Introduction to several models from stochastic geometry

Computational Geometry Week 2015
Eindhoven, 25 June 2015

Plan

From game to theory: Buffon, integral geometry, random tessellations

From game to theory: 150 years of random convex hulls

Addendum: some more models

Plan

From game to theory: Buffon, integral geometry, random tessellations
Buffon's needle problem
Example of a formula from integral geometry
Poisson point process
Poisson line tessellation
Poisson-Voronoi tessellation

From game to theory: 150 years of random convex hulls

Addendum: some more models

Roots of geometric probability

Georges-Louis Leclerc, Comte de Buffon (1733)

Probability p that a needle of length ℓ dropped on a floor made of parallel strips of wood of same width $D>\ell$ will lie across a line?

Roots of geometric probability

Georges-Louis Leclerc, Comte de Buffon (1733)

Probability p that a needle of length ℓ dropped on a floor made of parallel strips of wood of same width $D>\ell$ will lie across a line?

Roots of geometric probability

R and Θ independent r.v., uniformly distributed on $] 0, \frac{D}{2}[$ and $]-\frac{\pi}{2}, \frac{\pi}{2}[$. There is intersection when $2 R \leq \ell \cos (\Theta)$.

$$
p=\int_{\theta=-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{r=0}^{\frac{\ell}{2} \cos (\theta)} \frac{\mathrm{d} r \mathrm{~d} \theta}{\frac{D}{2} \pi}=\frac{2 \ell}{\pi D}
$$

Roots of geometric probability

$$
p=p([0, \ell])=\frac{2 \ell}{\pi D}
$$

Roots of geometric probability

Same question when dropping a polygonal line?

Roots of geometric probability

Same question when dropping a convex body K ?

Roots of geometric probability

$$
p(\partial K)=\frac{\operatorname{per}(\partial \mathrm{K})}{\pi D} \quad \text { where } \operatorname{per}(\partial \mathrm{K}): \text { perimeter of } \partial K
$$

Roots of geometric probability

Notation

- $p_{k}(\mathscr{C})$ probability to have exactly k intersections of \mathscr{C} with the lines
- $f(\mathscr{C})=\sum_{k \geq 1} k p_{k}(\mathscr{C})$ mean number of intersections

Several juxtaposed needles

- $f([0, \ell]), \ell>0$, additive and increasing so $f([0, \ell])=\alpha \ell, \alpha>0$
- Similarly, $f(\mathscr{C})=\alpha \operatorname{per}(\mathscr{C})$
- $f($ Circle of diameter $D)=2=\alpha \pi D$
- If \mathscr{C} is the boundary of a convex body K with $\operatorname{diam}(\mathrm{K})<\mathrm{D}$, $f(\mathscr{C})=2 p(\mathscr{C})$

Extensions in integral geometry

K convex body of \mathbb{R}^{2}
$L_{p, \theta}=p(\cos (\theta), \sin (\theta))+\mathbb{R}(-\sin (\theta), \cos (\theta)), p \in \mathbb{R}, \theta \in[0, \pi)$

$$
\operatorname{per}(\partial \mathrm{K})=\int_{\theta=0}^{\pi} \int_{\mathrm{p}=-\infty}^{+\infty} \mathbf{1}\left(\mathrm{L}_{\mathrm{p}, \theta} \cap \mathrm{~K} \neq \emptyset\right) \mathrm{dpd} \theta
$$

Extensions in integral geometry

K convex body of \mathbb{R}^{2}
$L_{p, \theta}=p(\cos (\theta), \sin (\theta))+\mathbb{R}(-\sin (\theta), \cos (\theta)), p \in \mathbb{R}, \theta \in[0, \pi)$

$$
\operatorname{per}(\partial \mathrm{K})=\int_{\theta=0}^{\pi} \int_{\mathrm{p}=-\infty}^{+\infty} \mathbf{1}\left(\mathrm{L}_{\mathrm{p}, \theta} \cap \mathrm{~K} \neq \emptyset\right) \mathrm{dpd} \theta
$$

Cauchy-Crofton formula

$$
\operatorname{per}(\partial \mathrm{K})=\int_{\theta=0}^{\pi} \operatorname{diam}_{\theta}(\mathrm{K}) \mathrm{d} \theta
$$

Random points

- W convex body
- μ probability measure on W

- $\left(X_{i}, i \geq 1\right)$ independent μ-distributed variables

$$
\mathcal{E}_{n}=\left\{X_{1}, \cdots, X_{n}\right\} \quad(n \geq 1)
$$

- $\#\left(\mathcal{E}_{n} \cap B_{1}\right)$ number of points in B_{1}
- $\#\left(\mathcal{E}_{n} \cap B_{1}\right)$ binomial variable $\mathbb{P}\left(\#\left(\mathcal{E}_{n} \cap B_{1}\right)=k\right)=\binom{n}{k} \mu\left(B_{1}\right)^{k}\left(1-\mu\left(B_{1}\right)\right)^{n-k}$, $0 \leq k \leq n$
- $\#\left(\mathcal{E}_{n} \cap B_{1}\right), \cdots, \#\left(\mathcal{E}_{n} \cap B_{n}\right)$ not independent

$$
\left(B_{1}, \cdots, B_{n} \in \mathcal{B}\left(\mathbb{R}^{2}\right), B_{i} \cap B_{j}=\emptyset, i \neq j\right)
$$

Poisson point process

Poisson point process with intensity measure μ : locally finite subset \mathbf{X} of \mathbb{R}^{d} such that

- $\#\left(\mathbf{X} \cap B_{1}\right)$ Poisson r.v. of mean $\mu\left(B_{1}\right)$

$$
\mathbb{P}\left(\#\left(\mathbf{X} \cap B_{1}\right)=k\right)=e^{-\mu\left(B_{1}\right) \frac{\mu\left(B_{1}\right)^{k}}{k!}, k \in \mathbb{N}, ~}
$$

- $\#\left(\mathbf{X} \cap B_{1}\right), \cdots, \#\left(\mathbf{X} \cap B_{n}\right)$ independent

$$
\left(B_{1}, \cdots, B_{n} \in \mathcal{B}\left(\mathbb{R}^{d}\right), B_{i} \cap B_{j}=\emptyset, i \neq j\right)
$$

Poisson line tessellation

- X Poisson point process in \mathbb{R}^{2} of intensity measure $\mathrm{d} p \mathrm{~d} \theta$
- For $(p, \theta) \in \mathbf{X}$, polar line

$$
L_{p, \theta}=p(\cos (\theta), \sin (\theta))+(\cos (\theta), \sin (\theta))^{\perp}
$$

- Tessellation:
set of connected components of $\mathbb{R}^{d} \backslash \bigcup_{(p, \theta) \in \mathbf{X}} L_{p, \theta}$

Properties: invariance under translations and rotations
References: Meijering (1953), Miles (1964), Stoyan et al. (1987)

Poisson line tessellation

- X Poisson point process in \mathbb{R}^{2} of intensity measure $\mathrm{d} p \mathrm{~d} \theta$
- For $(p, \theta) \in \mathbf{X}$, polar line

$$
L_{p, \theta}=p(\cos (\theta), \sin (\theta))+(\cos (\theta), \sin (\theta))^{\perp}
$$

- Tessellation:
set of connected components of $\mathbb{R}^{d} \backslash \bigcup_{(p, \theta) \in \mathbf{X}} L_{p, \theta}$

Properties: invariance under translations and rotations
References: Meijering (1953), Miles (1964), Stoyan et al. (1987)

Poisson line tessellation

- X Poisson point process in \mathbb{R}^{2} of intensity measure $\mathrm{d} p \mathrm{~d} \theta$
- For $(p, \theta) \in \mathbf{X}$, polar line

$$
L_{p, \theta}=p(\cos (\theta), \sin (\theta))+(\cos (\theta), \sin (\theta))^{\perp}
$$

- Tessellation:
set of connected components of $\mathbb{R}^{d} \backslash \bigcup_{(p, \theta) \in \mathbf{X}} L_{p, \theta}$

Properties: invariance under translations and rotations
References: Meijering (1953), Miles (1964), Stoyan et al. (1987)

Poisson line tessellation

- X Poisson point process in \mathbb{R}^{2} of intensity measure $\mathrm{d} p \mathrm{~d} \theta$
- For $(p, \theta) \in \mathbf{X}$, polar line

$$
L_{p, \theta}=p(\cos (\theta), \sin (\theta))+(\cos (\theta), \sin (\theta))^{\perp}
$$

- Tessellation:
set of connected components of $\mathbb{R}^{d} \backslash \bigcup_{(p, \theta) \in \mathbf{X}} L_{p, \theta}$

Properties: invariance under translations and rotations
References: Meijering (1953), Miles (1964), Stoyan et al. (1987)

Poisson line tessellation

- X Poisson point process in \mathbb{R}^{2} of intensity measure $\mathrm{d} p \mathrm{~d} \theta$
- For $(p, \theta) \in \mathbf{X}$, polar line

$$
L_{p, \theta}=p(\cos (\theta), \sin (\theta))+(\cos (\theta), \sin (\theta))^{\perp}
$$

- Tessellation:
set of connected components of $\mathbb{R}^{d} \backslash \bigcup_{(p, \theta) \in \mathbf{X}} L_{p, \theta}$

Properties: invariance under translations and rotations
References: Meijering (1953), Miles (1964), Stoyan et al. (1987)

Poisson line tessellation

- X Poisson point process in \mathbb{R}^{2} of intensity measure $\mathrm{d} p \mathrm{~d} \theta$
- For $(p, \theta) \in \mathbf{X}$, polar line

$$
L_{p, \theta}=p(\cos (\theta), \sin (\theta))+(\cos (\theta), \sin (\theta))^{\perp}
$$

- Tessellation:
set of connected components of $\mathbb{R}^{d} \backslash \bigcup_{(p, \theta) \in \mathbf{X}} L_{p, \theta}$

Properties: invariance under translations and rotations
References: Meijering (1953), Miles (1964), Stoyan et al. (1987)

Poisson line tessellation

- X Poisson point process in \mathbb{R}^{2} of intensity measure $\mathrm{d} p \mathrm{~d} \theta$
- For $(p, \theta) \in \mathbf{X}$, polar line

$$
L_{p, \theta}=p(\cos (\theta), \sin (\theta))+(\cos (\theta), \sin (\theta))^{\perp}
$$

- Tessellation:
set of connected components of $\mathbb{R}^{d} \backslash \bigcup_{(p, \theta) \in \mathbf{X}} L_{p, \theta}$

Properties: invariance under translations and rotations
References: Meijering (1953), Miles (1964), Stoyan et al. (1987)

Questions of interest

- Asymptotic study of the population of cells (means, extremes): number of vertices, edge length in a window...
- Study of a particular cell
zero-cell C_{0} containing the origin
typical cell \mathcal{C} chosen uniformly at random

Means, moments and distribution of functionals of the cell (area, perimeter...), asymptotic sphericality

Mean number of vertices per cell

- Each vertex from the tessellation is contained in exactly 4 cells.
- Each vertex is the highest point from a unique cell with probability 1.
- There are as many vertices as there are cells.

Conclusion. The mean number of vertices of a typical cell is 4 .

Probability to belong to the zero-cell

Consequence of the Cauchy-Crofton formula: K convex body containing $0, C_{0}$ cell of the tessellation containing 0

$$
\begin{aligned}
\mathbb{P}\left(K \subset C_{0}\right) & =\exp \left(-\iint \mathbf{1}\left(L_{p, \theta} \cap K \neq \emptyset\right) \mathrm{d} p \mathrm{~d} \theta\right) \\
& =\exp (-\operatorname{per}(\partial \mathrm{K}))
\end{aligned}
$$

Remark. In higher dimension, the perimeter is replaced by the mean width.

Poisson-Voronoi tessellation

- X Poisson point process in \mathbb{R}^{2} of intensity measure $\mathrm{d} x$
- For every nucleus $x \in \mathbf{X}$, the cell associated is

$$
C(x \mid \mathbf{X}):=\left\{y \in \mathbb{R}^{2}:\right.
$$

$$
\left.\|y-x\| \leq\left\|y-x^{\prime}\right\| \forall x^{\prime} \in \mathbf{X}\right\}
$$

- Tessellation: set of cells $C(x \mid \mathbf{X})$

Properties: invariance under translations and rotations References: Descartes (1644), Gilbert (1961), Okabe et al. (1992)

Deterministic Voronoi grids

Mean number of vertices per cell

- Each vertex from the tessellation is contained in exactly 3 cells.
- Each vertex is the highest or lowest point from a unique cell with probability 1.
- There are twice as many vertices as there are cells.

Conclusion. The mean number of vertices of a typical cell is 6 .

Probability to belong to the zero-cell

K convex body containing $0, C_{0}$ Voronoi cell $C(0 \mid \mathbf{X} \cup\{0\})$

$$
\mathbb{P}\left(K \subset C_{0}\right)=\exp \left(-V_{d}\left(\mathcal{F}_{0}(K)\right)\right)
$$

where V_{d} is the volume and $\mathcal{F}_{0}(K)=\cup_{x \in K} B(x,\|x\|)$ flower of K

Plan

From game to theory: Buffon, integral geometry, random tessellations

From game to theory: 150 years of random convex hulls
Sylvester's problem
Extension of Sylvester's problem
Uniform model
Gaussian model
Asymptotic spherical shape
Mean and variance estimates

Addendum: some more models

Sylvester's problem

J. J. Sylvester, The Educational Times, Problem 1491 (1864)

Probability $p(K)$ that 4 independent points uniformly distributed in a convex set $K \subset \mathbb{R}^{2}$ with finite area are the vertices of a convex quadrilateral?

Sylvester's problem

J. J. Sylvester, The Educational Times, Problem 1491 (1864)

Probability $p(K)$ that 4 independent points uniformly distributed in a convex set $K \subset \mathbb{R}^{2}$ with finite area are the vertices of a convex quadrilateral?

Sylvester's problem

J. J. Sylvester, The Educational Times, Problem 1491 (1864)

Probability $p(K)$ that 4 independent points uniformly distributed in a convex set $K \subset \mathbb{R}^{2}$ with finite area are the vertices of a convex quadrilateral?

Sylvester's problem

J. J. Sylvester, The Educational Times, Problem 1491 (1864)

Probability $p(K)$ that 4 independent points uniformly distributed in a convex set $K \subset \mathbb{R}^{2}$ with finite area are the vertices of a convex quadrilateral?

Sylvester's problem

J. J. Sylvester, The Educational Times, Problem 1491 (1864)

Probability $p(K)$ that 4 independent points uniformly distributed in a convex set $K \subset \mathbb{R}^{2}$ with finite area are the vertices of a convex quadrilateral?

Sylvester's problem

B. $\operatorname{Efron}(1965): p(K)=1-\frac{4 \bar{A}(\text { Triangle })}{A(C)}$

Sylvester's problem

W. Blaschke (1923) :

$$
\frac{2}{3} \leq p(K) \leq 1-\frac{35}{12 \pi^{2}} \approx 0.70448
$$

Extension of Sylvester's problem

Probability that n independent points uniformly distributed in a convex set of \mathbb{R}^{2} with finite area are the vertices of a convex polygon?
P. Valtr (1996) :

$$
p_{n}(\mathcal{T})=\frac{2^{n}(3 n-3)!}{[(n-1)!]^{3}(2 n)!} \quad p_{n}(\mathcal{P})=\left[\frac{1}{n!}\binom{2 n-2}{n-1}\right]^{2}
$$

Extension of Sylvester's problem

I. Bárány (1999) :

$$
\log p_{n}(K) \underset{n \rightarrow \infty}{=}-2 n \log n+n \log \left(\frac{1}{4} e^{2} \frac{P A(K)^{3}}{A(K)}\right)+o(n)
$$

where $P A(K)$ is the affine perimeter of K

$$
\log p_{n}(D) \underset{n \rightarrow \infty}{=}-2 n \log n+n \log \left(2 \pi^{2} e^{2}\right)+o(n)
$$

Random convex hulls

- K convex body of \mathbb{R}^{d}
- K_{n} : convex hull of n independent points, uniformly distributed in K

Random convex hulls

- K convex body of \mathbb{R}^{d}
- K_{n} : convex hull of n independent points, uniformly distributed in K

Random convex hulls

- K convex body of \mathbb{R}^{d}
- K_{n} : convex hull of n independent points, uniformly distributed in K

Considered functionals $f_{k}(\cdot)$: number of k-dimensional faces, $0 \leq k \leq d$
$V_{d}(\cdot)$: volume

Explicit calculations

J. G. Wendel (1962): when K is symmetric,

$$
\mathbb{P}\left\{0 \notin K_{n}\right\}=2^{-(n-1)} \sum_{k=0}^{d-1}\binom{n-1}{k}_{(n \geq d)}
$$

B. Efron (1965) : $f_{0}(\cdot)$: \# vertices, $V_{d}(\cdot)$: volume

$$
\mathbb{E} f_{0}\left(K_{n}\right)=n\left(1-\frac{\mathbb{E} V_{d}\left(K_{n-1}\right)}{V_{d}(K)}\right)
$$

C. Buchta (2005) : identities between higher moments

Conclusion: very few non asymptotic calculations are possible!

Proof of Efron's relation

X_{1}, \cdots, X_{n} independent and uniformly distributed in K :

$$
\begin{aligned}
\mathbb{E} f_{0}\left(K_{n}\right) & =\mathbb{E} \sum_{k=1}^{n} \mathbf{1}_{\left\{X_{k} \notin \operatorname{Conv}\left(X_{i}, i \neq k\right)\right\}} \\
& =n \mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{\left\{X_{n} \notin \operatorname{Conv}\left(X_{1}, \cdots, X_{n-1}\right)\right\}} \mid X_{1}, \cdots, X_{n-1}\right]\right] \\
& =n \mathbb{E}\left[1-\frac{V_{d}\left(\operatorname{Conv}\left(X_{1}, \cdots, X_{n-1}\right)\right)}{V_{d}(K)}\right] \\
& =n\left(1-\frac{\mathbb{E} V_{d}\left(K_{n-1}\right)}{V_{d}(K)}\right)
\end{aligned}
$$

Gaussian model

$\rightarrow \Phi_{d}(x):=\frac{1}{(2 \pi)^{d / 2}} e^{-\|x\|^{2} / 2}, x \in \mathbb{R}^{d}$, $d \geq 2$

- K_{n} : convex hull of n independent points with common density Φ_{d}

Gaussian model

$-\Phi_{d}(x):=\frac{1}{(2 \pi)^{d / 2}} e^{-\|x\|^{2} / 2}, x \in \mathbb{R}^{d}$, $d \geq 2$

- K_{n} : convex hull of n independent points with common density Φ_{d}

Simulations of the uniform model

K_{50}, K disk
K_{50}, K square

Simulations of the uniform model

K_{100}, K disk
K_{100}, K square

Simulations of the uniform model

K_{500}, K disk
K_{500}, K square

Simulations of the Gaussian model

K_{50}
K_{100}
K_{500}

Gaussian polytopes: spherical shape

K_{50}
K_{100}
K_{500}

Gaussian polytopes: spherical shape

K_{5000}
K_{50000}

Asymptotic spherical shape

Geffroy (1961) :
$d_{H}\left(K_{n}, B(0, \sqrt{2 \log (n)})\right) \underset{n \rightarrow \infty}{\rightarrow} 0$ a.s.

K_{50000}

Comparison between uniform and Gaussian

K_{50} uniform/disk

K_{50} Gaussian

K_{100} Gaussian

Closeness to the spherical shape

Uniform case in the ball:
$\varepsilon_{n} \underset{n \rightarrow \infty}{\approx} c_{d} \frac{\log (n)}{n^{\frac{2}{d+1}}}$

Gaussian case:
$\varepsilon_{n} \underset{n \rightarrow \infty}{\approx} c_{d}^{\prime} \frac{\log (2 \log (n))}{\sqrt{2 \log (n)}}$

Asymptotic means

A. Rényi \& R. Sulanke (1963), H. Raynaud (1970), R. Schneider \& J. Wieacker (1978), I. Bárány \& C. Buchta (1993)

	$\mathbb{E}\left[f_{k}\left(K_{n}\right)\right]$	$V_{d}(K)-\mathbb{E}\left[V_{d}\left(K_{n}\right)\right]$ or $\mathbb{E}\left[V_{d}\left(K_{n}\right)\right]$
Uniform, smooth	$\sim c_{d, k}^{(1)}(K)$	
Gaussian	$n^{\frac{d-1}{d+1}}$	$\sim \tau_{d, d}^{(4)}(K) n^{-\frac{2}{d+1}}$
Uniform, polytope	$\sim \sim_{(d, k}^{(3)}(K) \log ^{d-1}(n)$	$\sim \tau_{d, d,(K)}^{(6)} n^{-1} \log ^{d-1}(n)$

$c_{d, k}^{(i)}, 0 \leq k \leq d$, explicit constants depending on d, k and K

Variance estimates

M. Reitzner (2005), V. Vu (2006), I. Bárány \& V. Vu (2007), I. Bárány \& M. Reitzner (2009)

	$\operatorname{Var}\left[f_{k}\left(K_{n}\right)\right]$	$\operatorname{Var}\left[V_{d}\left(K_{n}\right)\right]$
Uniform, smooth	$\Theta\left(n^{\frac{d-1}{d+1}}\right)$	$\Theta\left(n^{-\frac{d+3}{d+1}}\right)$
Gaussian	$\Theta\left(\log ^{\frac{d-1}{2}}(n)\right)$	$\Theta\left(\log ^{\frac{d-3}{2}}(n)\right)$
Uniform, polytope	$\Theta\left(\log ^{d-1}(n)\right)$	$\Theta\left(n^{-2} \log ^{d-1}(n)\right)$

Contributions

- Limiting variances for $f_{k}\left(K_{\lambda}\right)$ and $V_{d}\left(K_{\lambda}\right)$: existence and explicit calculation of the constants
- Asymptotic normality of the distributions of $f_{k}\left(K_{\lambda}\right)$ and $V_{d}\left(K_{\lambda}\right)$
- Limiting shape of K_{λ} for the uniform model in the ball and the Gaussian model

Joint works with T. Schreiber (Toruń, Poland) and J. E. Yukich (Lehigh, USA)

Asymptotic shape

\longrightarrow

Half-space	translate of Π^{\downarrow}
Sphere containing O	translate of $\partial \Pi^{\uparrow}$
Convexity	Parabolic convexity
Extreme point	$\left(x+\Pi^{\uparrow}\right)$ not completely covered
k-face of K_{λ}	Parabolic k-face
$R_{\lambda} V_{d}$	V_{d}

Some more models

- Random geometric graphs: nearest-neighbor, Delaunay, Gabriel...
- Boolean model

Thank you for your attention!

