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Introduction Counting-based methods Markov chains for random generation Coupling from the past

Topic : algorithms to generate random (discrete) structures,
according to some prescribed probability distribution

Quick overview of two “classes” of methods

counting-based methods
locally-defined structures, scrambling methods

Focus on “exact” generation methods, and “geometric”
examples
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Why random generation ?

to visualize what “typical” (large) structures in a given class
look like

hints to possible limit behaviors

to provide test cases for algorithms, when a theoretical
average-case analysis is unavailable

sometimes looking for a good random generation algorithm is
a good way of “understanding” the objects under
consideration
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Model

Some (finite or countable) family C of “objects” is defined

Some “target” probability distribution µ is defined

Typically, C is endowed with a size function |.| : C → N, with
the condition that for each integer n, Cn (set of x ∈ C with
size n) is finite ; then µ = µn can be the uniform distribution
over Cn.

A µ-sampler (µn-sampler) is a randomized algorithm that
takes no input (n as input) and outputs some random x ∈ C
according to µ (µn).

We assume we have access to some perfect source of
randomness (independent random bits, independent
uniform r.v. over [0, 1]).
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weight function” w : C → R

+ :
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w(x)

∑

y∈C w(y)
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Picking a distribution

One practical way of defining µ is “proportional to some
weight function” w : C → R

+ :

µ(x) :=
w(x)

∑

y∈C w(y)

Requires Sw =
∑

y∈C w(y) <∞

“Uniform over Cn” as a special case : w(x) = [|x | = n]
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Rejection principle

A simple, but sometimes efficient idea : “try, reject or accept”

Assume two weights w ≤ w ′, and “easy” to sample
proportionally to w ′

The rejection algorithm :

Draw random x , proportionally to w ′(x)
Draw U, uniform on [0, 1]
If U > w(x)/w ′(x) then start over, otherwise output x

On average : Sw ′/Sw calls to the w ′ sampler

Special case : A ⊂ C, where Cn is easy to sample from and
|An|/|Cn| is “not too small” ; expected number of trials is
|Cn|/|An|
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Notations

C : the whole class

Cn : subclass of objects of size n

cn = |Cn|

If we know cn, it should help generate us get uniform random

x ∈ Cn.

In many situations, we know cn but we have no obvious
(algorithmic) bijection Φn : {1, . . . , cn} → Cn



Introduction Counting-based methods Markov chains for random generation Coupling from the past

Classical example : triangulations of a convex polygon

n + 2 vertices 1, . . . , n + 2, ccw on a circle

Cn : set of triangulations into n triangles



Introduction Counting-based methods Markov chains for random generation Coupling from the past

Classical example : triangulations of a convex polygon

n + 2 vertices 1, . . . , n + 2, ccw on a circle

Cn : set of triangulations into n triangles

must have a single triangle {1, n + 2, k}, for some
2 ≤ k ≤ n + 1



Introduction Counting-based methods Markov chains for random generation Coupling from the past

Classical example : triangulations of a convex polygon

n + 2 vertices 1, . . . , n + 2, ccw on a circle

Cn : set of triangulations into n triangles

must have a single triangle {1, n + 2, k}, for some
2 ≤ k ≤ n + 1

the rest must form a triangulation on {1, . . . , k} (size k − 2)
and a triangulation on {k, . . . , n + 2} (size n − k + 1)



Introduction Counting-based methods Markov chains for random generation Coupling from the past

Classical example : triangulations of a convex polygon

n + 2 vertices 1, . . . , n + 2, ccw on a circle

Cn : set of triangulations into n triangles

must have a single triangle {1, n + 2, k}, for some
2 ≤ k ≤ n + 1

the rest must form a triangulation on {1, . . . , k} (size k − 2)
and a triangulation on {k, . . . , n + 2} (size n − k + 1)

Consequence : cn =
∑n−1

k=0 ckcn−1−k , c0 = 1.



Introduction Counting-based methods Markov chains for random generation Coupling from the past

Classical example : triangulations of a convex polygon

n + 2 vertices 1, . . . , n + 2, ccw on a circle

Cn : set of triangulations into n triangles

must have a single triangle {1, n + 2, k}, for some
2 ≤ k ≤ n + 1

the rest must form a triangulation on {1, . . . , k} (size k − 2)
and a triangulation on {k, . . . , n + 2} (size n − k + 1)

Consequence : cn =
∑n−1

k=0 ckcn−1−k , c0 = 1.

“Catalan numbers” cn = 1
n+1

(2n
n

)
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Triangulations : ad hoc algorithm

The Catalan sequence satisfies a simple recursion :
(n + 2)cn+1 = 2(2n + 1)cn

Becomes an algorithm for obtaining a uniform triangulation of
size n + 1 from one of size n :

pick an edge at random (including border edge : 2n + 1
choices)
pick an endpoint at random (2 choices)
inflate the edge into a triangle, splitting the chosen endpoint
result is a larger triangulation with a marked border edge
(adapted from a classic algorithm [Rémy, 1985] for binary
trees)
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Triangulations (cont.)

c0 = 1, cn =
∑n−1

k=0 ckcn−1−k

Allows to compute (c1, . . . , cn) in O(n2) arithmetic operations
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Triangulations (cont.)

c0 = 1, cn =
∑n−1

k=0 ckcn−1−k

Allows to compute (c1, . . . , cn) in O(n2) arithmetic operations
(can do better in this case)

Leads to uniform, fixed size sampling algorithm

GenT(n)

[Precompute c0, . . . , cn, once]
If n = 0 : Return()
Draw a random k, 0 ≤ k ≤ n − 1, w.p pk = ckcn−1−k/cn

Draw X = GenT(k), Y = GenT(n− 1− k) [with indices shifted by
k − 1]
Return ({1, n + 2, k}, X , Y )
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The “recursive” method

[Flajolet, Zimmermann, Van Cutsem 1994] : for a wide variety
of classes, information on how objects are “built” from smaller
ones translates into recurrences on the sequence (cn)n≥0, from
which one can

compute the first n + 1 terms in the sequence c0, . . . , cn

use the counting sequence to sample uniformly from Cn

The method is widely applicable in a systematic way, and the
complexity is O(n log n) per sample after a more costly
precomputation (n numbers, typically growing exponentially).
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Example : words without consecutives 1’s

F : set of all words (sequences) over the alphabet {0, 1}, with
the condition that no two consecutive letters can be 1.

size of a word is its length.

Easy recurrence : fn = fn−1 + fn−2, f0 = 1, f1 = 2 (shifted
Fibonacci sequence).

Generating function is F (x) = 1+x
1−x−x2 , radius of convergence

is positive root of 1− x − x2 (inverse golden ratio).
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Example 2 : binary (plane, rooted) trees

A binary tree is defined recursively as :

either a root/leaf, with size 0
or a root, a left subtree t1 (which is a binary tree), and a right
subtree t2 (also a binary tree) ; size is |t1|+ |t2|+ 1
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Example 2 : binary (plane, rooted) trees

A binary tree is defined recursively as :

either a root/leaf, with size 0
or a root, a left subtree t1 (which is a binary tree), and a right
subtree t2 (also a binary tree) ; size is |t1|+ |t2|+ 1

The number of binary trees of size n is the Catalan number
Cn = 1

n+1

(2n
n

)

; Cn =
∑n−1

k=0 CkCn−1−k .

(Triangulations are binary trees in disguise)

Other conditions on degrees of nodes lead to different
recurrences ; the method carries over
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Markov chain methods

“Easy” to get convergence to the target (uniform)
distribution

“Hard” to get estimates of the speed of convergence

Sometimes the “Coupling from the past” technique can give
exact uniform distribution

A few pictures (uniform via CFTP). . .
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(Biased) random walk in a graph

G = (V , E ) a graph (directed, no vertex of outdegree 0)

for each u, set weights (nonnegative, summing to 1) for arcs
leaving u

Random walk on G : “start from some vertex X0, then at
each time t ∈ N, jump from Xt to a neighbour Xt+1 chosen
at random, according to outgoing weights”

Implicitly : the choice of next vertex is made independently
of the previous trajectory ; only “remember” the current vertex

This is exactly what a (homogeneous, finite state) Markov
chain is.
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Transition matrix

The whole Markov chain is entirely defined by

the (probability distribution for) initial state : (πu)u∈V

the transition matrix M with coefficients

p(u, v) = P(Xt+1 = v |Xt = u)

This is just the (weighted) adjacency matrix !

The probability distribution for Xt (state at time t) is just

π(t) = π.Mt
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Important question : π(t) for large t ; completely described in terms
of the graph G :
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component’s stationary probability gives positive probability to
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Possible asymptotic behaviors

Important question : π(t) for large t ; completely described in terms
of the graph G :

Convergence can only be to an 1-eigenvector for M

Dimension of eigenspace is the number of (sink) strongly
connected components (with 0-weight arcs removed) ; each
component’s stationary probability gives positive probability to
each of its states.

Convergence to some limit is guaranteed (no matter what the
initial distribution π(0)) if and only if each (sink) strongly
connected component is aperiodic (gcd of cycle lengths is 1)

Provided the graph is strongly connected and aperiodic, the
Markov chain converges to the unique probability distribution,
for each possible starting state

(This is all graph-dependent ; only the distribution itself
depends on the weights !)
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(Strongly connected case) unique vector (with sum 1) satisfying,
for each u, the “balance condition”

πu =
∑

vu∈E

p(v , u)πv .
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(requires the directed graph to be symmetric)
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Identifying the limit

(Strongly connected case) unique vector (with sum 1) satisfying,
for each u, the “balance condition”

πu =
∑

vu∈E

p(v , u)πv .

Special case : “detailed balance” condition,

πup(u, v) = πv p(v , u)

(requires the directed graph to be symmetric)
Special special case : unbiased walk in undirected graph,
p(u, v) = 1/deg(u) : πu is proportional to the degree of u. (If
the graph is bipartite, the walk is periodic)
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What about random generation ?

To use a Markov chain to generate π-random elements from a
(finite) class C, you need to

devise a (strongly connected) graph on vertex set C

pick weights for arcs that ensure π is stationary

ensure aperiodicity : e.g. add loops on every state with weight
1/2 (dividing all other weights by 2)

run the chain for a “large” number t of rounds

output Xt : “close” to π distribution.
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Typically, choose a symmetric graph where two states (objects) are
adjacent if they differ by some “small, local change”.
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Choosing the graph : adjacences

Typically, choose a symmetric graph where two states (objects) are
adjacent if they differ by some “small, local change”.
You need a property of the form : any object can be reached
from any other by a sequence of such moves.
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Sufficient moves for tilings (strongly connected regions)
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Choosing transition probabilities

A good solution is to look for the detailed balance condition :
pick p(u, v) and p(v , u) together, with the condition

p(u, v)

p(v , u)
=

π(v)

π(u)
.
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Choosing transition probabilities

A good solution is to look for the detailed balance condition :
pick p(u, v) and p(v , u) together, with the condition

p(u, v)

p(v , u)
=

π(v)

π(u)
.

If π is uniform over C : just pick p(u, v) = p(v , u).
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Running the Markov chain

To simulate the Markov chain for an arbitrary time, you must be
able to :

Pick a starting state (can you construct one object from your
class ?)
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Running the Markov chain

To simulate the Markov chain for an arbitrary time, you must be
able to :

Pick a starting state (can you construct one object from your
class ?)

Algorithmically simulate one step : given any state u,

compute the list of its neighbours v1, . . . , vk

compute transition probabilities p(u, vi )
pick next state vi with probability p(u, vi )
(or alternatively, pick vi with probability p(u, vi) without
actually computing the whole list)
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How long is long enough ?

Usually the most difficult question : we want to output Xt ,
and must choose t such that π(t) is close to π.
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τ(ǫ) = min
{

t : d(π(t), π) ≤ ǫ
}

.
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How long is long enough ?

Usually the most difficult question : we want to output Xt ,
and must choose t such that π(t) is close to π.

This is the problem of mixing time evaluation :

τ(ǫ) = min
{

t : d(π(t), π) ≤ ǫ
}

.

The diameter of the graph is an obvious lower bound.

Any inequality bounding the second largest eigenvalue away
from 1 is useful.

For an overview of bounding techniques : Jerrum in
Probabilistic Methods for Algorithmic Discrete
Mathematics (Springer, 1998)
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Coupling from the past

CFTP [Propp-Wilson, 1996] : a technique to sample from the
exact distribution π, with a Markov chain that converges to π.
No need to estimate the mixing time : the algorithm stops by
itself, and when it does, outputs a π-distributed object.
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Generalized coupling

View the simulation of the Markov chain as a two step algorithm :

Draw a random update function F : V → V from some
appropriate distribution

Apply the function : if current state is x , next state is F (x).

The distribution for F must satisfy :

∀(x , y) ∈ V 2, Pr(F (x) = y) = p(x , y).

As a byproduct, this defines a “generalized coupling” of the

Markov chain : one copy (X
(u)
t )t≥0 starting from each state u, with

the “sticky” property

X
(u)
t = X

(v)
t ⇒ ∀t ′ > t, X

(u)
t′ = X

(v)
t′ .
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For a given transition matrix, one can design many different
distributions for transition functions.
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Note on update functions

For a given transition matrix, one can design many different
distributions for transition functions.

Images can be chosen independently (extremely costly !)

A “good” design will try to make it more likely that chains
starting from different states will reach the same state.
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Exact, but useless, simulation algorithm

For any integer t, here is an exact simulation algorithm for π :

Draw t independent update functions F1, . . ., Fn ;

Compute G = Fn ◦ · · · ◦ F1 ;

Draw a random initial state u from distribution π ;

Output G(u).
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Exact, but useless, simulation algorithm

For any integer t, here is an exact simulation algorithm for π :

Draw t independent update functions F1, . . ., Fn ;

Compute G = Fn ◦ · · · ◦ F1 ;

Draw a random initial state u from distribution π ;

Output G(u).

(Useless : if we know how to choose u, we don’t need a more
complex algorithm)
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But. . .

If we make the right choice for the distribution of F , it is very likely
that, for large t, the composite function G is a constant function
over V ; then the result does not depend on choice of u.
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But. . .

If we make the right choice for the distribution of F , it is very likely
that, for large t, the composite function G is a constant function
over V ; then the result does not depend on choice of u.
Warning : there is a trap
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While G is not constant, F ← RandomF() ; G ← F ◦ G ;
u ← F (u)

Return u
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Forward coupling (to the future)

(Run the coupling until coalescence)

G ← I, u ← u0

While G is not constant, F ← RandomF() ; G ← F ◦ G ;
u ← F (u)

Return u

This is a forward coupling : after t steps, G = Gt = Ft ◦ · · · ◦ F1 ;
Gt(u) = RandomF()(Gt−1(u)).
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Backward coupling (from the future)

G ← I

While G is not constant, G ← G ◦ RandomF()

Return G(u0)



Introduction Counting-based methods Markov chains for random generation Coupling from the past

Backward coupling (from the future)

G ← I

While G is not constant, G ← G ◦ RandomF()

Return G(u0)
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Backward coupling (from the future)

G ← I

While G is not constant, G ← G ◦ RandomF()

Return G(u0)

This is backward coupling : Gt = F1 ◦ · · · ◦ Ft ; renaming Fi as F−i ,
Gt = F−1 ◦ F−2 ◦ · · · ◦ F−t .
Gt(u) = Gt−1(RandomF(u)) : to compute an image, compositions
happen in the wrong order !
View as : Take a coupling that has already run for an infinite
time, it must have become coalescent at time 0 ; we are simply
looking into its recent past to discover its state at time 0.
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Here is the trap

Forward coupling does not, in general, simulate distribution π ;

Backward coupling does simulate distribution π, provided it
has positive probability to terminate (this implies probability
1).
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p(0, 0) = p(k, k) = 1/2



Introduction Counting-based methods Markov chains for random generation Coupling from the past

Example : walk on a line

V = {1, . . . , k}, p(i , i + 1) = p(i , i − 1) = 1/2,
p(0, 0) = p(k, k) = 1/2
π(i) = 1/k, i = 1 . . . k (uniform)



Introduction Counting-based methods Markov chains for random generation Coupling from the past

Example : walk on a line

V = {1, . . . , k}, p(i , i + 1) = p(i , i − 1) = 1/2,
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Realize coupling with 2 update functions : F+(i) = min(k, i + 1) ;
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Example : walk on a line

V = {1, . . . , k}, p(i , i + 1) = p(i , i − 1) = 1/2,
p(0, 0) = p(k, k) = 1/2
π(i) = 1/k, i = 1 . . . k (uniform)
Realize coupling with 2 update functions : F+(i) = min(k, i + 1) ;
F −(i) = max(1, i − 1)
Forward coupling will always stop with a constant function 1 or k,
so will never output any other value !
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Why CFTP is correct

Consider a doubly infinite sequence of independent random update
functions (Fn)n∈Z, and set (n < m)

Gn,m = Fm−1 ◦ Fm−2 ◦ · · · ◦ Fn

As a random function, Gn,m leaves distribution π invariant ;

With probability 1, there exists some n < 0 s.t. Gn,0 is a
constant function ;

if Gn,0 is constant, Gn′
,0 = Gn,0 for all n′ < n ;

thus, for all u,

lim
n→+∞

P(G−n,0 = u) = πu

(This is a monotone convergence argument ; where forward
coupling fails is that we do not have G0,n′ = G0,n as soon as G0,n is
constant and n′ > n)



Introduction Counting-based methods Markov chains for random generation Coupling from the past

Practical versions of CFTP
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functions F are monotone increasing, coalescence is
equivalent to G(u) = G(v) for all extremal elements (only
compute their images)
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We do not need to compute Gn,0 completely, only to detect
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functions F are monotone increasing, coalescence is
equivalent to G(u) = G(v) for all extremal elements (only
compute their images)

In particular, if V has a unique minimum and maximum (e.g.,
a finite distributive lattice), only need to compute Gn,0(max)
and Gn,0(min) ; (most easy cases are of this type)
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Practical versions of CFTP

We do not need to compute Gn,0 completely, only to detect
(possibly with some delay) that Gn,0 constant ;

Monotone CFTP : whenever V is a partially ordered set
with some minimum and maximum elements, and update
functions F are monotone increasing, coalescence is
equivalent to G(u) = G(v) for all extremal elements (only
compute their images)

In particular, if V has a unique minimum and maximum (e.g.,
a finite distributive lattice), only need to compute Gn,0(max)
and Gn,0(min) ; (most easy cases are of this type)

binary-backoff CFTP : compute G−2k
,0 for k = 1, 2, . . . ,

storing all functions Fn so as to be able to reuse them ; this
way, composition always happen in the natural order.
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