
Events, permissions, and obligations
. . . and their refinement

Stephan Merz

(with thanks to Frédéric Cuppens and Dominique Méry)

INRIA Lorraine & LORIA, Nancy

Context

Project on information security
access control

information flow

Static system model : who may / must (not) do what ?
identify organizations, roles, activities, contexts, etc

assign permissions / user rights and responsibilities

Integration with dynamic system model
(temporal) properties of behaviors

stepwise refinement preserving “deontic” properties

IFIP WG 2.2, Bertinoro, 09/2004 – p.1/16

Framework: event systems
system Bank
constants Client, Loan, maxDebt
variables loans, clt, due, rate
invariant ∧ loans ⊆ Loan

∧ clt ∈ [loans → Client]∧ due ∈ [loans → N] ∧ rate ∈ [loans → N]

∧ ∀c ∈ Client : ∑{due(ll) : ll ∈ loans ∧ clt(ll) = c} ≤ maxDebt
initial loans = ∅

event newLoan(c : Client, l : Loan, sum : N, dur : N) ≡

∧ l /∈ loans ∧ sum + ∑{due(ll) : ll ∈ loans ∧ clt(ll) = c} ≤ maxDebt

∧ loans′ = loans ∪ {l} ∧ clt′ = clt ∪ {l 7→ c}

∧ due′ = due ∪ {l 7→ sum} ∧ rate′ = rate ∪ {l 7→ sum/dur}

event payRate(l : Loan) ≡

∧ l ∈ loans

∧ due′ = due ⊕ {l 7→ due(l)− rate(l)}

∧ clt′ = clt ∧ rate′ = rate

IFIP WG 2.2, Bertinoro, 09/2004 – p.2/16

Properties (safety)

Stable predicates

P ∧ e(x) ⇒ P′ for all events e

stable P

Invariants

Init ⇒ P stable P

inv P

inv P P ⇒ Q

always Q

Proof obligation : inv Inv
for the declared system invariant Inv

IFIP WG 2.2, Bertinoro, 09/2004 – p.3/16

Adding fairness conditions
Event systems describe what can occur
Fairness ensures that events do occur eventually

event payRate(l : Loan) ≡

∧ l ∈ loans

∧ due′ = due ⊕ {l 7→ due(l) − rate(l)}

∧ clt′ = clt ∧ rate′ = rate

fairness l ∈ loans ∧ due(l) > 0

This talk : weak fairness
if condition persists, event must eventually occur

condition may be stronger than guard

IFIP WG 2.2, Bertinoro, 09/2004 – p.4/16

Properties (liveness)
F G : every F will be followed by G

verification rules

P ∧ a(x) ∧ ¬e(t) ⇒ P′ ∨ Q′ for all events a
P ⇒ faire(t)

P Q ∨ (P ∧ e(t))

P ∧ e(t) ⇒ Q′

P ∧ e(t) Q

F ⇒ G

F G

inv I I ∧ F G ∨ ¬I

F G

∀x ∈ S : F(x) G ∨ (∃y ∈ S : y ≺ x ∧ F(y)) (S,≺) well-founded

(∃x ∈ S : F(x)) G (x not free in G)

F G G H

F H

F H G H

F ∨ G H

F G

(∃x : F) (∃x : G)

IFIP WG 2.2, Bertinoro, 09/2004 – p.5/16

Refinement : intuition
add detail to model, but preserve properties

different data representation, related by linking invariant J

refine grain of atomicity of events

map concrete events to abstract ones (maybe stutter)

s s

s

-
ere f

6

J

s-
eabs ∨ τ

-

J

common extra conditions :

eventually perform
abstract events

relative deadlock freedom

here : preserve fairness

IFIP WG 2.2, Bertinoro, 09/2004 – p.6/16

Refinement : intuition
add detail to model, but preserve properties

different data representation, related by linking invariant J

refine grain of atomicity of events

map concrete events to abstract ones (maybe stutter)

s s

s

-
ere f

6

J

s-
eabs ∨ τ

-

J

common extra conditions :

eventually perform
abstract events

relative deadlock freedom

here : preserve fairness

IFIP WG 2.2, Bertinoro, 09/2004 – p.6/16

Refinement : intuition
add detail to model, but preserve properties

different data representation, related by linking invariant J

refine grain of atomicity of events

map concrete events to abstract ones (maybe stutter)

s s

s

-
ere f

6

J

s-
eabs ∨ τ

-

J

common extra conditions :

eventually perform
abstract events

relative deadlock freedom

here : preserve fairness

IFIP WG 2.2, Bertinoro, 09/2004 – p.6/16

Refinement : proof obligations

simulation of initial condition

Initre f ⇒ ∃varabs : Initabs ∧ J

step simulation (possibly stuttering)

er(t) ∧ J ⇒ ∃u, var′abs : ea(u) ∧ J′ (er refines ea)

er(t) ∧ J ⇒ ∃var′abs : var′abs = varabs ∧ J′ (er new event)

refinement of fairness constraints (er1, . . . , ern refine ea)

true ∨ ¬(∃varabs : fairea(u) ∧ J)

∨ (∃t1 : er1(t1)) ∨ . . . ∨ (∃tn : ern(tn))

IFIP WG 2.2, Bertinoro, 09/2004 – p.7/16

Refinement : properties

simulation of traces

for every trace of the concrete system Re f

there is a corresponding trace of the abstract system Abs

preservation of properties modulo linking invariant

Abs |= stable P ⇒ Re f |= stable (∃varabs : P ∧ J)

Abs |= inv P ⇒ Re f |= inv P̄

Abs |= always P ⇒ Re f |= always P̄

Abs |= F G ⇒ Re f |= F̄ Ḡ

IFIP WG 2.2, Bertinoro, 09/2004 – p.8/16

Refinement : properties

simulation of traces

for every trace of the concrete system Re f

there is a corresponding trace of the abstract system Abs

preservation of properties modulo linking invariant

Abs |= stable P ⇒ Re f |= stable (∃varabs : P ∧ J)

Abs |= inv P ⇒ Re f |= inv P̄

Abs |= always P ⇒ Re f |= always P̄

Abs |= F G ⇒ Re f |= F̄ Ḡ

IFIP WG 2.2, Bertinoro, 09/2004 – p.8/16

Permissions & obligations

Who may/must do what, under what circumstances ?

static model of entities and activities (Or-BAC)
represented as constants and events

specify permissions / rights and obligations
add corresponding predicates to event definitions

Relation with system model ?

verify “deontic” properties of model

and adapt refinement relation

IFIP WG 2.2, Bertinoro, 09/2004 – p.9/16

Permissions & obligations

Who may/must do what, under what circumstances ?

static model of entities and activities (Or-BAC)
represented as constants and events

specify permissions / rights and obligations
add corresponding predicates to event definitions

Relation with system model ?

verify “deontic” properties of model

and adapt refinement relation

IFIP WG 2.2, Bertinoro, 09/2004 – p.9/16

Representing permissions

Extend description of events

event newLoan(c : Client, l : Loan, sum : N, dur : N) ≡ . . .

permission l /∈ loans ∧ risk(c, sum) ∈ {low, medium}

interdiction risk(c, sum) = high

Verification conditions ensure that annotations hold

invariant and permission implies guard

invariant and interdiction implies negation of guard
always ¬(e(t) ∧ intde(t))

IFIP WG 2.2, Bertinoro, 09/2004 – p.10/16

Representing obligations

Similarly add obligation predicates

event payRate(l : Loan) ≡ . . .

obligation l ∈ loans ∧ due(l) > 0

Temporal interpretation

strict obligation oble(t) e(t)

weak obligation oble(t) ¬oble(t) ∨ e(t) [this is just weak fairness!]

We know how to establish these properties

IFIP WG 2.2, Bertinoro, 09/2004 – p.11/16

Refinement : preserving properties

Obligations & interdictions : nothing to prove

expressed as (linear-time) properties of traces

hence preserved by refinement

Permissions : more problematic

refinement does not preserve branching behavior

what should be preserved across non-atomic refinement ??

refined event won’t be executable whenever abstract one is

IFIP WG 2.2, Bertinoro, 09/2004 – p.12/16

Refinement : preserving properties

Obligations & interdictions : nothing to prove

expressed as (linear-time) properties of traces

hence preserved by refinement

Permissions : more problematic

refinement does not preserve branching behavior

what should be preserved across non-atomic refinement ??

refined event won’t be executable whenever abstract one is

IFIP WG 2.2, Bertinoro, 09/2004 – p.12/16

Refinement of permissions
Idea : refine abstract-level permission

by a concrete-level permission (to start a branch)

and a concrete-level obligation (to simulate the event)

-

�
�

�
�

�
�

�
�

��*

permea

ei

er

Formalization (assume ea refined by er1, . . . , ern)

identify “initial events” ei1, . . . , eim of refined model where

permea ⇒ permei1 ∨ . . . ∨ permeim and

eij ¬permea ∨ er1 ∨ . . . ∨ ern

IFIP WG 2.2, Bertinoro, 09/2004 – p.13/16

Refinement of permissions
Idea : refine abstract-level permission

by a concrete-level permission (to start a branch)

and a concrete-level obligation (to simulate the event)

-�
�

�
�

�
�

�
�

��*

permea

ei

er

Formalization (assume ea refined by er1, . . . , ern)

identify “initial events” ei1, . . . , eim of refined model where

permea ⇒ permei1 ∨ . . . ∨ permeim and

eij ¬permea ∨ er1 ∨ . . . ∨ ern

IFIP WG 2.2, Bertinoro, 09/2004 – p.13/16

Refinement of permissions
Idea : refine abstract-level permission

by a concrete-level permission (to start a branch)

and a concrete-level obligation (to simulate the event)

-�
�

�
�

�
�

�
�

��*

permea

ei

er

Formalization (assume ea refined by er1, . . . , ern)

identify “initial events” ei1, . . . , eim of refined model where

permea ⇒ permei1 ∨ . . . ∨ permeim and

eij ¬permea ∨ er1 ∨ . . . ∨ ern

IFIP WG 2.2, Bertinoro, 09/2004 – p.13/16

Example
Refining event newLoan

event askLoan(c : Client, l : Loan, sum : N, dur : N) ≡ . . .

permission l /∈ loans

event approveLoan(l : Loan, e : Employee) ≡ . . .

permission

∧ l ∈ non_approved

∧ ∨ risk(clt(l), due(l)) = low ∧ rank(e) ≥ Clerk

∨ risk(clt(l), due(l)) = medium ∧ rank(e) ≥ Manager

interdiction risk(clt(l), due(l)) = high

obligation l ∈ non_approved ∧ risk(clt(l), due(l)) ∈ {low, medium}

IFIP WG 2.2, Bertinoro, 09/2004 – p.14/16

Observations

Refinement of permissions is transitive

introduce explicit permission on “initial” event

has to be taken into account when refining further

Weak interpretation of obligations adequate

consider client applying for two loans concurrently

no obligation to approve them both

IFIP WG 2.2, Bertinoro, 09/2004 – p.15/16

Summing up

slight extension of event systems

represent permissions, interdictions, obligations

property-preserving refinement rules

non-atomic refinement of events

inheritance of linear-time properties

basic branching-time properties : enabledness + liveness

future work : controllers for security policies

IFIP WG 2.2, Bertinoro, 09/2004 – p.16/16

	Context
	Framework: event systems
	Properties (safety)
	Adding fairness conditions
	Properties (liveness)
	Refinement : intuition
	Refinement : intuition
	Refinement : intuition

	Refinement : proof obligations
	Refinement : properties
	Refinement : properties

	Permissions & obligations
	Permissions & obligations

	Representing permissions
	Representing obligations
	Refinement : preserving properties
	Refinement : preserving properties

	Refinement of permissions
	Refinement of permissions
	Refinement of permissions

	Example
	Observations
	Summing up

