
Reduction Revisited:
Verifying Round-Based Distributed Algorithms

Stephan Merz

INRIA Nancy & LORIA

joint work with Bernadette Charron-Bost, LIX & CNRS

MPC 2010
June 23, 2010

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 1 / 39

Example: mutual exclusion algorithms

integer turn = 0;
boolean req0, req1 = false;

process P0
loop

nc0: skip;
rq0: req0 := true;
ps0: turn := 1;
wt0: await ¬req1 ∨ turn = 0;
cs0: skip;
ex0: req0 := false;

endloop

‖

process P1
loop

nc1: skip;
rq1: req1 := true;
ps1: turn := 0;
wt1: await ¬req0 ∨ turn = 1;
cs1: skip;
ex1: req1 := false;

endloop

Critical section can be abstracted to atomic step

Is it okay to combine the following actions into an atomic step?

1 statements rqi and psi
2 statements rqi, psi, and wti
3 statements csi and exi

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 2 / 39

Example: mutual exclusion algorithms

integer turn = 0;
boolean req0, req1 = false;

process P0
loop

nc0: skip;
rq0: 〈req0 := true;

turn := 1;〉
wt0: await ¬req1 ∨ turn = 0;
cs0: skip;
ex0: req0 := false;

endloop

‖

process P1
loop

nc1: skip;
rq1: 〈req1 := true;

turn := 0;〉
wt1: await ¬req0 ∨ turn = 1;
cs1: skip;
ex1: req1 := false;

endloop

Critical section can be abstracted to atomic step
Is it okay to combine the following actions into an atomic step?

1 statements rqi and psi

2 statements rqi, psi, and wti
3 statements csi and exi

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 2 / 39

Example: mutual exclusion algorithms

integer turn = 0;
boolean req0, req1 = false;

process P0
loop

nc0: skip;
rq0: 〈req0 := true;

turn := 1;
await ¬req1 ∨ turn = 0;〉

cs0: skip;
ex0: req0 := false;

endloop

‖

process P1
loop

nc1: skip;
rq1: 〈req1 := true;

turn := 0;
await ¬req0 ∨ turn = 1;〉

cs1: skip;
ex1: req1 := false;

endloop

Critical section can be abstracted to atomic step
Is it okay to combine the following actions into an atomic step?

1 statements rqi and psi
2 statements rqi, psi, and wti

3 statements csi and exi

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 2 / 39

Example: mutual exclusion algorithms

integer turn = 0;
boolean req0, req1 = false;

process P0
loop

nc0: skip;
rq0: req0 := true;
ps0: turn := 1;
wt0: await ¬req1 ∨ turn = 0;
cs0: 〈skip;

req0 := false;〉
endloop

‖

process P1
loop

nc1: skip;
rq1: req1 := true;
ps1: turn := 0;
wt1: await ¬req0 ∨ turn = 1;
cs1: 〈skip;

req1 := false;〉
endloop

Critical section can be abstracted to atomic step
Is it okay to combine the following actions into an atomic step?

1 statements rqi and psi
2 statements rqi, psi, and wti
3 statements csi and exi

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 2 / 39

Outline

1 Reduction Theorems for the Verification of Concurrent Programs

2 Fault-Tolerant Distributed Computing

3 Reduction for Round-Based Distributed Algorithms

4 Experiments: Verification of Consensus Algorithms

5 Conclusion

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 3 / 39

Reduction: overall idea

Justify combining subsequent operations into an atomic step
Fewer atomic steps simpler verification

Theorem (folklore)
One can pretend that a sequence of statements is executed atomically
if it contains at most one access to a shared variable.

Folk theorem justifies combining csi and exi (previous example)

Folk theorem does not justify combining rqi and psi

Consider the single-process program where initially x = y

y := x + 1; x := y

Since no variable is shared, it should be equivalent to

〈y := x + 1; x := y〉

But the latter program satisfies �(x = y) !

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 4 / 39

Reduction: overall idea

Justify combining subsequent operations into an atomic step
Fewer atomic steps simpler verification

Theorem (folklore)
One can pretend that a sequence of statements is executed atomically
if it contains at most one access to a shared variable.

Folk theorem justifies combining csi and exi (previous example)

Folk theorem does not justify combining rqi and psi

Consider the single-process program where initially x = y

y := x + 1; x := y

Since no variable is shared, it should be equivalent to

〈y := x + 1; x := y〉

But the latter program satisfies �(x = y) !

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 4 / 39

Reduction: overall idea

Justify combining subsequent operations into an atomic step
Fewer atomic steps simpler verification

Theorem (folklore)
One can pretend that a sequence of statements is executed atomically
if it contains at most one access to a shared variable.

Folk theorem justifies combining csi and exi (previous example)

Folk theorem does not justify combining rqi and psi

Consider the single-process program where initially x = y

y := x + 1; x := y

Since no variable is shared, it should be equivalent to

〈y := x + 1; x := y〉

But the latter program satisfies �(x = y) !

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 4 / 39

Left and right movers

Definition (Lipton 1975)
An action a is a right mover if whenever αab is a computation
where a and b are performed by different processes then αba is also
a computation and these computations result in the same state.
The definition of a left mover is symmetrical.

Right mover s ab−→ t ⇒ s ba−→ t for all b
I right commutes with every action of different processes
I example: acquisitions of resources (e.g., semaphores)

Left mover s ba−→ t ⇒ s ab−→ t for all b
I left commutes with every action of different processes
I example: releases of resources

R.J. Lipton. Reduction: A Method of Proving Properties of Parallel Programs.
CACM 18(12):717-721, 1975.

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 5 / 39

Left and right movers in example

integer turn = 0;
boolean req0, req1 = false;

process P0
loop

nc0: skip;
rq0: req0 := true;
ps0: turn := 1;
wt0: await ¬req1 ∨ turn = 0;
cs0: skip;
ex0: req0 := false;

endloop

‖

process P1
loop

nc1: skip;
rq1: req1 := true;
ps1: turn := 0;
wt1: await ¬req0 ∨ turn = 1;
cs1: skip;
ex1: req1 := false;

endloop

Actions rqi are right movers
I in particular, cannot make await condition of other process true
I formally, s

rq0 wt1−−−−→ t implies s
wt1 rq0−−−−→ t

Actions csi and exi are left movers
Actions psi and wti are neither left nor right movers

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 6 / 39

Left and right movers in example

integer turn = 0;
boolean req0, req1 = false;

process P0
loop

nc0: skip;
rq0: req0 := true;
ps0: turn := 1;
wt0: await ¬req1 ∨ turn = 0;
cs0: skip;
ex0: req0 := false;

endloop

‖

process P1
loop

nc1: skip;
rq1: req1 := true;
ps1: turn := 0;
wt1: await ¬req0 ∨ turn = 1;
cs1: skip;
ex1: req1 := false;

endloop

Actions rqi are right movers
I in particular, cannot make await condition of other process true
I formally, s

rq0 wt1−−−−→ t implies s
wt1 rq0−−−−→ t

Actions csi and exi are left movers

Actions psi and wti are neither left nor right movers

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 6 / 39

Left and right movers in example

integer turn = 0;
boolean req0, req1 = false;

process P0
loop

nc0: skip;
rq0: req0 := true;
ps0: turn := 1;
wt0: await ¬req1 ∨ turn = 0;
cs0: skip;
ex0: req0 := false;

endloop

‖

process P1
loop

nc1: skip;
rq1: req1 := true;
ps1: turn := 0;
wt1: await ¬req0 ∨ turn = 1;
cs1: skip;
ex1: req1 := false;

endloop

Actions rqi are right movers
I in particular, cannot make await condition of other process true
I formally, s

rq0 wt1−−−−→ t implies s
wt1 rq0−−−−→ t

Actions csi and exi are left movers
Actions psi and wti are neither left nor right movers

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 6 / 39

Lipton’s reduction theorem

Theorem (Lipton 1975)
Suppose that A = A1; . . . ; Ak is such that for some i:

A1, . . . , Ai−1 are right movers,
Ai+1, . . . , Ak are left movers,
and each A2, . . . , Ak can always execute.

and let P/A denote the program obtained from P by replacing
A1; . . . ; Ak by 〈A1; . . . ; Ak〉.

Then P halts iff P/A halts and the final states of P equal the final
states of P/A.

Preservation of deadlock-freedom and partial correctness

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 7 / 39

Application to example

Lipton’s theorem justifies reduction to

integer turn = 0;
boolean req0, req1 = false;

process P0
loop

nc0: skip;
rq0: 〈req0 := true;

turn := 1;〉
wt0: 〈await ¬req1 ∨ turn = 0;

skip;
req0 := false;〉

endloop

‖

process P1
loop

nc1: skip;
rq1: 〈req1 := true;

turn := 0;〉
wt1: 〈await ¬req0 ∨ turn = 1;

skip;
req1 := false;〉

endloop

. . . but only for proving absence of deadlock

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 8 / 39

Doeppner’s reduction theorem

Theorem
Let Π be a program and S have the form R; 〈A〉; L where

all actions in R are right movers and
all actions in L are left movers.

Let in(S) be true iff control resides inside S and Q be an arbitrary
predicate.

Then Q is an invariant of Π/S iff Q∨ in(S) is an invariant of Π.

Generalization of Lipton’s theorem to invariant reasoning

Can be used for proving mutual exclusion of example program

T.W. Doeppner. Parallel program correctness through refinement. POPL 1977
(ACM), pp. 155-169.

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 9 / 39

Other reduction theorems

R. Back: Refining atomicity in parallel algorithms (1988)

I first reduction theorem for total correctness
I needs commutativity hypotheses for actions outside reduced block

L. Lamport, F. Schneider: Pretending Atomicity (1989)

I generalization of Doeppner’s theorem
I preservation of invariants Q of Π by reduction

(explicit reasoning about control being external to reduced block)

E. Cohen, L. Lamport: Reduction in TLA (1998)

I reformulation of Lamport & Schneider in TLA
I extension to (certain) liveness properties

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 10 / 39

Outline

1 Reduction Theorems for the Verification of Concurrent Programs

2 Fault-Tolerant Distributed Computing

3 Reduction for Round-Based Distributed Algorithms

4 Experiments: Verification of Consensus Algorithms

5 Conclusion

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 11 / 39

Fault-tolerant distributed algorithms

local computation of nodes

asynchronous communication over network

components may fail: replication & fault-tolerance

precisely state and prove correctness properties

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 12 / 39

Representative problem: consensus

N nodes (processes) agree on a value

I each node proposes a value initially
I eventually nodes decide a common value
I nodes or communication links may fail

Formal definition: conjunction of four properties

integrity decided value is among the initial proposals

irrevocability decisions cannot be undone

agreement any two nodes decide same value

termination all (non-failed) nodes decide eventually

Fundamental problem in fault-tolerant distributed computing

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 13 / 39

Why is this hard?

Theorem (Fischer, Lynch, Paterson 1985)
The Consensus problem cannot be solved in an asynchronous
system where at least one process may fail (by crashing).

But: many consensus algorithms exist (and work well in practice)

Basis: relax some assumption of FLP theorem
I introduce timeouts: being late is a failure
I assume reliable (broadcast) communication
I augment system by an oracle to detect failures

Verification of consensus algorithms
I difficult proofs . . . often absent or informal
I DiskPaxos: careful paper proof (30 pages for 0.5 page algorithm)

Can we help make verification simpler?

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 14 / 39

Why is this hard?

Theorem (Fischer, Lynch, Paterson 1985)
The Consensus problem cannot be solved in an asynchronous
system where at least one process may fail (by crashing).

But: many consensus algorithms exist (and work well in practice)
Basis: relax some assumption of FLP theorem
I introduce timeouts: being late is a failure
I assume reliable (broadcast) communication
I augment system by an oracle to detect failures

Verification of consensus algorithms
I difficult proofs . . . often absent or informal
I DiskPaxos: careful paper proof (30 pages for 0.5 page algorithm)

Can we help make verification simpler?

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 14 / 39

Heard-Of Model (Charron-Bost & Schiper, 2006)

Algorithmic model for fault-tolerant distributed algorithms
I uniform treatment of all (benign) errors
I do not identify “culprit” or “type” of failure

Round-based computation model

p -t t���

@@R

��
�* HHHj

���

� -
round r

sending receiving

s s′

I rounds: local structure of process computation
I state s′ computed from s and received messages
I heard-of set HO(p, r): processes from which messages are received
I communication-closed rounds: discard late messages

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 15 / 39

Heard-Of Model (Charron-Bost & Schiper, 2006)

Algorithmic model for fault-tolerant distributed algorithms
I uniform treatment of all (benign) errors
I do not identify “culprit” or “type” of failure

Round-based computation model

p -t t���

@@R

��
�* HHHj

���

� -
round r

sending receiving

s s′

I rounds: local structure of process computation
I state s′ computed from s and received messages
I heard-of set HO(p, r): processes from which messages are received
I communication-closed rounds: discard late messages

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 15 / 39

Heard-Of Model (Charron-Bost & Schiper, 2006)

Algorithmic model for fault-tolerant distributed algorithms
I uniform treatment of all (benign) errors
I do not identify “culprit” or “type” of failure

Round-based computation model

p -t t���

@@R

��
�* HHHj

���

� -
round r

sending receiving

s s′

I rounds: local structure of process computation
I state s′ computed from s and received messages
I heard-of set HO(p, r): processes from which messages are received
I communication-closed rounds: discard late messages

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 15 / 39

Formal representation of HO algorithms

Collection of processes (Statep, s0,p, Sr
p, Tr

p)p∈Proc,r∈N

I process states: sets Statep with initial states s0,p ∈ Statep

I message sending and state transition

Sr
p : Statep × Proc→ Msg

Tr
p : Statep × (Proc ⇀ Msg)→ Statep

I domain of second argument of Tr
p: heard-of set HO(p, r)

For simplicity: deterministic processes

I algorithm behavior determined by collection of heard-of sets

I extension to non-deterministic processes straightforward

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 16 / 39

Communication predicates

Algorithms do not work in presence of arbitrary failures

I safety: restrict number or extent of errors

I liveness: assume eventual functioning of components

Sample communication predicates

non-split rounds ∀p, q, r : HO(p, r) ∩HO(q, r) 6= ∅

≤ f failures ∀p, r : |HO(p, r)| ≥ N− f

event. uniform ∃r0 ∈N, P ⊆ Proc : ∀r ≥ r0, q ∈ Proc : HO(q, r) = P

Observations (Charron-Bost & Schiper)

I standard failure assumptions can be expressed in terms of HO sets

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 17 / 39

HO Consensus Algorithm: One-Third Rule

Initialization
xp := vp, decidep := null (vp : initial value of p)

For each round r ≥ 0
Sr

p : send xp to all processes

Tr
p : if |HO(p, r)| > 2N/3 then

set xp to smallest among the most frequently received values
if more than 2N/3 values received are equal to xp then

decidep := xp

Simple but efficient consensus algorithm

no coordinator needed

quick convergence if few errors

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 18 / 39

Representing executions of HO algorithms

Fine-grained execution for HO collection (HO(p, r))p∈Proc,r∈N

I message receptions, local transitions, message sending
I verify correctness for all HO collections

process Node(p ∈ Proc)
state st = s0,p;
integer r = 0;
for q ∈ Proc do send(p, q, r, Sr

p(st, q)) enddo;
loop

array rcvd = [q ∈ Proc 7→ null];
for q ∈ HO(p, r) do rcvd[q] := receive(q, p, r) enddo;
st, r := Tr

p(st, rcvd), r + 1;
for q ∈ Proc do send(p, q, r, Sr

p(st, q)) enddo;
end loop

end process

Formally: infinite sequence ξ = c0c1 . . . of configurations

Infinite-state model, due to round numbers

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 19 / 39

Representing executions of HO algorithms

Fine-grained execution for HO collection (HO(p, r))p∈Proc,r∈N

I message receptions, local transitions, message sending
I verify correctness for all HO collections

process Node(p ∈ Proc)
state st = s0,p;
integer r = 0;
for q ∈ Proc do send(p, q, r, Sr

p(st, q)) enddo;
loop

array rcvd = [q ∈ Proc 7→ null];
for q ∈ HO(p, r) do rcvd[q] := receive(q, p, r) enddo;
st, r := Tr

p(st, rcvd), r + 1;
for q ∈ Proc do send(p, q, r, Sr

p(st, q)) enddo;
end loop

end process

Formally: infinite sequence ξ = c0c1 . . . of configurations
Infinite-state model, due to round numbers

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 19 / 39

Outline

1 Reduction Theorems for the Verification of Concurrent Programs

2 Fault-Tolerant Distributed Computing

3 Reduction for Round-Based Distributed Algorithms

4 Experiments: Verification of Consensus Algorithms

5 Conclusion

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 20 / 39

First reduction

Remember left and right movers?
I send actions are left movers
I receive actions are right movers

(
assuming infinite
network capacity

)

This motivates the following reduction:

process Node(p ∈ Proc)
〈state st = s0,p;
integer r = 0;
for q ∈ Proc do send(p, q, r, Sr

p(st, q)) enddo〉;
loop
〈array rcvd = [q ∈ Proc 7→ null];
for q ∈ HO(p, r) do rcvd[q] := receive(q, p, r) enddo;
st, r := Tr

p(st, rcvd), r + 1;
for q ∈ Proc do send(p, q, r, Sr

p(st, q)) enddo〉;
end loop

end process

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 21 / 39

First reduction

Remember left and right movers?
I send actions are left movers
I receive actions are right movers

(
assuming infinite
network capacity

)

This motivates the following reduction:

process Node(p ∈ Proc)
〈state st = s0,p;
integer r = 0;
for q ∈ Proc do send(p, q, r, Sr

p(st, q)) enddo〉;
loop
〈array rcvd = [q ∈ Proc 7→ null];
for q ∈ HO(p, r) do rcvd[q] := receive(q, p, r) enddo;
st, r := Tr

p(st, rcvd), r + 1;
for q ∈ Proc do send(p, q, r, Sr

p(st, q)) enddo〉;
end loop

end process

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 21 / 39

More reduction

Processes execute rounds atomically

init init rnd 0 init rnd 0 rnd 1 rnd 0 rnd 1 rnd 2 rnd 1 · · ·

Can we do any better?

Remember communication-closed rounds

I round rndm
p right-commutes with rndn

q if m > n
I messages sent during rndn

q did not influence rndm
p

Rearrange execution so that executions of same round are adjacent

init init init rnd 0 rnd 0 rnd 0 rnd 1 rnd 1 rnd 1 rnd 2 · · ·

Executions of same round by different processes are independent

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 22 / 39

More reduction

Processes execute rounds atomically

init init rnd 0 init rnd 0 rnd 1 rnd 0 rnd 1 rnd 2 rnd 1 · · ·

Can we do any better?

Remember communication-closed rounds

I round rndm
p right-commutes with rndn

q if m > n
I messages sent during rndn

q did not influence rndm
p

Rearrange execution so that executions of same round are adjacent

init init init rnd 0 rnd 0 rnd 0 rnd 1 rnd 1 rnd 1 rnd 2 · · ·

Executions of same round by different processes are independent

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 22 / 39

More reduction

Processes execute rounds atomically

init init rnd 0 init rnd 0 rnd 1 rnd 0 rnd 1 rnd 2 rnd 1 · · ·

Can we do any better?

Remember communication-closed rounds

I round rndm
p right-commutes with rndn

q if m > n
I messages sent during rndn

q did not influence rndm
p

Rearrange execution so that executions of same round are adjacent

init init init

�
�

�
�rnd 0 rnd 0 rnd 0

�
�

�
�rnd 1 rnd 1 rnd 1

�
�

�
�rnd 2 · · ·
�
�

Executions of same round by different processes are independent

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 22 / 39

Coarse-grained model of executions

Unit of atomicity: entire system rounds

I all processes simultaneously perform transition for same round
I corresponds to “nice” executions in the fine-grained model

Coarse-grained execution σ0σ1 . . . (σi : Proc→ State)

I σ0(p) = s0,p

I σr+1(p) = Tr
p
(
σr(p), rcvd(p, r)

)
where rcvd(p, r) = [q ∈ HO(p, r) 7→ Sr

q(σr(q), p)]

Coarse abstraction of distributed execution

I no need for explicit representation of network
I no round numbers: “synchronized” processes

⇒ How exactly does the reduced model relate to the original one?

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 23 / 39

Coarse-grained model of executions

Unit of atomicity: entire system rounds

I all processes simultaneously perform transition for same round
I corresponds to “nice” executions in the fine-grained model

Coarse-grained execution σ0σ1 . . . (σi : Proc→ State)

I σ0(p) = s0,p

I σr+1(p) = Tr
p
(
σr(p), rcvd(p, r)

)
where rcvd(p, r) = [q ∈ HO(p, r) 7→ Sr

q(σr(q), p)]

Coarse abstraction of distributed execution

I no need for explicit representation of network
I no round numbers: “synchronized” processes

⇒ How exactly does the reduced model relate to the original one?

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 23 / 39

Relating fine- and coarse-grained executions

Fine-grained model contains more detail
Compare executions w.r.t. the “local views” of processes
I p-view of fine-grained execution ξ = c0c1 . . .

ξp = c0.st(p), c1.st(p), . . .

I p-view of coarse-grained execution σ = σ0σ1 . . .

σp = σ0(p), σ1(p), . . .

I p-views are sequences of states of p and can be compared

Executions equivalent iff indistinguishable by any process

ξ ≈ σ iff \(ξp) = \(σp) for every p ∈ Proc

I local views equal up to stuttering, for every process

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 24 / 39

Reduction theorem

Theorem (Reduction)
Given a HO collection (HO(p, r)) and a fine-grained execution ξ
there exists a coarse-grained execution σ for the same HO collection
such that σ ≈ ξ.

Proof. For ξ = c0c1 . . ., define sequence σ = ([p ∈ Proc 7→ c`
p
r
.st(p)])r∈N

where

{
`

p
0 = 0

`
p
r+1 = k + 1 if (ck, ck+1) is (r + 1)st local transition of p.

Then σ is a coarse-grained execution for the same HO collection.

Moreover, \(σp) = \(ξp) for all p ∈ Proc. Q.E.D.

Converse theorem is trivially true

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 25 / 39

“Local” properties

Application of reduction theorem to verification
I many properties depend only on local views
I these can be verified by considering only coarse-grained executions

Local properties P of executions

ρ1 |= P iff ρ2 |= P whenever ρ1 ≈ ρ2

The following LTL-X properties are local
I formulas Q(p) built solely from p’s state variables
I arbitrary first-order combinations of local properties
I but: temporal combinations need not be local, consider:∧

p,q∈Proc
�(rndp = rndq) (where rndp is the current round of p)

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 26 / 39

“Local” properties

Application of reduction theorem to verification
I many properties depend only on local views
I these can be verified by considering only coarse-grained executions

Local properties P of executions

ρ1 |= P iff ρ2 |= P whenever ρ1 ≈ ρ2

The following LTL-X properties are local
I formulas Q(p) built solely from p’s state variables
I arbitrary first-order combinations of local properties
I but: temporal combinations need not be local, consider:∧

p,q∈Proc
�(rndp = rndq) (where rndp is the current round of p)

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 26 / 39

Consensus as a local property

Integrity∧
p∈Proc

∀v 6= null :
(
♦(decidep = v)⇒

∨
q∈Proc

xq = v
)

Irrevocability∧
p∈Proc

∀v 6= null : �(decidep = v⇒ �(decidep = v))

Agreement∧
p,q∈Proc

∀v, w 6= null : ♦(decidep = v) ∧♦(decideq = w)⇒ v = w

Termination∧
p∈Proc

♦(decidep 6= null)

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 27 / 39

Outline

1 Reduction Theorems for the Verification of Concurrent Programs

2 Fault-Tolerant Distributed Computing

3 Reduction for Round-Based Distributed Algorithms

4 Experiments: Verification of Consensus Algorithms

5 Conclusion

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 28 / 39

Finite-state model checking

Verification of finite instances of algorithms

I model coarse-grained executions for fixed number of processes

I non-deterministic choice of HO sets at every transition

I resulting model is finite-state

Generic TLA+ module HeardOf

I high-level definition of coarse-grained HO semantics

I pre-define useful communication predicates

I concrete algorithms obtained later as instances

Here: favor clarity over efficiency

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 29 / 39

Generic TLA+ module

MODULE HeardOf
EXTENDS Naturals
CONSTANTS Proc, State, Msg, nPhases, IniSt(), Send(, , ,), Trans(, , ,)
VARIABLES phase, state, heardof

Init 4= ∧ phase = 0
∧ state = [p ∈ Proc 7→ IniSt(p)]
∧ heardof = [p ∈ Proc 7→ {}]

Step(HO) 4= LET rcvd(p) 4= {〈q, Send(q, phase, state[q], p)〉 : q ∈ HO[p]}
IN ∧ phase′ = (phase + 1) % nPhases

∧ state′ = [p ∈ Proc 7→ Trans(p, phase, state[p], rcvd(p))]
∧ heardof ′ = HO

Next 4= ∃HO ∈ [Proc→ SUBSET Proc] : Step(HO)
NoSplit(HO) 4= ∀p, q ∈ Proc : HO[p] ∩HO[q] 6= {}
NextNoSplit 4= ∃HO ∈ [Proc→ SUBSET Proc] : NoSplit(HO) ∧ Step(HO)
Uniform(HO) 4= ∃S ∈ SUBSET Proc : HO = [q ∈ Proc 7→ S]
InfiniteUniform 4= �♦Uniform(heardof)

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 30 / 39

Remarks

Definitions closely parallels “paper” version

I expressiveness of TLA+ leads to perspicuous formulation

I (auxiliary) variable heardof records HO sets during a run

I mainly used for debugging and printing counter-examples

Formulation of communication predicates

I safety predicates: add to next-state relation

I liveness predicates: natural expression in temporal logic

I used to express correctness properties

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 31 / 39

One-Third Rule in TLA+ (1/3)

MODULE OneThirdRule
EXTENDS Naturals, FiniteSets
CONSTANT N
VARIABLES phase, state, heardof

nPhases 4= 1

Proc 4= 1..N
InitValue(p) 4= 10 ∗ p
Value 4= {InitValue(p) : p ∈ Proc}
Msg 4= Value
null 4= 0

ValueOrNull 4= Value∪ {null}
State 4= [x : Value, decide : ValueOrNull]

definition of constant parameters for OneThirdRule algorithm

arbitrary definition of (initial) values of a process

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 32 / 39

One-Third Rule in TLA+ (2/3)

IniSt(p) 4= [x 7→ InitValue(p), decide 7→ null]
Send(p, ph, s, q) 4= s.x
Trans(p, ph, s, rcvd) 4=

IF Cardinality(rcvd) > (2 ∗N)÷ 3

THEN LET Freq(v) 4= Cardinality({q ∈ Proc : 〈q, v〉 ∈ rcvd})
MFR(v) 4= ∀w ∈ Value : Freq(w) ≤ Freq(v)
min 4= CHOOSE v ∈ Value : MFR(v) ∧ ∀w ∈ Value : MFR(w)⇒ v ≤ w

IN [x 7→ min,
decide 7→ IF Freq(min) > (2 ∗N)÷ 3 THEN min ELSE s.decide]

ELSE s

INSTANCE HeardOf

definition of the send and state transition functions

instantiation of generic module

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 33 / 39

One-Third Rule in TLA+ (3/3)

Safety 4= Init∧�[Next]vars

Liveness 4= �♦(Uniform(heardof) ∧ Cardinality(heardof) > (2 ∗N)÷ 3)
Integrity 4= ∀p ∈ Proc : state[p].decide ∈ ValueOrNull
Irrevocability 4= ∀p ∈ Proc : �[state[p].decide = null]state[p].decide

Agreement 4= ∀p, q ∈ Proc : (state[p].decide 6= null∧ state[q].decide 6= null
⇒ state[p].decide = state[q].decide)

Termination 4= ∀p ∈ Proc : ♦(state[p].decide 6= null)

THEOREM Safety⇒ �(Integrity∧Agreement) ∧ Irrevocability
THEOREM Safety∧ Liveness⇒ Termination

definition of correctness properties

formulation of correctness theorems, under precise hypotheses

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 34 / 39

Results of verification

OneThirdRule UniformVoting
N = 3 N = 4 N = 3 N = 4

states 5633 9,830,401 21,351 15,865,770
distinct 11 150 122 887
time (s) 1.87 939 13.8 1330

Model checking feasible for small instances

I high branching factor: exploration of all HO collections
I many redundant states generated

Symbolic model checking can be more efficient

I more complicated encodings necessary for tools like NuSMV
I cf. work by Tsuchiya and Schiper: Paxos for 10 processes

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 35 / 39

Verification in Isabelle/HOL

Similar overall model

main difference: introduction of types

generic HeardOf module represented as an Isabelle locale

locale HOAlgorithm =
fixes

nPhases :: nat and
iniSt :: ′proc→ ′pst and
send :: ′proc→ nat→ ′pst→ ′proc→ ′msg and
trans :: ′proc→ nat→ ′pst→ (′proc ⇀ ′msg)→ ′pst

assumes
nSteps : 0 < nPhases and
finiteProc : finite(UNIV :: ′procset)

defines generic behavior of HO algorithms

proves useful rules, such as induction over executions

concrete algorithms defined as instances of locale HOAlgorithmStephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 36 / 39

Proof of correctness

Validity: standard invariance proof

Irrevocability and agreement via sequence of lemmas
1 if process decides on value v then more than 2N/3 processes

contain v in their x field
2 if more than 2N/3 processes send v and process p hears from more

than 2N/3 processes then p updates its x field to v
3 whenever process has decided on v then more than 2N/3 processes

contain v in their x field
4 hence, processes cannot decide on different values

Liveness: symbolically execute uniform rounds

Proof lengths in Isar (including model and explanations)
I 8 pages for generic module and lemmas
I 8 pages for OneThirdRule
I 25 pages for LastVoting (cf. 130 pages for fine-grained model!)

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 37 / 39

Proof of correctness

Validity: standard invariance proof

Irrevocability and agreement via sequence of lemmas
1 if process decides on value v then more than 2N/3 processes

contain v in their x field
2 if more than 2N/3 processes send v and process p hears from more

than 2N/3 processes then p updates its x field to v
3 whenever process has decided on v then more than 2N/3 processes

contain v in their x field
4 hence, processes cannot decide on different values

Liveness: symbolically execute uniform rounds

Proof lengths in Isar (including model and explanations)
I 8 pages for generic module and lemmas
I 8 pages for OneThirdRule
I 25 pages for LastVoting (cf. 130 pages for fine-grained model!)

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 37 / 39

Outline

1 Reduction Theorems for the Verification of Concurrent Programs

2 Fault-Tolerant Distributed Computing

3 Reduction for Round-Based Distributed Algorithms

4 Experiments: Verification of Consensus Algorithms

5 Conclusion

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 38 / 39

Reduction: a revival?

Recast of classical theorems

I identify left and right movers for coarser unit of atomicity
I distributed algorithms present interesting opportunities
I substantial reduction of verification effort possible

Transcend historical formulations

I beyond programming-language based presentations
I wide interpretation of “processes” (e.g., set of rounds)
I verify safety and liveness properties

Ongoing / future work

I establish more general reduction theorems
I better syntactic characterization of local properties
I implementation of reduction in verification tools

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 39 / 39

	Reduction Theorems for the Verification of Concurrent Programs
	Fault-Tolerant Distributed Computing
	Reduction for Round-Based Distributed Algorithms
	Experiments: Verification of Consensus Algorithms
	Conclusion

