Reduction Revisited:
Verifying Round-Based Distributed Algorithms

Stephan Merz

INRIA Nancy & LORIA

:EV‘VWINRIA ﬂLOﬁié

frche NANCY - GRAND-EST

joint work with Bernadette Charron-Bost, LIX & CNRS

MPC 2010
June 23, 2010

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010

1/39

Example: mutual exclusion algorithms

integer turn=0;
boolean req0, reql = false;

process PO process P1
loop loop
ncy: skip; ncy: skip;
rqop: reqO := true; rq: reql := true;
pso: turn:=1; I psi: turn:=0;
wtp: await —reql V turn = 0; wty: await —req0 V turn =1;
csp: skip; csy: skip;
exp: req0 := false; ex;: reql := false;
endloop endloop

o Critical section can be abstracted to atomic step

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010

2/39

Example: mutual exclusion algorithms

integer turn=0;
boolean req0, reql = false;

process PO process P1
loop loop
ncy: skip; ncy: skip;
rqo: (req0 := true; rqr: (reql :=true;
turn :=1;) I turn :=0;)
wtp: await —reql V turn = 0; wty: await —req0 V turn =1;
csp: skip; csy: skip;
exp: req0 := false; ex;: reql := false;
endloop endloop

o Critical section can be abstracted to atomic step
o Is it okay to combine the following actions into an atomic step?

Q statements rq; and ps;

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 2/39

Example: mutual exclusion algorithms

integer turn=0;
boolean req0, reql = false;

process PO process P1
loop loop
ncy: skip; ncy: skip;
rqo: (req0 := true; rqy: (reql :=true;
turn :=1; I turn := 0;
await —reql V turn = 0;) await —req0 V turn = 1;)
csp: skip; csy: skip;
exp: req0 := false; ex;: reql := false;
endloop endloop

o Critical section can be abstracted to atomic step
o Is it okay to combine the following actions into an atomic step?

Q statements rq; and ps;
@ statements rq;, ps;, and wt;

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 2/39

Example: mutual exclusion algorithms

integer turn=0;
boolean req0, reql = false;

process PO process P1
loop loop

ncy: skip; ncy: skip;

rqop: reqO := true; rq: reql := true;

pso: turn:=1; I psi: turn:=0;

wtp: await —reql V turn = 0; wty: await —req0 V turn =1;

cso: (skip; csy: (skip;

req0 := false;) reql := false;)

endloop endloop

o Critical section can be abstracted to atomic step
o Is it okay to combine the following actions into an atomic step?

Q statements rq; and ps;
@ statements rq;, ps;, and wt;
© statements cs; and ex;

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 2/39

Outline

© Reduction Theorems for the Verification of Concurrent Programs

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 3/39

Reduction: overall idea

@ Justify combining subsequent operations into an atomic step
@ Fewer atomic steps ~» simpler verification

Theorem (folklore)

One can pretend that a sequence of statements is executed atomically
if it contains at most one access to a shared variable.

@ Folk theorem justifies combining cs; and ex; (previous example)

@ Folk theorem does not justify combining rq; and ps;

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010

4/39

Reduction: overall idea

@ Justify combining subsequent operations into an atomic step
@ Fewer atomic steps ~» simpler verification

Theorem (folklore)

One can pretend that a sequence of statements is executed atomically
if it contains at most one access to a shared variable.

@ Folk theorem justifies combining cs; and ex; (previous example)
@ Folk theorem does not justify combining rq; and ps;
@ Consider the single-process program where initially x = y

yi=x+1x:=y
Since no variable is shared, it should be equivalent to

(yr=x+1x:=y)

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 4/39

Reduction: overall idea

@ Justify combining subsequent operations into an atomic step
@ Fewer atomic steps ~» simpler verification

Theorem (folklore)

One can pretend that a sequence of statements is executed atomically
if it contains at most one access to a shared variable.

@ Folk theorem justifies combining cs; and ex; (previous example)
@ Folk theorem does not justify combining rq; and ps;
@ Consider the single-process program where initially x = y

yi=x+1x:=y

Since no variable is shared, it should be equivalent to
(yr=x+1x:=y)

But the latter program satisfies C(x = y) !

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 4/39

Left and right movers

Definition (Lipton 1975)

An action a is a right mover if whenever wab is a computation
where a and b are performed by different processes then wba is also
a computation and these computations result in the same state.
The definition of a left mover is symmetrical.

@ Right mover st = s% ¢t forallb

» right commutes with every action of different processes
» example: acquisitions of resources (e.g., semaphores)

@ Left mover S ba, I = s a, t forallb

» left commutes with every action of different processes
» example: releases of resources

R.]. Lipton. Reduction: A Method of Proving Properties of Parallel Programs.
CACM 18(12):717-721, 1975.

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010

5/39

Left and right movers in example

integer turn=0;
boolean req0, reql = false;

process PO process P1
loop loop
ncy: skip; ncy: skip;
rqo: reqO := true; rqp: reql := true;
pso: turn:=1; I psi: turn:=0;
wtp: await —reql V turn = 0; wty: await —req0 V turn =1;
cso: skip; csy: skip;
exp: req0 := false; ex;: reql :=false;
endloop endloop

@ Actions rq; are right movers
» in particular, cannot make await condition of other process true

rqo wt wty 1
» formally, s RN implies s SLRLINY

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010

6 /39

Left and right movers in example

integer turn=0;
boolean req0, reql = false;

process PO process P1
loop loop
ncy: skip; ncy: skip;
rqo: reqO := true; rqp: reql := true;
pso: turn:=1; I psi: turn:=0;
wtp: await —reql V turn = 0; wty: await —req0 V turn =1;
cso: skip; csy: skip;
exp: req0 := false; ex;: reql :=false;
endloop endloop

@ Actions rq; are right movers

» in particular, cannot make await condition of other process true
rgo wt . . wtq 11
» formally, s RN implies s SLRLINY

@ Actions cs; and ex; are left movers

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 6 /39

Left and right movers in example

integer turn=0;

boolean req0, reql = false;

process PO
loop
ncy: skip;
rqo: reqO := true;
pso: turn:=1;
wtp: await —reql V turn = 0;

cso:

exp:

skip;
reqQ := false;

endloop

@ Actions rq; are right movers

process P1
loop
ncy: skip;
rqp: reql := true;
ps1: turn:=0;
wty: await —req0 V turn =1;

CSy:
eXiq:

skip;
reql := false;

endloop

» in particular, cannot make await condition of other process true

t
» formally, s RN implies s

@ Actions cs; and ex; are left movers

wty 1qo
—_ t

@ Actions ps; and wt; are neither left nor right movers

Stephan Merz (INRIA Nancy)

Reduction Revisited

MPC 2010

6 /39

Lipton’s reduction theorem

Theorem (Lipton 1975)
Suppose that A = Ay;. . .; A is such that for some i:
@ Ajy,...,Aj_q areright movers,
@ Aji1,...,Ax are left movers,
@ and each Ay, . .., Ay can always execute.
and let P/ A denote the program obtained from P by replacing
Ag; . ALY (Ars . Ap).

Then P halts iff P/ A halts and the final states of P equal the final
states of P/ A.

@ Preservation of deadlock-freedom and partial correctness

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 7 /39

Application to example

Lipton’s theorem justifies reduction to

integer turn=0;
boolean req0, reql = false;

process PO process P1
loop loop
ncy: skip; ncy: skip;
rqo: (req0 := true; rqi: (reql := true;
turn :=1;) I turn :=0;)
wtp: (await —reql V turn =0; wty: (await —req0 V turn =1;
skip; skip;
req0 := false;) reql := false;)
endloop endloop

... but only for proving absence of deadlock

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010

8/39

Doeppner’s reduction theorem

Theorem
Let I1 be a program and S have the form R; (A); L where
@ all actions in R are right movers and
@ all actions in L are left movers.
Let in(S) be true iff control resides inside S and Q be an arbitrary
predicate.

Then Q is an invariant of I1/S iff Q V in(S) is an invariant of T1.

@ Generalization of Lipton’s theorem to invariant reasoning

@ Can be used for proving mutual exclusion of example program

T.W. Doeppner. Parallel program correctness through refinement. POPL 1977
(ACM), pp. 155-169.

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 9/39

Other reduction theorems

@ R. Back: Refining atomicity in parallel algorithms (1988)

» first reduction theorem for total correctness

» needs commutativity hypotheses for actions outside reduced block

e L. Lamport, F. Schneider: Pretending Atomicity (1989)

» generalization of Doeppner’s theorem

» preservation of invariants Q of I by reduction
(explicit reasoning about control being external to reduced block)

@ E. Cohen, L. Lamport: Reduction in TLA (1998)

» reformulation of Lamport & Schneider in TLA

» extension to (certain) liveness properties

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 10 / 39

@ Reduction Theorems for the Verification of Concurrent Programs
© Fault-Tolerant Distributed Computing
© Reduction for Round-Based Distributed Algorithms

© Experiments: Verification of Consensus Algorithms

© Conclusion

«AOr AFr AEr A EFEHr» E DA

Fault-tolerant distributed algorithms

Network Cloud

@ local computation of nodes
@ asynchronous communication over network
@ components may fail: replication & fault-tolerance

@ precisely state and prove correctness properties

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 12 /39

Representative problem: consensus

@ N nodes (processes) agree on a value

» each node proposes a value initially
» eventually nodes decide a common value

» nodes or communication links may fail

@ Formal definition: conjunction of four properties

integrity decided value is among the initial proposals
irrevocability decisions cannot be undone
agreement any two nodes decide same value

termination all (non-failed) nodes decide eventually

e Fundamental problem in fault-tolerant distributed computing

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 13 / 39

Why is this hard?

Theorem (Fischer, Lynch, Paterson 1985)

The Consensus problem cannot be solved in an asynchronous
system where at least one process may fail (by crashing).

@ But: many consensus algorithms exist (and work well in practice)

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 14 / 39

Why is this hard?

Theorem (Fischer, Lynch, Paterson 1985)

The Consensus problem cannot be solved in an asynchronous
system where at least one process may fail (by crashing).

@ But: many consensus algorithms exist (and work well in practice)
@ Basis: relax some assumption of FLP theorem

» introduce timeouts: being late is a failure
» assume reliable (broadcast) communication
» augment system by an oracle to detect failures

@ Verification of consensus algorithms

» difficult proofs ... often absent or informal
» DiskPaxos: careful paper proof (30 pages for 0.5 page algorithm)

e Can we help make verification simpler?

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 14 / 39

Heard-Of Model (Charron-Bost & Schiper, 2006)

o Algorithmic model for fault-tolerant distributed algorithms

» uniform treatment of all (benign) errors
» do not identify “culprit” or “type” of failure

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 15 / 39

Heard-Of Model (Charron-Bost & Schiper, 2006)

o Algorithmic model for fault-tolerant distributed algorithms

» uniform treatment of all (benign) errors
» do not identify “culprit” or “type” of failure

@ Round-based computation model

s s
sending receiving
T rowdr]

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010

15 / 39

Heard-Of Model (Charron-Bost & Schiper, 2006)

o Algorithmic model for fault-tolerant distributed algorithms

» uniform treatment of all (benign) errors
» do not identify “culprit” or “type” of failure

@ Round-based computation model
i / / \ S/
\ /!

sending receiving

round r

» rounds: local structure of process computation

» state s’ computed from s and received messages

» heard-of set HO(p, r): processes from which messages are received
» communication-closed rounds: discard late messages

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 15 / 39

Formal representation of HO algorithms

@ Collection of processes (Statey, s, S, T;)pe Proc.reN

> process states: sets State, with initial states sg, € State,

» message sending and state transition

S

Ty, : Statey, x (Proc — Msg) — State,

: State, X Proc — Msg

> domain of second argument of T): heard-of set HO(p,r)

@ For simplicity: deterministic processes

» algorithm behavior determined by collection of heard-of sets

» extension to non-deterministic processes straightforward

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010

16 / 39

Communication predicates

@ Algorithms do not work in presence of arbitrary failures

» safety: restrict number or extent of errors

» liveness: assume eventual functioning of components

@ Sample communication predicates

non-split rounds Vp,q,r: HO(p,r) NHO(q,7) # @
< f failures Vp,r: [HO(p,r)| > N —f
event. uniform 3rg € N, P C Proc : ¥r > ro,q € Proc : HO(q,r) = P

@ Observations (Charron-Bost & Schiper)

» standard failure assumptions can be expressed in terms of HO sets

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 17 / 39

HO Consensus Algorithm: One-Third Rule

Initialization
Xp = vp, decide, := null (vp : initial value of p)
For each round r > 0

Sy : send xp to all processes

T} : if [HO(p,r)| > 2N/3 then
set x, to smallest among the most frequently received values
if more than 2N /3 values received are equal to x, then
decide, 1= xp

Simple but efficient consensus algorithm

@ no coordinator needed

@ quick convergence if few errors

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010

18 / 39

Representing executions of HO algorithms

e Fine-grained execution for HO collection (HO(p,7))ycproceN

» message receptions, local transitions, message sending
» verify correctness for all HO collections

process Node(p € Proc)
state st = S0,p5
integer r = 0;
for g € Proc do send(p, q, 1,5, (st,9)) enddo;
loop
array rcod = [q € Proc — null];
for g € HO(p,r) do rcvd[q] := receive(q,p,r) enddo;
st,r:=Tj, (st,rcod),r+1;
for q € Proc do send(p,q,, S; (st,q)) enddo;
end loop
end process

@ Formally: infinite sequence ¢ = coc; . . . of configurations

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010

19 / 39

Representing executions of HO algorithms

e Fine-grained execution for HO collection (HO(p,7))ycproceN

» message receptions, local transitions, message sending
» verify correctness for all HO collections

process Node(p € Proc)
state st = S0,p5
integer r = 0;
for g € Proc do send(p, q, 1,5, (st,9)) enddo;
loop
array rcod = [q € Proc — null];
for g € HO(p,r) do rcvd[q] := receive(q, p,) enddo;
st,ri= T;, (st,rcod),r+1;
for q € Proc do send(p,q, 1, S; (st,q)) enddo;
end loop
end process

@ Formally: infinite sequence ¢ = coc; . . . of configurations

@ Infinite-state model, due to round numbers

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010

19 / 39

@ Reduction Theorems for the Verification of Concurrent Programs
@ Fault-Tolerant Distributed Computing
© Reduction for Round-Based Distributed Algorithms

© Experiments: Verification of Consensus Algorithms

© Conclusion

«Or «Fr A=r «E)r» E V)Q>

First reduction

@ Remember left and right movers?

» send actions are left movers <assuming inﬁnite)
> receive actions are right movers network capacity

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 21/39

First reduction

@ Remember left and right movers?

» send actions are left movers <assuming infinite>
> receive actions are right movers network capacity

@ This motivates the following reduction:

process Node(p € Proc)
(state st = S0,p5
integer r = 0;
for q € Proc do send(p,q,7, S;(st, q)) enddo);
loop
(array rcud = [q € Proc — null];
for g € HO(p,r) do rcvd[q] := receive(q, p, r) enddo;
st,r = T,’,(st, reod), r+1;
for g € Proc do send(p,q,1,5,(st,q)) enddo);
end loop
end process

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010

21/39

More reduction

@ Processes execute rounds atomically

’ init init |rndO || init | tmnd 0| rmd1 | md0 | rnd1 | rnd?2 |mdl || ---

o Can we do any better?

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 22 /39

More reduction

@ Processes execute rounds atomically

’ init init |rndO || init | tmnd 0| rmd1 | md0 | rnd1 | rnd?2 |mdl || ---

o Can we do any better?

@ Remember communication-closed rounds

> round rnd,’ right-commutes with rndy if m > n
> messages sent during rnd; did not influence rnd);’

@ Rearrange execution so that executions of same round are adjacent

init init || init || rnd 0 |\ tnd 0| rmd 0 | rnd 1 | rnd 1 | rnd 1| rnd2 | ---

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 22 /39

More reduction

@ Processes execute rounds atomically

’ init init |rndO || init | tmnd 0| rmd1 | md0 | rnd1 | rnd?2 |mdl || ---

o Can we do any better?

@ Remember communication-closed rounds

> round rnd,’ right-commutes with rndy if m > n
> messages sent during rnd; did not influence rnd);’

@ Rearrange execution so that executions of same round are adjacent

e e
K init init || init || rnd 0 |\ rnd 0| rnd 0 | rnd 1 | rnd 1 | rnd 1| rnd2 | ---

@ Executions of same round by different processes are independent

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 22 /39

Coarse-grained model of executions

@ Unit of atomicity: entire system rounds

» all processes simultaneously perform transition for same round

» corresponds to “nice” executions in the fine-grained model

o Coarse-grained execution ooy ... (07 : Proc — State)

> 0o(p) = sop
> 0r11(p) = Ty (07(p), revd(p, 1))
where rcvd(p,r) = [q € HO(p,r) — Sj(0+(9),p)]

@ Coarse abstraction of distributed execution

» no need for explicit representation of network
» no round numbers: “synchronized” processes

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010

23 /39

Coarse-grained model of executions

@ Unit of atomicity: entire system rounds
» all processes simultaneously perform transition for same round

» corresponds to “nice” executions in the fine-grained model

o Coarse-grained execution ooy ... (07 : Proc — State)

> 0o(p) = sop
> 0r11(p) = Ty (07(p), revd(p, 1))
where rcvd(p,r) = [q € HO(p,r) — Sj(0+(9),p)]

@ Coarse abstraction of distributed execution

» no need for explicit representation of network
» no round numbers: “synchronized” processes

= How exactly does the reduced model relate to the original one?

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 23 /39

Relating fine- and coarse-grained executions

@ Fine-grained model contains more detail
o Compare executions w.r.t. the “local views” of processes

» p-view of fine-grained execution ¢ = copcy ...
&P = co.st(p),c1.st(p),- - .
» p-view of coarse-grained execution ¢ = ooy ...
o = ao(p), o1 (p), - -
» p-views are sequences of states of p and can be compared

@ Executions equivalent iff indistinguishable by any process

E~c iff (&) =1y(o”) foreveryp € Proc

» local views equal up to stuttering, for every process

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010

24 /39

Reduction theorem

Theorem (Reduction)

Given a HO collection (HO(p, r)) and a fine-grained execution &
there exists a coarse-grained execution o for the same HO collection
such that o ~ ¢.

Proof. For ¢ = cycy ..., define sequence ¢ = ([p € Proc — cd‘r.st(p)})rgm

& =0
where p . . -
lo = k+1 if(c,cpqq)is (r+ 1)stlocal transition of p.

Then ¢ is a coarse-grained execution for the same HO collection.

Moreover, f(0*) = §(¢P) forallp € Proc. Q.E.D.

@ Converse theorem is trivially true

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 25/ 39

“Local” properties

e Application of reduction theorem to verification

» many properties depend only on local views
» these can be verified by considering only coarse-grained executions

@ Local properties P of executions

p1 =P iff po =P whenever p; = p2

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 26 /39

“Local” properties

e Application of reduction theorem to verification

» many properties depend only on local views
» these can be verified by considering only coarse-grained executions

@ Local properties P of executions
p1 =P iff po =P whenever p; = p;

@ The following LTL-X properties are local

» formulas Q(p) built solely from p’s state variables
» arbitrary first-order combinations of local properties
» but: temporal combinations need not be local, consider:

/\ D(rndp = rndq) (where rndy, is the current round of p)
p,q€Proc

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 26 /39

Consensus as a local property

o Integrity
N\ Vo # null : <<>(decidep =0)=> \/ x= v>
p€EProc

@ Irrevocability

N\ Vo # null : O(decide, = v = O(decide, = v))
p€Proc
o Agreement
N\ Vo,w # null : O(decide, = v) A O(decide; = w) = v =w
p,g€Proc

@ Termination

N\ O(decide, # null)

p€Proc

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 27 /39

@ Reduction Theorems for the Verification of Concurrent Programs
@ Fault-Tolerant Distributed Computing
© Reduction for Round-Based Distributed Algorithms

© Experiments: Verification of Consensus Algorithms

© Conclusion

«Or «Fr A=r «E)r» E V)Q>

Finite-state model checking

@ Verification of finite instances of algorithms

» model coarse-grained executions for fixed number of processes
» non-deterministic choice of HO sets at every transition

» resulting model is finite-state

@ Generic TLA" module HeardOf

» high-level definition of coarse-grained HO semantics
» pre-define useful communication predicates

» concrete algorithms obtained later as instances

@ Here: favor clarity over efficiency

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 29 /39

Generic TLA® module

MODULE HeardOf

[

|

EXTENDS Naturals

CONSTANTS Proc, State, Msg, nPhases, IniSt(-), Send(_, -, -, -), Trans(_, -, -, -)
VARIABLES phase, state, heardof

I

Init 2 A phase = 0
A state = [p € Proc — IniSt(p)]
A heardof = [p € Proc — {}]
Step(HO) = LET rcud(p) = {(g, Send(q, phase, state[q],p)) : q € HO[p]}
IN A phase’ = (phase + 1) % nPhases
A state’ = [p € Proc — Trans(p, phase, state[p), rcvd(p))]
A heardof' =
Next £ 3HO € [Proc — SUBSET Proc] : Step(HO)
NoSplit(HO) = Vp,q € Proc : HO[p] NHOJq] # {}
NextNoSplit £ 3JHOe [Proc — SUBSET Proc] : NoSplit(HO) A Step(HO)
Uniform(HO) = 35 € SUBSET Proc : HO = [q € Proc —]
| InfiniteUniform £ OOUniform(heardof) |
Stephan Merz (INRIA Nancy) Reduction Revisited MPC2010 30 /39

Remarks

@ Definitions closely parallels “paper” version

» expressiveness of TLA™ leads to perspicuous formulation
» (auxiliary) variable heardof records HO sets during a run

» mainly used for debugging and printing counter-examples

@ Formulation of communication predicates

» safety predicates: add to next-state relation
» liveness predicates: natural expression in temporal logic

» used to express correctness properties

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 31/39

One-Third Rule in TLA™ (1/3)

: MODULE OneThirdRule

EXTENDS Naturals, FiniteSets
CONSTANT N

VARIABLES phase, state, heardof
|

I

nPhases 21

Proc Z 1N

InitValue(p) = 10%p

Value £ {InitValue(p) : p € Proc}

Msg 2 Value

null = 0

ValueOrNull = Value U {null}

State 2 [x: Value, decide : ValueOrNull]

@ definition of constant parameters for OneThirdRule algorithm

@ arbitrary definition of (initial) values of a process

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010

32/39

One-Third Rule in TLA* (2/3)

IniSt(p) L [x — InitValue(p), decide — null]
Send(p,ph,s,q) 2 sx
Trans(p, ph, s, rcvd) =

IF Cardinality(rcvd) > (2% N) =3
THEN LET Freq(v) = Cardinality({q € Proc : (g,v) € rcod})
MFR(v) £ Vw € Value : Freq(w) < Freq(v)
min = CHOOSE v € Value : MFR(v) A Vw € Value : MFR(w) = v < w
IN [x+— min,
decide — 1F Freq(min) > (2 * N) + 3 THEN min ELSE s.decide]
ELSE s

I
INSTANCE HeardOf

@ definition of the send and state transition functions

@ instantiation of generic module

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 33 /39

One-Third Rule in TLA* (3/3)

Safety 2 Init AO[Next]oars

Liveness £ O0(Uniform(heardof) A Cardinality(heardof) > (2 % N) <+ 3)
Integrity 2 Vp € Proc : state[p].decide € ValueOrNull

Irrevocability = Vp € Proc : Olstate[p).decide = null statelp).decide

Agreement £ Vp,q € Proc: (state[p].decide # null A state[q).decide % null

= state[p|.decide = state|q).decide)
Termination = Vp € Proc : {(state[p].decide # null)

THEOREM Safety = U(Integrity A Agreement) A Irrevocability
THEOREM Safety A Liveness = Termination

@ definition of correctness properties

@ formulation of correctness theorems, under precise hypotheses

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 34 /39

Results of verification

OneThirdRule UniformVoting
N=3 N=14 N=3 N=14
states 5633 | 9,830,401 21,351 | 15,865,770
distinct 11 150 122 887
time (s) 1.87 939 13.8 1330

@ Model checking feasible for small instances

» high branching factor: exploration of all HO collections

» many redundant states generated

@ Symbolic model checking can be more efficient

» more complicated encodings necessary for tools like NuSMV

» cf. work by Tsuchiya and Schiper: Paxos for 10 processes

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 35/ 39

Verification in Isabelle/HOL

Similar overall model

@ main difference: introduction of types

@ generic HeardOf module represented as an Isabelle locale

locale HOAlgorithm =
fixes
nPhases :: nat and
iniSt :: ‘proc — 'pst and
send :: 'proc — nat — 'pst — 'proc — 'msg and
trans :: 'proc — nat — 'pst — (‘proc — 'msg) — 'pst
assumes
nSteps : 0 < nPhases and
finiteProc : finite(UNIV :: ‘procset)

@ defines generic behavior of HO algorithms
@ proves useful rules, such as induction over executions

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010

36 /39

Proof of correctness

e Validity: standard invariance proof
@ Irrevocability and agreement via sequence of lemmas

Q if process decides on value v then more than 2N /3 processes
contain v in their x field

@ if more than 2N /3 processes send v and process p hears from more
than 2N /3 processes then p updates its x field to v

© whenever process has decided on v then more than 2N /3 processes
contain v in their x field

@ hence, processes cannot decide on different values

@ Liveness: symbolically execute uniform rounds

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 37 /39

Proof of correctness

e Validity: standard invariance proof
@ Irrevocability and agreement via sequence of lemmas

Q if process decides on value v then more than 2N /3 processes
contain v in their x field

@ if more than 2N /3 processes send v and process p hears from more
than 2N /3 processes then p updates its x field to v

© whenever process has decided on v then more than 2N /3 processes
contain v in their x field

@ hence, processes cannot decide on different values

@ Liveness: symbolically execute uniform rounds
@ Proof lengths in Isar (including model and explanations)

» 8 pages for generic module and lemmas
» 8 pages for OneThirdRule
» 25 pages for LastVoting (cf. 130 pages for fine-grained model!)

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 37 /39

@ Reduction Theorems for the Verification of Concurrent Programs
@ Fault-Tolerant Distributed Computing
© Reduction for Round-Based Distributed Algorithms

© Experiments: Verification of Consensus Algorithms

© Conclusion

«AOr AFr AEr A EFEHr» E DA

Reduction: a revival?

@ Recast of classical theorems

» identify left and right movers for coarser unit of atomicity
» distributed algorithms present interesting opportunities
» substantial reduction of verification effort possible

@ Transcend historical formulations

» beyond programming-language based presentations
» wide interpretation of “processes” (e.g., set of rounds)
» verify safety and liveness properties

@ Ongoing / future work

» establish more general reduction theorems
» better syntactic characterization of local properties
» implementation of reduction in verification tools

Stephan Merz (INRIA Nancy) Reduction Revisited MPC 2010 39 /39

	Reduction Theorems for the Verification of Concurrent Programs
	Fault-Tolerant Distributed Computing
	Reduction for Round-Based Distributed Algorithms
	Experiments: Verification of Consensus Algorithms
	Conclusion

