

From game to theory: Buffon, integral geometry, random tessellations

From game to theory: 150 years of random convex hulls

Addendum: some more models

From game to theory: Buffon, integral geometry, random tessellations Buffon's needle problem Example of a formula from integral geometry Poisson point process Poisson line tessellation Poisson-Voronoi tessellation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

From game to theory: 150 years of random convex hulls

Addendum: some more models

Georges-Louis Leclerc, Comte de Buffon (1733)

Probability p that a needle of length ℓ dropped on a floor made of parallel strips of wood of same width $D > \ell$ will lie across a line?

Georges-Louis Leclerc, Comte de Buffon (1733)

Probability p that a needle of length ℓ dropped on a floor made of parallel strips of wood of same width $D > \ell$ will lie across a line?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ()

R and Θ independent r.v., uniformly distributed on $]0, \frac{D}{2}[$ and $] - \frac{\pi}{2}, \frac{\pi}{2}[$. There is intersection when $2R \leq \ell \cos(\Theta)$.

$$p = \int_{\theta = -\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{r=0}^{\frac{\ell}{2}\cos(\theta)} \frac{\mathrm{d}r\mathrm{d}\theta}{\frac{D}{2}\pi} = \frac{2\ell}{\pi D}$$

$$p = p([0,\ell]) = \frac{2\ell}{\pi D}$$

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 - のへで

Same question when dropping a polygonal line?

◆ロ ▶ ◆ 母 ▶ ◆ 母 ▶ ◆ 母 ▶ ◆ 日 ▶

Same question when dropping a convex body K?

◆ロ ▶ ◆ 母 ▶ ◆ 母 ▶ ◆ 母 ▶ ◆ 日 ▶

$$p(\partial K) = \frac{\operatorname{per}(\partial K)}{\pi D}$$

where $per(\partial K)$: perimeter of ∂K

・ コ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

∃ \$\\$<</p>\$\\$

Notation

- $p_k(\mathscr{C})$ probability to have exactly k intersections of \mathscr{C} with the lines
- $f(\mathscr{C}) = \sum_{k \ge 1} k p_k(\mathscr{C})$ mean number of intersections

Several juxtaposed needles

- $f([0, \ell]), \ \ell > 0$, additive and increasing so $f([0, \ell]) = \alpha \ell, \ \alpha > 0$
- Similarly, $f(\mathscr{C}) = \alpha \operatorname{per}(\mathscr{C})$
- $f(Circle of diameter D) = 2 = \alpha \pi D$
- If \mathscr{C} is the boundary of a convex body K with diam(K) < D, $f(\mathscr{C}) = 2p(\mathscr{C})$

Extensions in integral geometry

$$K$$
 convex body of \mathbb{R}^2
 $L_{p,\theta} = p(\cos(\theta), \sin(\theta)) + \mathbb{R}(-\sin(\theta), \cos(\theta)), \ p \in \mathbb{R}, \theta \in [0, \pi]$

p

$$\theta$$

 $L_{p,\theta}$

$$\operatorname{per}(\partial \mathrm{K}) = \int_{ heta=0}^{\pi} \int_{\mathrm{p}=-\infty}^{+\infty} \mathbf{1}(\mathrm{L}_{\mathrm{p}, heta} \cap \mathrm{K}
eq \emptyset) \mathrm{dpd} heta$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Extensions in integral geometry

$$\begin{split} & K \text{ convex body of } \mathbb{R}^2 \\ & L_{p,\theta} = p(\cos(\theta), \sin(\theta)) + \mathbb{R}(-\sin(\theta), \cos(\theta)), \ p \in \mathbb{R}, \ \theta \in [0, \pi) \end{split}$$

$$\operatorname{per}(\partial K) = \int_{\theta=0}^{\pi} \int_{p=-\infty}^{+\infty} \mathbf{1}(L_{p,\theta} \cap K \neq \emptyset) dp d\theta$$

Cauchy-Crofton formula

$$\operatorname{per}(\partial \mathbf{K}) = \int_{\theta=0}^{\pi} \operatorname{diam}_{\theta}(\mathbf{K}) \mathrm{d}\theta$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Random points

- W convex body
- μ probability measure on W
- $(X_i, i \ge 1)$ independent μ -distributed variables

$$\mathcal{E}_n = \{X_1, \cdots, X_n\} \quad (n \ge 1)$$

- $\#(\mathcal{E}_n \cap B_1)$ number of points in B_1
 - ► $#(\mathcal{E}_n \cap B_1)$ binomial variable $\mathbb{P}(\#(\mathcal{E}_n \cap B_1) = k) = \binom{n}{k} \mu(B_1)^k (1 - \mu(B_1))^{n-k},$ $0 \le k \le n$

$$\#(\mathcal{E}_n \cap B_1), \cdots, \#(\mathcal{E}_n \cap B_n) \text{ not independent} (B_1, \cdots, B_n \in \mathcal{B}(\mathbb{R}^2), B_i \cap B_j = \emptyset, i \neq j)$$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 目 ト

nac

3

Poisson point process

Poisson point process with intensity measure μ : locally finite subset **X** of \mathbb{R}^d such that

▶ $#(X \cap B_1)$ Poisson r.v. of mean $\mu(B_1)$

$$\mathbb{P}(\#(\mathbf{X} \cap B_1) = k) = e^{-\mu(B_1)} rac{\mu(B_1)^k}{k!}, \ k \in \mathbb{N}$$

$$\# (\mathbf{X} \cap B_1), \cdots, \# (\mathbf{X} \cap B_n) \text{ independent}$$
$$(B_1, \cdots, B_n \in \mathcal{B}(\mathbb{R}^d), B_i \cap B_j = \emptyset, i \neq j)$$

・ コ ト ・ 雪 ト ・ 目 ト ・

3 x 3

SQA

- ► X Poisson point process in ℝ² of intensity measure dpdθ
- ▶ For $(p, \theta) \in \mathbf{X}$, polar line

 $L_{p,\theta} = p(\cos(\theta), \sin(\theta)) + (\cos(\theta), \sin(\theta))^{\perp}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへ⊙

► Tessellation: set of connected components of $\mathbb{R}^d \setminus \bigcup_{(p,\theta) \in \mathbf{X}} L_{p,\theta}$

- ➤ X Poisson point process in ℝ² of intensity measure dpdθ
- ▶ For $(p, \theta) \in \mathbf{X}$, polar line

 $L_{p,\theta} = p(\cos(\theta), \sin(\theta)) + (\cos(\theta), \sin(\theta))^{\perp}$

► Tessellation: set of connected components of $\mathbb{R}^d \setminus \bigcup_{(p,\theta) \in \mathbf{X}} L_{p,\theta}$

- ► X Poisson point process in ℝ² of intensity measure dpdθ
- ▶ For $(p, \theta) \in \mathbf{X}$, polar line

 $L_{p,\theta} = p(\cos(\theta), \sin(\theta)) + (\cos(\theta), \sin(\theta))^{\perp}$

► Tessellation: set of connected components of $\mathbb{R}^d \setminus \bigcup_{(p,\theta) \in \mathbf{X}} L_{p,\theta}$

- ➤ X Poisson point process in ℝ² of intensity measure dpdθ
- ▶ For $(p, \theta) \in \mathbf{X}$, polar line

 $L_{p,\theta} = p(\cos(\theta), \sin(\theta)) + (\cos(\theta), \sin(\theta))^{\perp}$

► Tessellation: set of connected components of $\mathbb{R}^d \setminus \bigcup_{(p,\theta) \in \mathbf{X}} L_{p,\theta}$

- ► X Poisson point process in ℝ² of intensity measure dpdθ
- ▶ For $(p, \theta) \in \mathbf{X}$, polar line

 $L_{p,\theta} = p(\cos(\theta), \sin(\theta)) + (\cos(\theta), \sin(\theta))^{\perp}$

► Tessellation: set of connected components of $\mathbb{R}^d \setminus \bigcup_{(p,\theta) \in \mathbf{X}} L_{p,\theta}$

- ➤ X Poisson point process in ℝ² of intensity measure dpdθ
- ▶ For $(p, \theta) \in \mathbf{X}$, polar line

 $L_{p,\theta} = p(\cos(\theta), \sin(\theta)) + (\cos(\theta), \sin(\theta))^{\perp}$

► Tessellation: set of connected components of $\mathbb{R}^d \setminus \bigcup_{(p,\theta) \in \mathbf{X}} L_{p,\theta}$

- ► X Poisson point process in ℝ² of intensity measure dpdθ
- ▶ For $(p, \theta) \in \mathbf{X}$, polar line

 $L_{p,\theta} = p(\cos(\theta), \sin(\theta)) + (\cos(\theta), \sin(\theta))^{\perp}$

► Tessellation: set of connected components of $\mathbb{R}^d \setminus \bigcup_{(p,\theta) \in \mathbf{X}} L_{p,\theta}$

Questions of interest

 Asymptotic study of the population of cells (means, extremes): number of vertices, edge length in a window...

Study of a particular cell

zero-cell C_0 containing the origin typical cell C chosen uniformly at random

Means, moments and distribution of functionals of the cell (area, perimeter...), asymptotic sphericality

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

J. Møller (1986), I. N. Kovalenko (1998), D. Hug, M. Reitzner & R. Schneider (2004)

- Each vertex from the tessellation is contained in exactly 4 cells.
- Each vertex is the highest point from a unique cell with probability 1.
- There are as many vertices as there are cells.

Conclusion. The mean number of vertices of a typical cell is 4.

Probability to belong to the zero-cell

Consequence of the Cauchy-Crofton formula:

K convex body containing 0, C_0 cell of the tessellation containing 0

$$\mathbb{P}(K \subset C_0) = \exp\left(-\int\int \mathbf{1}(L_{p,\theta} \cap K \neq \emptyset) \mathrm{d}p \mathrm{d}\theta\right)$$
$$= \exp(-\mathrm{per}(\partial \mathrm{K}))$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Remark. In higher dimension, the perimeter is replaced by the mean width.

Poisson-Voronoi tessellation

- ➤ X Poisson point process in ℝ² of intensity measure dx
- ► For every nucleus x ∈ X, the cell associated is

$$C(x|\mathbf{X}) := \{ y \in \mathbb{R}^2 :$$
$$\|y - x\| \le \|y - x'\| \ \forall x' \in \mathbf{X} \}$$

► Tessellation: set of cells C(x|X)

Properties: invariance under translations and rotations *References*: **Descartes** (1644), **Gilbert** (1961), **Okabe et al.** (1992)

Deterministic Voronoi grids

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 - つへぐ

- Each vertex from the tessellation is contained in exactly 3 cells.
- Each vertex is the highest or lowest point from a unique cell with probability 1.
- There are twice as many vertices as there are cells.

Conclusion. The mean number of vertices of a typical cell is 6.

Probability to belong to the zero-cell

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

K convex body containing 0, C_0 Voronoi cell $C(0|\mathbf{X} \cup \{0\})$

$$\mathbb{P}(K \subset C_0) = \exp(-V_d(\mathcal{F}_0(K)))$$

where V_d is the volume and $\mathcal{F}_0(K) = \bigcup_{x \in K} B(x, ||x||)$ flower of K

From game to theory: Buffon, integral geometry, random tessellations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

From game to theory: 150 years of random convex hulls

Sylvester's problem Extension of Sylvester's problem Uniform model Gaussian model Asymptotic spherical shape Mean and variance estimates

Addendum: some more models

J. J. Sylvester, The Educational Times, Problem 1491 (1864)

Probability p(K) that 4 independent points uniformly distributed in a convex set $K \subset \mathbb{R}^2$ with finite area are the vertices of a convex quadrilateral?

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨー

Sac

J. J. Sylvester, The Educational Times, Problem 1491 (1864)

Probability p(K) that 4 independent points uniformly distributed in a convex set $K \subset \mathbb{R}^2$ with finite area are the vertices of a convex quadrilateral?

◆□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → </p>

SQA

J. J. Sylvester, The Educational Times, Problem 1491 (1864)

Probability p(K) that 4 independent points uniformly distributed in a convex set $K \subset \mathbb{R}^2$ with finite area are the vertices of a convex quadrilateral?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

J. J. Sylvester, The Educational Times, Problem 1491 (1864)

Probability p(K) that 4 independent points uniformly distributed in a convex set $K \subset \mathbb{R}^2$ with finite area are the vertices of a convex quadrilateral?

J. J. Sylvester, The Educational Times, Problem 1491 (1864)

Probability p(K) that 4 independent points uniformly distributed in a convex set $K \subset \mathbb{R}^2$ with finite area are the vertices of a convex quadrilateral?

B. Efron (1965) :
$$p(K) = 1 - \frac{4\overline{A}(Triangle)}{A(C)}$$

▲ロト ▲母 ト ▲目 ト ▲目 ト ▲ 白 ト

W. Blaschke (1923) :

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

Extension of Sylvester's problem

Probability that *n* independent points uniformly distributed in a convex set of \mathbb{R}^2 with finite area are the vertices of a convex polygon?

P. Valtr (1996) :

・ ロ ト ・ 何 ト ・ 日 ト ・ 日 ト

SQA

I. Bárány (1999) :

$$\log p_n(K) = -2n \log n + n \log \left(\frac{1}{4}e^2 \frac{PA(K)^3}{A(K)}\right) + o(n)$$

where PA(K) is the *affine perimeter* of K

$$\log p_n(D) = -2n \log n + n \log(2\pi^2 e^2) + o(n)$$

▲ロト▲舂▶▲恵▶▲恵▶ 恵 のQ@

Random convex hulls

- K convex body of \mathbb{R}^d
- ► K_n: convex hull of n independent points, uniformly distributed in K

ヘロア 人間 アメヨア 小田 アー

3

590

Random convex hulls

- K convex body of \mathbb{R}^d
- ► K_n: convex hull of n independent points, uniformly distributed in K

э

イロト イヨト イヨト

nac

Random convex hulls

- K convex body of \mathbb{R}^d
- ► K_n: convex hull of n independent points, uniformly distributed in K

Considered functionals

 $f_k(\cdot)$: number of k-dimensional faces, $0 \le k \le d$ $V_d(\cdot)$: volume J. G. Wendel (1962): when K is symmetric,

$$\mathbb{P}\{0 \notin K_n\} = 2^{-(n-1)} \sum_{k=0}^{d-1} \binom{n-1}{k} (n \ge d)$$

B. Efron (1965) : $f_0(\cdot)$: # vertices, $V_d(\cdot)$: volume

$$\mathbb{E}f_0(K_n) = n\left(1 - \frac{\mathbb{E}V_d(K_{n-1})}{V_d(K)}\right)$$

C. Buchta (2005) : identities between higher moments

Conclusion: very few non asymptotic calculations are possible!

 X_1, \cdots, X_n independent and uniformly distributed in K:

$$\mathbb{E}f_{0}(K_{n}) = \mathbb{E}\sum_{k=1}^{n} \mathbf{1}_{\{X_{k}\notin \operatorname{Conv}(X_{i}, i\neq k)\}}$$

$$= n\mathbb{E}[\mathbb{E}[\mathbf{1}_{\{X_{n}\notin \operatorname{Conv}(X_{1}, \cdots, X_{n-1})\}} | X_{1}, \cdots, X_{n-1}]]$$

$$= n\mathbb{E}\left[1 - \frac{V_{d}(\operatorname{Conv}(X_{1}, \cdots, X_{n-1}))}{V_{d}(K)}\right]$$

$$= n\left(1 - \frac{\mathbb{E}V_{d}(K_{n-1})}{V_{d}(K)}\right)$$

・ロト・西ト・ボン・ビー しょうくの

•
$$\Phi_d(x) := \frac{1}{(2\pi)^{d/2}} e^{-||x||^2/2}, x \in \mathbb{R}^d,$$

 $d \ge 2$

 K_n : convex hull of n independent points with common density Φ_d

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

•
$$\Phi_d(x) := \frac{1}{(2\pi)^{d/2}} e^{-||x||^2/2}, x \in \mathbb{R}^d,$$

 $d \ge 2$

 K_n : convex hull of n independent points with common density Φ_d

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Simulations of the uniform model

 K_{50} , K disk

K₅₀, K square

◆ロト ◆御 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Simulations of the uniform model

K100, K disk

 K_{100} , K square

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Ð.

5900

Simulations of the uniform model

K500, K disk

K₅₀₀, K square

(日)、

5900

Simulations of the Gaussian model

 K_{50}

590

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ — 圖…

Gaussian polytopes: spherical shape

 K_{50}

 K_{500}

æ

590

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Gaussian polytopes: spherical shape

 K_{5000}

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $d_H(K_n, B(0, \sqrt{2\log(n)})) \xrightarrow[n \to \infty]{} 0$ a.s.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Comparison between uniform and Gaussian

 K_{50} uniform/disk

 \textit{K}_{100} uniform/disk

 $K_{\rm 500}$ uniform/disk

K₅₀ Gaussian

 K_{100} Gaussian

Closeness to the spherical shape

Uniform case in the ball:

$$\varepsilon_n \underset{n \to \infty}{\approx} c_d \frac{\log(n)}{n^{\frac{2}{d+1}}}$$

Gaussian case:

$$\varepsilon_n \approx_{n \to \infty} c'_d \frac{\log(2\log(n))}{\sqrt{2\log(n)}}$$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

A. Rényi & R. Sulanke (1963), H. Raynaud (1970), R. Schneider & J. Wieacker (1978), I. Bárány & C. Buchta (1993)

	$\mathbb{E}[f_k(K_n)]$	$V_d(K) - \mathbb{E}[V_d(K_n)]$ or $\mathbb{E}[V_d(K_n)]$
Uniform, smooth	$\sim c_{d,k}^{(1)}(\kappa) \ n^{\frac{d-1}{d+1}}$	$_{\sim c_{d,d}^{(4)}(\kappa)} n^{-\frac{2}{d+1}}$
Gaussian	$_{\sim c_{d,k}^{(2)}}\log^{d-1\over 2}(n)$	$\sim c_{d,d}^{(5)} \log^{\frac{d}{2}}(n)$
Uniform, polytope	$\sim c^{(3)}_{d,k}(\kappa) \log^{d-1}(n)$	$\sim c_{d,d}^{(6)}(\kappa) n^{-1} \log^{d-1}(n)$

 $c_{d,k}^{(i)}, \, 0 \leq k \leq d$, explicit constants depending on d, k and K

M. Reitzner (2005), V. Vu (2006), I. Bárány & V. Vu (2007), I. Bárány & M. Reitzner (2009)

	$\operatorname{Var}[f_k(K_n)]$	$\operatorname{Var}[V_d(K_n)]$
Uniform, smooth	$\Theta(n^{\frac{d-1}{d+1}})$	$\Theta(n^{-\frac{d+3}{d+1}})$
Gaussian	$\Theta(\log^{\frac{d-1}{2}}(n))$	$\Theta(\log^{\frac{d-3}{2}}(n))$
Uniform, polytope	$\Theta(\log^{d-1}(n))$	$\Theta(n^{-2}\log^{d-1}(n))$

- ► Limiting variances for f_k(K_λ) and V_d(K_λ): existence and explicit calculation of the constants
- Asymptotic normality of the distributions of f_k(K_λ) and V_d(K_λ)
- Limiting shape of K_{λ} for the uniform model in the ball and the Gaussian model

Joint works with T. Schreiber (Toruń, Poland) and J. E. Yukich (Lehigh, USA)

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

Asymptotic shape

 $\Pi^{\uparrow} := \{ (v,h) \in \mathbb{R}^{d-1} \times \mathbb{R} : h \geq \frac{\|v\|^2}{2} \}, \quad \Pi^{\downarrow} := \{ (v,h) \in \mathbb{R}^{d-1} \times \mathbb{R} : h \leq -\frac{\|v\|^2}{2} \}$

Half-space	translate of Π^{\downarrow}
Sphere containing O	translate of $\partial \Pi^{\uparrow}$
Convexity	Parabolic convexity
Extreme point	$(x + \Pi^{\uparrow})$ not completely covered
<i>k</i> -face of K_λ	Parabolic <i>k</i> -face
$R_{\lambda}V_d$	V _d

- Random geometric graphs: nearest-neighbor, Delaunay, Gabriel...
- Boolean model

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

Thank you for your attention!

<ロト < 回 ト < 三 ト < 三 ト 三 の < ()</p>