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Context

Project on information security
access control

information flow

Static system model : who may / must (not) do what ?
identify organizations, roles, activities, contexts, etc

assign permissions / user rights and responsibilities

Integration with dynamic system model
(temporal) properties of behaviors

stepwise refinement preserving “deontic” properties
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Framework: event systems
system Bank
constants Client, Loan, maxDebt
variables loans, clt, due, rate
invariant ∧ loans ⊆ Loan

∧ clt ∈ [loans → Client]∧ due ∈ [loans → N] ∧ rate ∈ [loans → N]

∧ ∀c ∈ Client : ∑{due(ll) : ll ∈ loans ∧ clt(ll) = c} ≤ maxDebt
initial loans = ∅

event newLoan(c : Client, l : Loan, sum : N, dur : N) ≡

∧ l /∈ loans ∧ sum + ∑{due(ll) : ll ∈ loans ∧ clt(ll) = c} ≤ maxDebt

∧ loans′ = loans ∪ {l} ∧ clt′ = clt ∪ {l 7→ c}

∧ due′ = due ∪ {l 7→ sum} ∧ rate′ = rate ∪ {l 7→ sum/dur}

event payRate(l : Loan) ≡

∧ l ∈ loans

∧ due′ = due ⊕ {l 7→ due(l)− rate(l)}

∧ clt′ = clt ∧ rate′ = rate
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Properties (safety)

Stable predicates

P ∧ e(x) ⇒ P′ for all events e

stable P

Invariants

Init ⇒ P stable P

inv P

inv P P ⇒ Q

always Q

Proof obligation : inv Inv
for the declared system invariant Inv
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Adding fairness conditions
Event systems describe what can occur
Fairness ensures that events do occur eventually

event payRate(l : Loan) ≡

∧ l ∈ loans

∧ due′ = due ⊕ {l 7→ due(l) − rate(l)}

∧ clt′ = clt ∧ rate′ = rate

fairness l ∈ loans ∧ due(l) > 0

This talk : weak fairness
if condition persists, event must eventually occur

condition may be stronger than guard
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Properties (liveness)
F G : every F will be followed by G

verification rules

P ∧ a(x) ∧ ¬e(t) ⇒ P′ ∨ Q′ for all events a
P ⇒ faire(t)

P Q ∨ (P ∧ e(t))

P ∧ e(t) ⇒ Q′

P ∧ e(t) Q

F ⇒ G

F G

inv I I ∧ F G ∨ ¬I

F G

∀x ∈ S : F(x) G ∨ (∃y ∈ S : y ≺ x ∧ F(y)) (S,≺) well-founded

(∃x ∈ S : F(x)) G (x not free in G)

F G G H

F H

F H G H

F ∨ G H

F G

(∃x : F) (∃x : G)
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Refinement : intuition
add detail to model, but preserve properties

different data representation, related by linking invariant J

refine grain of atomicity of events

map concrete events to abstract ones (maybe stutter)

s s

s
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6

J

s-
eabs ∨ τ

-

J

common extra conditions :

eventually perform
abstract events

relative deadlock freedom

here : preserve fairness
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Refinement : proof obligations

simulation of initial condition

Initre f ⇒ ∃varabs : Initabs ∧ J

step simulation (possibly stuttering)

er(t) ∧ J ⇒ ∃u, var′abs : ea(u) ∧ J′ (er refines ea)

er(t) ∧ J ⇒ ∃var′abs : var′abs = varabs ∧ J′ (er new event)

refinement of fairness constraints (er1, . . . , ern refine ea)

true ∨ ¬(∃varabs : fairea(u) ∧ J)

∨ (∃t1 : er1(t1)) ∨ . . . ∨ (∃tn : ern(tn))
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Refinement : properties

simulation of traces

for every trace of the concrete system Re f

there is a corresponding trace of the abstract system Abs

preservation of properties modulo linking invariant

Abs |= stable P ⇒ Re f |= stable (∃varabs : P ∧ J)

Abs |= inv P ⇒ Re f |= inv P̄

Abs |= always P ⇒ Re f |= always P̄

Abs |= F G ⇒ Re f |= F̄ Ḡ
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Permissions & obligations

Who may/must do what, under what circumstances ?

static model of entities and activities (Or-BAC)
represented as constants and events

specify permissions / rights and obligations
add corresponding predicates to event definitions

Relation with system model ?

verify “deontic” properties of model

and adapt refinement relation
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Representing permissions

Extend description of events

event newLoan(c : Client, l : Loan, sum : N, dur : N) ≡ . . .

permission l /∈ loans ∧ risk(c, sum) ∈ {low, medium}

interdiction risk(c, sum) = high

Verification conditions ensure that annotations hold

invariant and permission implies guard

invariant and interdiction implies negation of guard
always ¬(e(t) ∧ intde(t))
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Representing obligations

Similarly add obligation predicates

event payRate(l : Loan) ≡ . . .

obligation l ∈ loans ∧ due(l) > 0

Temporal interpretation

strict obligation oble(t) e(t)

weak obligation oble(t) ¬oble(t) ∨ e(t) [this is just weak fairness!]

We know how to establish these properties
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Refinement : preserving properties

Obligations & interdictions : nothing to prove

expressed as (linear-time) properties of traces

hence preserved by refinement

Permissions : more problematic

refinement does not preserve branching behavior

what should be preserved across non-atomic refinement ??

refined event won’t be executable whenever abstract one is
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Refinement of permissions
Idea : refine abstract-level permission

by a concrete-level permission (to start a branch)

and a concrete-level obligation (to simulate the event)
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permea

ei

er

Formalization (assume ea refined by er1, . . . , ern)

identify “initial events” ei1, . . . , eim of refined model where

permea ⇒ permei1 ∨ . . . ∨ permeim and

eij  ¬permea ∨ er1 ∨ . . . ∨ ern
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Example
Refining event newLoan

event askLoan(c : Client, l : Loan, sum : N, dur : N) ≡ . . .

permission l /∈ loans

event approveLoan(l : Loan, e : Employee) ≡ . . .

permission

∧ l ∈ non_approved

∧ ∨ risk(clt(l), due(l)) = low ∧ rank(e) ≥ Clerk

∨ risk(clt(l), due(l)) = medium ∧ rank(e) ≥ Manager

interdiction risk(clt(l), due(l)) = high

obligation l ∈ non_approved ∧ risk(clt(l), due(l)) ∈ {low, medium}
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Observations

Refinement of permissions is transitive

introduce explicit permission on “initial” event

has to be taken into account when refining further

Weak interpretation of obligations adequate

consider client applying for two loans concurrently

no obligation to approve them both
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Summing up

slight extension of event systems

represent permissions, interdictions, obligations

property-preserving refinement rules

non-atomic refinement of events

inheritance of linear-time properties

basic branching-time properties : enabledness + liveness

future work : controllers for security policies
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