1

Events, permissions, and obligations
... and their refinement

Stephan Merz

(with thanks to Frédéric Cuppens and Dominique Méry)

INRIA Lorraine & LORIA, Nancy

ZIINRIA
=

Context L

@ Project on information security
@ access control

@ information flow

@ Static system model : who may / must (not) do what ?
@ identify organizations, roles, activities, contexts, etc

@ assign permissions / user rights and responsibilities

@ Integration with dynamic system model
@ (temporal) properties of behaviors

a stepwise refinement preserving “deontic” properties

IFIP WG 2.2, Bertinoro, 09/2004 - p.1/16

Framework: event systems L

system Bank
constants Client, Loan, maxDebt
variables loans, clt, due, rate

invariant A loans C Loan
A clt € [loans — Client] A due € [loans — IN] A rate € [loans — IN]

AYc € Client : Y {due(ll) : 1l € loans A clt(ll) = c} < maxDebt
initial loans = @
event newlLoan(c: Client,l : Loan,sum : IN,dur : N) =

A1 & loans N sum + Y {due(ll) : 1l € loans A clt(Il) = c} < maxDebt
A loans’ = loans U {I} Aclt' = clt U{l — c}
A due’ = due U {l — sum} Arate’ = rate U {l — sum/dur}
event payRate(l: Loan) =
Al € loans
A due’ = due @ {I — due(l) — rate(l)}

A clt! = clt A rate’ = rate

IFIP WG 2.2, Bertinoro, 09/2004 - p.2/16

Properties (safety)

a Stable predicates

PAe(x) = P’ forall eventse

stable P

@ Invariants

Init = P stable P

inv P

@ Proof obligation: inv Inv

inv P P=Q

always Q

for the declared system invariant Inv

IFIP WG 2.2, Bertinoro, 09/2004 - p.3/16

Adding fairness conditions L

e EHvent systems describe what can occur

e Fairness ensures that events do occur eventually

event payRate(l : Loan) =
N1 € loans
A due’ = due ® {l — due(l) — rate(l)}
A clt’ = clt A rate’ = rate

fairness [€ loans N due(l) > 0

e This talk : weak fairness
@ if condition persists, event must eventually occur

@ condition may be stronger than guard

=

IFIP WG 2.2, Bertinoro, 09/2004 - p.4/16

Properties (liveness) L

@ F~» G: every F will be followed by G

@ verification rules

PAa(x)N—e(t)=P vQ forall eventsa
P = fair,(t)
P~ QV(PAe(t))

Pne(t)= Q' F=G inv [INF~ GV -l
PAe(t)~Q F~G F~G

VxeS:F(x)~»GV(IyeS:y<xAF(y)) (S, <) well-founded
(IxeS:F(x))~G (x not free in G)

F~ G G~ H F~~H G~ H F ~ G
F~~H FvG~H (x: F) ~ (Ix: G)

IFIP WG 2.2, Bertinoro, 09/2004 - p.5/16

Refinement : intuition L

@ add detail to model, but preserve properties

o different data representation, related by linking invariant |

@ refine grain of atomicity of events

@ map concrete events to abstract ones (maybe stutter)

Cref

IFIP WG 2.2, Bertinoro, 09/2004 - p.6/16

Refinement : intuition L

@ add detail to model, but preserve properties

o different data representation, related by linking invariant |

@ refine grain of atomicity of events

@ map concrete events to abstract ones (maybe stutter)

€ips VT

Cref

IFIP WG 2.2, Bertinoro, 09/2004 - p.6/16

Refinement : intuition L

@ add detail to model, but preserve properties

o different data representation, related by linking invariant |

@ refine grain of atomicity of events

@ map concrete events to abstract ones (maybe stutter)

Cabs V' T common extra conditions :
r T @ eventually perform
| :] abstract events
i @ relative deadlock freedom
¢ o here : preserve fairness

Cref

IFIP WG 2.2, Bertinoro, 09/2004 - p.6/16

Refinement : proof obligations L

@ simulation of initial condition

Init,r = Jvargs : Initgys A]
e step simulation (possibly stuttering)

er(t) N] = Ju,var], :ea(u)] (er refines ea)

er(t) N] = Foar’, :var’, = varys N] (er new event)

abs abs
e refinement of fairness constraints (erq,...,er, refine ea)

true ~ \V —(Jvary, : fair, (u) A J)
V (Tty ceri(ty)) V...V (3t, s ery(tn))

IFIP WG 2.2, Bertinoro, 09/2004 - p.7/16

Refinement : properties L

e simulation of traces

for every trace of the concrete system Ref

there is a corresponding trace of the abstract system Abs

IFIP WG 2.2, Bertinoro, 09/2004 - p.8/16

Refinement : properties L

e simulation of traces

for every trace of the concrete system Ref

there is a corresponding trace of the abstract system Abs
@ preservation of properties modulo linking invariant

Abs = stable P Ref |= stable (Jvar,,s : P A J)

Abs = inv P Ref =inv P

Abs = always P Ref = always P

L

Abs = F ~ G Ref =EF ~ G

IFIP WG 2.2, Bertinoro, 09/2004 - p.8/16

Permissions & obligations L

e Who may/must do what, under what circumstances ?

@ static model of entities and activities (Or-BAC)
represented as constants and events

@ specify permissions / rights and obligations
add corresponding predicates to event definitions

IFIP WG 2.2, Bertinoro, 09/2004 - p.9/16

Permissions & obligations L

@ Who may/must do what, under what circumstances ?

@ static model of entities and activities (Or-BAC)
represented as constants and events

@ specify permissions / rights and obligations
add corresponding predicates to event definitions

@ Relation with system model ?

@ verify “deontic” properties of model

@ and adapt refinement relation

IFIP WG 2.2, Bertinoro, 09/2004 - p.9/16

Representing permissions L

e Extend description of events

event newLoan(c : Client,l : Loan,sum : IN,dur : IN) = ...
permission [¢ loans A risk(c,sum) € {low, medium}

interdiction risk(c,sum) = high

@ Verification conditions ensure that annotations hold

@ invariant and permission implies guard

@ invariant and interdiction implies negation of guard
always —(e(t) Nintd,(t))

IFIP WG 2.2, Bertinoro, 09/2004 — p.10/16

Representing obligations

e Similarly add obligation predicates

event payRate(l : Loan) = ...
obligation | € loans A due(l) > 0

@ Temporal interpretation

strict obligation obl,(t) ~~ e(t)
weak obligation obl,(t) ~~ —obl,(t) V e(t) [this is just weak fairness!]

@ We know how to establish these properties

IFIP WG 2.2, Bertinoro, 09/2004 — p.11/16

Refinement : preserving properties L

@ Obligations & interdictions : nothing to prove

@ expressed as (linear-time) properties of traces

@ hence preserved by refinement

IFIP WG 2.2, Bertinoro, 09/2004 — p.12/16

Refinement : preserving properties L

e Obligations & interdictions : nothing to prove

@ expressed as (linear-time) properties of traces

@ hence preserved by refinement

@ Permissions : more problematic

@ refinement does not preserve branching behavior
@ what should be preserved across non-atomic refinement ??

@ refined event won’t be executable whenever abstract one is

IFIP WG 2.2, Bertinoro, 09/2004 — p.12/16

Refinement of permissions L

@ Idea : refine abstract-level permission
@ by a concrete-level permission (to start a branch)

@ and a concrete-level obligation (to simulate the event)

IFIP WG 2.2, Bertinoro, 09/2004 — p.13/16

Refinement of permissions L

@ Idea : refine abstract-level permission
@ by a concrete-level permission (to start a branch)

@ and a concrete-level obligation (to simulate the event)

er

ei

IFIP WG 2.2, Bertinoro, 09/2004 — p.13/16

Refinement of permissions L

@ Idea : refine abstract-level permission
@ by a concrete-level permission (to start a branch)

@ and a concrete-level obligation (to simulate the event)

er

ei

pPeritie,

@ Formalization (assume ea refined by erq, ..., ery)
identify “initial events” eiy, ..., eiy; of refined model where
perieg = perm,, V...V perm,; and

I ei]- ~ permeg V ery V... Very

IFIP WG 2.2, Bertinoro, 09/2004 — p.13/16

Example L

e Refining event newLoan

event askLoan(c : Client,l : Loan,sum : IN,dur : IN) = ...

permission [¢ loans

event approveLoan(l : Loan,e : Employee) = . ..
permission
Al € non_approved
AV risk(clt(l),due(l)) = low N rank(e) > Clerk
V risk(clt(l), due(l)) = medium A rank(e) > Manager
interdiction risk(clt(l),due(l)) = high
obligation [€ non_approved A risk(clt(l),due(l)) € {low, medium}

IFIP WG 2.2, Bertinoro, 09/2004 — p.14/16

Observations L

@ Refinement of permissions is transitive

@ introduce explicit permission on “initial” event

@ has to be taken into account when refining further

e Weak interpretation of obligations adequate

@ consider client applying for two loans concurrently

@ no obligation to approve them both

IFIP WG 2.2, Bertinoro, 09/2004 — p.15/16

Summing up

e slight extension of event systems
@ represent permissions, interdictions, obligations

@ property-preserving refinement rules

@ non-atomic refinement of events
@ inheritance of linear-time properties

@ basic branching-time properties : enabledness + liveness

e future work : controllers for security policies

IFIP WG 2.2, Bertinoro, 09/2004 — p.16/16

	Context
	Framework: event systems
	Properties (safety)
	Adding fairness conditions
	Properties (liveness)
	Refinement : intuition
	Refinement : intuition
	Refinement : intuition

	Refinement : proof obligations
	Refinement : properties
	Refinement : properties

	Permissions & obligations
	Permissions & obligations

	Representing permissions
	Representing obligations
	Refinement : preserving properties
	Refinement : preserving properties

	Refinement of permissions
	Refinement of permissions
	Refinement of permissions

	Example
	Observations
	Summing up

