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Poisson process in [0, 1]¢ AT

a (Xj)1<i<m with independent Xi, Xz, ... ~ Uniform(]0, 1]d) and
fk

M ~ Poisson(t), t > 0, i.e. P((M = k) = e, k € NU {0}.
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Poisson process in [0, 1]¢ ﬂ(“

a (Xj)1<i<m with independent Xi, Xz, ... ~ Uniform(]0, 1]d) and
fk

M ~ Poisson(t), t > 0, i.e. P((M = k) = e, k € NU {0}.

a Definen = Zf‘; 0x;, where ¢y is the Dirac measure at x € RY ie.,
n(A) is the number of points of (X;)1<j<u in A € B(RY).
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Poisson process in [0, 1]¢ ﬂ(“

Observe that
a (A1), ...,n(Ap) independent for disjoint As, ..., A, € B(RY)
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Poisson process in [0, 1]¢ ﬂ(“

Observe that
a (A1), ...,n(Ap) independent for disjoint As, ..., A, € B(RY)
= 7(A) ~ Poisson(tVol(AN [0, 1]%)), A € B(RY)
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Poisson process

A random counting measure 1 on a measurable space (X, X') is a
Poisson process with o-finite intensity measure A if
(A,
A, ..

,n(An) are independent for all disjoint sets
LA EX, neEN,

u 7)(A) is Poisson distributed with parameter A\(A) forall A € X.
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Poisson process

A random counting measure 1 on a measurable space (X, X') is a
Poisson process with o-finite intensity measure A if
(A,
A, ..

,n(An) are independent for all disjoint sets
LA EX, neEN,
u 7)(A) is Poisson distributed with parameter A\(A) forall A € X.

In the following we identify 1 with its support and think of it as a random
configuration of points.

M. Schulte — Central limit theorems for random tessellations and random graphs

=] =

June 25, 2015

3/22



Poisson process ﬂ(“

Definition:
A random counting measure 1 on a measurable space (X, X') is a
Poisson process with o-finite intensity measure A if

a 7(A1),...,n(An) are independent for all disjoint sets
Ay,...,Ape X, neN,

u 7)(A) is Poisson distributed with parameter A\(A) forall A € X.

In the following we identify 1 with its support and think of it as a random
configuration of points.

Example:
X =RY, \ = tVol, t > 0: stationary Poisson process of intensity ¢ in R?

[m] = = =

it
0)
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k-Nearest Neighbour Graph
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k-Nearest Neighbour Graph ﬂ(“
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k-Nearest Neighbour Graph ﬂ(“

)

What is the edge length of the k-nearest neighbour graph?
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Poisson-Voronoi tessellation

AT

Karlsruhe Insttute of Technology.
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Poisson-Voronoi tessellation ﬂ(“
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Poisson-Voronoi tessellation %(“

What is the edge length of the Poisson-Voronoi tessellation within the
observation window?
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Classical central limit Theorem ﬂ(“

Let (V;)jen be i.i.d. random variables with EY? < oo, let S, = Y"1, Y;
n € N, and let N be a standard Gaussian random variable, i.e.,

X
P(N < x) = / Lexp(—u2/2) du, x€R.

— 50 e
Then s _Es
n — n . . . g
————— — N indistributionas n — oo,
vVar S,
that is,

. S,—ES,
Zn —Eh - —
nI|_>mooIP’( Vas = x) P(N<x), xeR.

o = = E 2
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Classical central limit Theorem ﬂ(“

Let (V;)jen be i.i.d. random variables with EY? < oo, let S, = Y"1, Y;
n € N, and let N be a standard Gaussian random variable, i.e.,

X

P(N < x) = / Lexp(—u2/2) du, x€R.

—oo Vo
Then s _Es
=20 . N indistributonas  n — oo,
v/Var S,
that is,
, S, —ES,
im P —— <x | =P(N<x), xeR.
n—00 ( vVarS, — ) (N'< x)

Does something similar hold for the edge length of the k-nearest
neighbour graph or the Poisson-Voronoi tessellation?
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Probability distances A\KIT

For two random variables X; and X> we define the Kolmogorov distance

dK(X1,X2) = suﬂg |]I'D(X1 < X) — ]P)(XQ < X)‘
Xe

and the Wasserstein distance

dw(Xi, X2) == sup |Eh(Xi) — Eh(Xz)],
helip(1)

where Lip(1) is the set of all functions h : R — R with a Lipschitz constant
not greater than one.

Convergence in dk or dy implies convergence in distribution.
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Berry-Esseen-Bound

eeeeeeeeeeeeeeeeeeeeeeeeeeeee

Theorem: Berry 1941, Esseen 1942

Let (V;)jen be i.i.d. random variables with E| Y4 |* < oo, let S, = > 1, Y;,

n € N, and let N be a standard Gaussian random variable. Then there is a
constant C > 0 such that

— _ 3
dK<Sn ES, )§£E|Y1 IEY1|

) neN.
VVar'S, vn o\ Narv;®

o = = E

DA
June 25, 2015 8/22

M. Schulte — Central limit theorems for random tessellations and random graphs



Berry-Esseen-Bound ﬂ(“

Theorem: Berry 1941, Esseen 1942
Let (Y;)jen be i.i.d. random variables with E|Y;|® < oo, let S, = j

n € N, and let N be a standard Gaussian random variable. Then there is a
constant C > 0 such that

K\ = Fm——— > >~ = =" @
V/Var S, Vn o\ Nar Y,

n e N.

Aim of this talk:
Berry-Esseen bounds for problems from stochastic geometry

[m] = = =
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k-Nearest Neighbour Graph ﬂ(“
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k-Nearest Neighbour Graph

o) 1 .
L =2 5" 1{ edge between x; and x in NNGx(17:) }|x1 — xe||®
(xt,xe)€n?

Theorem: Last/Peccati/S. 2014+
Let N be a standard Gaussian random variable. Then there are constants
Ca, @ > 0, only depending on k, H and « such that

dk

1y homogeneous Poisson process of intensity f in a compact convex set H

(@) _ (@)
L —EL N <c 72 t>1.
Var L{%)
This improves the rates (In(t))'+3/4t=1/4 by Avram/Bertsimas (1993) and
(In(t))39t~"/2 by Penrose/Yukich (2005).
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Radial spanning tree T
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Radial spanning tree
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Radial spanning tree

with0 € H

1t homogeneous Poisson process of intensity ¢ in a compact convex set H

0 1 .
L =" 3" 1{ edge between x and x in RST (1) }|[x1 — xe|°
(xix2)en?,

Theorem: Schulte/Thale 2014
Let N be a standard Gaussian random variable. Then there are constants

Co, a > 0, only depending on H and « such that

" Lo g1l

N| <c.t 2 t>1.

=] =
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Intrinsic Volumes ﬂ(“

m K9 compact convex sets in R?
@ The intrinsic volumes V; : K¢ — R are given by the Steiner formula

Vol(K;) = Vol(K + rB?%) = Z"“d i Vi(K), Kekd r>o.

m V4 Euler characteristic, Vy_4: half the surface area, Vy: volume

K,
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Poisson-Voronoi tessellation ﬂ(“
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Poisson-Voronoi tessellation

Karlstuhe Isttute of Technology

induced Voronoi tessellation, H compact convex set with Vol(H) > 0,

VD= ST w(Gn H).

GeXxf

Theorem: Last/Peccati/S. 2014+
Let N be a standard Gaussian random variable. Then there are constants
Cik, k€{0,...,d},ie{0,...,min{k,d — 1}}, such that

k,i k,i
dK(Vf( ) gy

_ ,N) < Ck,,'t_1/2, t>1
Var Vt(k")

See also Avram/Bertsimas 1993, Heinrich 1994, Penrose/Yukich 2005.

n; stationary Poisson process of intensity ¢ in R, X{‘ k-faces of the
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Poisson hyperplane tessellation ﬂ(“

Let 7; be a Poisson hyperplane process with intensity measure A, t > 1.
Let A be such that the hyperplanes of 7; are in general position a.s.
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Poisson hyperplane tessellation

Let Xt" be the k-faces of the hyperplane tessellation induced by n;, H
compact convex set with Vol(H) > 0,

VD= ST v(Gn H).

GeXf

Theorem: S. 2015
Let N be a standard Gaussian random variable. Then there are constants
Cik, k€{0,...,d—1},ie€{0,...,k}, such that

K,i ki
dK( Vt( ) _ Evt( i)

; 7N) < Ck,it71/27 t>1
\/ Var Vt(k")
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Framework ﬂ(“

(X, X') measurable space with o-finite measure A

N set of all o-finite counting measures on X

1 Poisson process with intensity measure A

Poisson functional F = f(n) with f : N — R measurable

For x, x1, X2 € X we define

DyF = f(n + 6x) — f(n)
D)?a,sz = f(77 + 5X1 +5X2) - f(77+ 5)(1) - f(ﬁ +5X2) + f(n)'

a We write F € domDif F € L727 and

IE/X(DXF) A(dx) < oo,
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Variance inequalities

Theorem: Wu 2000, Last/Penrose 2011

eeeeeeeeeeeeeeeeeeee

‘/m@) wﬂ<VwF<E/( F)2 A(dx).
X

X
The upper bound is called Poincaré inequality.
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Second order Poincaré inequality

Theorem: Last/Peccati/S. 2014+

Let F € dom D be such that EF = 0and Var F = 1, and let N be a
standard Gaussian random variable. Then,

dw(F,N) < v1 + 72+ s,
where

1
2

” :=2[/ (EL(Dx, F Dy FYIEI(DR, o F)2(DR, 4 F)21) 2 A%(d (1, e, )|
X3

2 2 3 2
2 = |:/XS E(thXsF) ( X2 XsF) A (0, e, ) |

g 1= / E| Dy F[® A(dx).
X
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Second order Poincaré inequality ﬂ(“

Theorem: Last/Peccati/S. 2014+

Let F € dom D be such that EF = 0and Var F = 1, and let N be a
standard Gaussian random variable. Then,

dx(F,N) < v +v 4+ +7 + 75+,

where

Hlow

V4 = )\(dX),

EF) [ B

1

=

[E( X1, X2 )] +3E(D§1 X2 )4)\2(d(X1,X2))

1

2 1
[ E(D,F)* )T,
o[
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Thank you!

M. Schulte — Central limit theorems for random tessellations and random graphs June 25, 2015 22/22



