{N}.$$

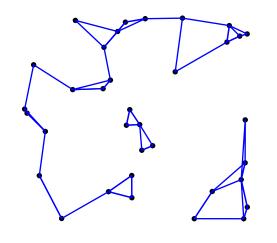
《日》《聞》《詩》《诗》 []

Theorem: Berry 1941, Esseen 1942

Let $(Y_i)_{i \in \mathbb{N}}$ be i.i.d. random variables with $\mathbb{E}|Y_1|^3 < \infty$, let $S_n = \sum_{i=1}^n Y_i$, $n \in \mathbb{N}$, and let *N* be a standard Gaussian random variable. Then there is a constant C > 0 such that

$$d_{\mathcal{K}}\left(\frac{S_n - \mathbb{E}S_n}{\sqrt{\operatorname{Var} S_n}}, N\right) \leq \frac{C}{\sqrt{n}} \frac{\mathbb{E}|Y_1 - \mathbb{E}Y_1|^3}{\sqrt{\operatorname{Var} Y_1^3}}, \quad n \in \mathbb{N}.$$

Aim of this talk: Berry-Esseen bounds for problems from stochastic geometry



 \equiv

< D > < P > <</p>

 η_t homogeneous Poisson process of intensity t in a compact convex set H

 $L_{t}^{(\alpha)} = \frac{1}{2} \sum_{(x_{1}, x_{2}) \in \eta_{t, \neq}^{2}} \mathbf{1} \{ \text{ edge between } x_{1} \text{ and } x_{2} \text{ in } NNG_{k}(\eta_{t}) \} \|x_{1} - x_{2}\|^{\alpha}$

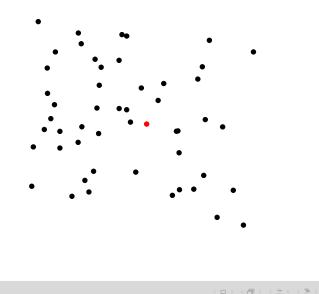
Theorem: Last/Peccati/S. 2014+

Let *N* be a standard Gaussian random variable. Then there are constants C_{α} , $\alpha \ge 0$, only depending on *k*, *H* and α such that

$$d_{\mathcal{K}}\left(\frac{L_t^{(\alpha)} - \mathbb{E}L_t^{(\alpha)}}{\sqrt{\operatorname{Var} L_t^{(\alpha)}}}, N\right) \leq C_{\alpha} t^{-1/2}, \quad t \geq 1.$$

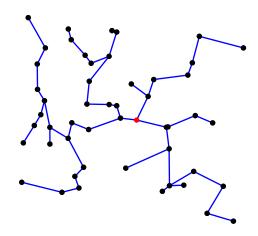
This improves the rates $(\ln(t))^{1+3/4}t^{-1/4}$ by Avram/Bertsimas (1993) and $(\ln(t))^{3d}t^{-1/2}$ by Penrose/Yukich (2005).

Radial spanning tree



 \equiv

Radial spanning tree



M. Schulte - Central limit theorems for random tessellations and random graphs

▶ < 글 ▶ < 글 ▶ 글 June 25, 2015

<ロ> < 四 > < 回 > < 三

Radial spanning tree

 η_t homogeneous Poisson process of intensity t in a compact convex set H with $0 \in H$

$$L_{t}^{(\alpha)} = \frac{1}{2} \sum_{(x_{1}, x_{2}) \in \eta_{t, \neq}^{2}} \mathbf{1} \{ \text{ edge between } x_{1} \text{ and } x_{2} \text{ in } RST(\eta_{t}) \} \|x_{1} - x_{2}\|^{\alpha} \}$$

Theorem: Schulte/Thäle 2014

Let N be a standard Gaussian random variable. Then there are constants $C_{\alpha}, \alpha \geq 0$, only depending on H and α such that

$$d_{\mathcal{K}}\left(\frac{L_t^{(\alpha)} - \mathbb{E}L_t^{(\alpha)}}{\sqrt{\operatorname{Var} L_t^{(\alpha)}}}, N\right) \leq C_{\alpha} t^{-1/2}, \quad t \geq 1.$$

M. Schulte – Central limit theorems for random tessellations and random graphs

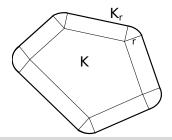
<ロ> < 同 > < 同 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < June 25, 2015

Intrinsic Volumes

- \mathcal{K}^d compact convex sets in \mathbb{R}^d
- The intrinsic volumes $V_i : \mathcal{K}^d \to \mathbb{R}$ are given by the Steiner formula

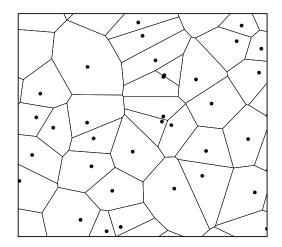
$$\operatorname{Vol}(\mathcal{K}_r) = \operatorname{Vol}(\mathcal{K} + r\mathcal{B}^d) = \sum_{i=0}^d \kappa_{d-i} r^{d-i} V_i(\mathcal{K}), \quad \mathcal{K} \in \mathcal{K}^d, \quad r \geq 0.$$

• V_0 : Euler characteristic, V_{d-1} : half the surface area, V_d : volume



《曰》《曰》《曰》《曰》

=



 η_t stationary Poisson process of intensity *t* in \mathbb{R}^d , X_t^k *k*-faces of the induced Voronoi tessellation, *H* compact convex set with Vol(*H*) > 0,

$$V_t^{(k,i)} := \sum_{G \in X_t^k} V_i(G \cap H).$$

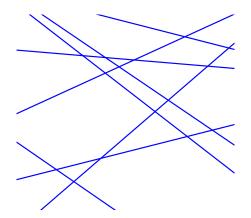
Theorem: Last/Peccati/S. 2014+

Let *N* be a standard Gaussian random variable. Then there are constants $c_{i,k}$, $k \in \{0, ..., d\}$, $i \in \{0, ..., \min\{k, d-1\}\}$, such that

$$d_{\mathcal{K}}\bigg(\frac{V_t^{(k,i)} - \mathbb{E}V_t^{(k,i)}}{\sqrt{\operatorname{Var}V_t^{(k,i)}}}, N\bigg) \leq c_{k,i}t^{-1/2}, \quad t \geq 1.$$

See also Avram/Bertsimas 1993, Heinrich 1994, Penrose/Yukich 2005.

Poisson hyperplane tessellation



Let η_t be a Poisson hyperplane process with intensity measure $t\Lambda$, $t \ge 1$. Let Λ be such that the hyperplanes of η_t are in general position a.s.

Poisson hyperplane tessellation

Let X_t^k be the k-faces of the hyperplane tessellation induced by η_t , H compact convex set with Vol(H) > 0,

$$V_t^{(k,i)} := \sum_{G \in X_t^k} V_i(G \cap H).$$

Theorem: S. 2015

Let N be a standard Gaussian random variable. Then there are constants $c_{i,k}, k \in \{0, \ldots, d-1\}, i \in \{0, \ldots, k\}$, such that

$$d_{\mathcal{K}}\bigg(\frac{V_t^{(k,i)} - \mathbb{E}V_t^{(k,i)}}{\sqrt{\operatorname{Var}V_t^{(k,i)}}}, N\bigg) \le c_{k,i}t^{-1/2}, \quad t \ge 1.$$

M. Schulte – Central limit theorems for random tessellations and random graphs

June 25, 2015

Framework

- $(\mathbb{X}, \mathcal{X})$ measurable space with σ -finite measure λ
- **N** set of all σ -finite counting measures on X
- η Poisson process with intensity measure λ
- Poisson functional $F = f(\eta)$ with $f : \mathbf{N} \to \mathbb{R}$ measurable
- For $x, x_1, x_2 \in \mathbb{X}$ we define

$$D_{x}F = f(\eta + \delta_{x}) - f(\eta)$$

$$D_{x_{1},x_{2}}^{2}F = f(\eta + \delta_{x_{1}} + \delta_{x_{2}}) - f(\eta + \delta_{x_{1}}) - f(\eta + \delta_{x_{2}}) + f(\eta).$$

• We write $F \in \text{dom } D$ if $F \in L_n^2$ and

$$\mathbb{E}\int_{\mathbb{X}} (D_x F)^2 \,\lambda(\mathsf{d} x) < \infty.$$

M. Schulte - Central limit theorems for random tessellations and random graphs

<ロ> < 用> < 目> < 目> < 目> < 目</p> June 25, 2015

Variance inequalities

Theorem: Wu 2000, Last/Penrose 2011

For $F \in L_n^2$,

$$\int_{\mathbb{X}} (\mathbb{E} D_x F)^2 \, \lambda(\mathrm{d} x) \leq \operatorname{Var} F \leq \mathbb{E} \int_{\mathbb{X}} (D_x F)^2 \, \lambda(\mathrm{d} x).$$

The upper bound is called Poincaré inequality.

M. Schulte - Central limit theorems for random tessellations and random graphs

<ロトイ部トイヨトイヨト ヨークへへ June 25, 2015 19/22

Second order Poincaré inequality

Theorem: Last/Peccati/S. 2014+

Let $F \in \text{dom } D$ be such that $\mathbb{E}F = 0$ and Var F = 1, and let N be a standard Gaussian random variable. Then,

$$d_W(F,N) \leq \gamma_1 + \gamma_2 + \gamma_3,$$

where

$$\begin{split} \gamma_{1} &:= 2 \bigg[\int_{\mathbb{X}^{3}} (\mathbb{E}[(D_{x_{1}}F D_{x_{2}}F)^{2}]\mathbb{E}[(D_{x_{1},x_{3}}^{2}F)^{2}(D_{x_{2},x_{3}}^{2}F)^{2}])^{\frac{1}{2}}\lambda^{3}(\mathsf{d}(x_{1},x_{2},x_{3}))\bigg]^{\frac{1}{2}},\\ \gamma_{2} &:= \bigg[\int_{\mathbb{X}^{3}} \mathbb{E}(D_{x_{1},x_{3}}^{2}F)^{2}(D_{x_{2},x_{3}}^{2}F)^{2}\lambda^{3}(\mathsf{d}(x_{1},x_{2},x_{3}))\bigg]^{\frac{1}{2}},\\ \gamma_{3} &:= \int_{\mathbb{X}} \mathbb{E}|D_{x}F|^{3}\lambda(\mathsf{d}x). \end{split}$$

M. Schulte - Central limit theorems for random tessellations and random graphs

くロト (四) (日) (日) (日) (日) (日)

Second order Poincaré inequality

Theorem: Last/Peccati/S. 2014+

Let $F \in \text{dom } D$ be such that $\mathbb{E}F = 0$ and Var F = 1, and let N be a standard Gaussian random variable. Then,

$$d_{\mathcal{K}}(\mathcal{F},\mathcal{N}) \leq \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4 + \gamma_5 + \gamma_6,$$

where

$$\begin{split} \gamma_4 &:= \frac{1}{2} \left[\mathbb{E} F^4 \right]^{\frac{1}{4}} \int_{\mathbb{X}} \left[\mathbb{E} (D_x F)^4 \right]^{\frac{3}{4}} \lambda(dx), \\ \gamma_5 &:= \left[\int_{\mathbb{X}} \mathbb{E} (D_x F)^4 \lambda(dx) \right]^{\frac{1}{2}}, \\ \gamma_6 &:= \left[\int_{\mathbb{X}^2} 6 \left[\mathbb{E} (D_{x_1} F)^4 \right]^{\frac{1}{2}} \left[\mathbb{E} (D_{x_1, x_2}^2 F)^4 \right]^{\frac{1}{2}} + 3 \mathbb{E} (D_{x_1, x_2}^2 F)^4 \lambda^2 (d(x_1, x_2)) \right]^{\frac{1}{2}}. \end{split}$$

M. Schulte - Central limit theorems for random tessellations and random graphs

Thank you!

M. Schulte - Central limit theorems for random tessellations and random graphs

June 25, 2015

・ロット 「「「・・・」」 ・ 「「・・」」 ・ しゃ