
TLA+ Case Study: A Resource Allocator

Stephan Merz
INRIA Lorraine & LORIA, Nancy, France

Stephan.Merz@loria.fr

August 17, 2004

Abstract

This note presents a case study for the specification and analysis of reactive sys-
tems in TLA+. It illustrates available verification techniques and describes some
pitfalls to avoid when writing formal models. It is mainly intended as a tutorial to
the TLA+ language and tools and was initially developed during a Summer School
in Slovakia in June 2004.1

1 Problem description

The purpose of the system to be specified is to manage a (finite) set of resources that
are shared among a number of client processes. Informally, the requirements for the
system can be stated as follows:

1. A client that currently does not hold any resources and that has no pending re-
quests may issue a request for a set of resources.

We require that no client should be allowed to “extend” a pending request, possi-
bly after the allocator has granted some resources. A single client process might
concurrently issue two separate requests for resources by appearing under dif-
ferent identities, and therefore the set of “clients” should really be understood as
identifiers for requests, but we will not make this distinction here.

2. The allocator may grant access to a set of available (i.e., not currently allocated)
resources to a client.

Resources can be allocated in batches, so an allocation need not satisfy the entire
request of the client; hopefully, the client can already work with a subset of the
resources it requested.

3. A client may release some resources that it holds.

Similarly to allocation, clients may return just a subset of the resources they
currently hold, freeing them for allocation to a different process.

4. Clients are required to eventually free the resources they hold once their entire
request has been satisfied.

The system should be designed such that it ensures the properties of

1This case study was inspired by a model written by Michel Charpentier and students at the University
of New Hampshire.

1

Stephan.Merz@loria.fr

safety: no resource is ever allocated to two different clients and

liveness: every request issued by some client is eventually satisfied.

This note discusses possible specifications of this system in TLA+ [3] at a relatively
high level of abstraction, without premature commitment to implementation decisions.
It also describes the use of tools to analyze and verify the models. Along the way,
it discusses some potential pitfalls of using formal specification techniques such as
TLA+. Basic familiarity with the TLA+ notation is assumed.

2 A first model

We start with a high-level specification of the resource allocator. Abstract specifications
are easier to understand and validate than detailed ones; they are also more easily
analyzed using tools such as model checkers or theorem provers. For our case study,
we abstract from many details. For example, we not specify how the allocator and the
clients communicate, or how the data is represented. Such aspects can be introduced
by later refinement steps after the overall protocol has been modeled, and we will give
an indication of how to do this in section5. What exactly can and should be left out in
a high-level model is of course specific to the problem; it also requires judgment that
only experience can teach.

A first specification of the resource allocator appears in moduleSimpleAllocator
in Fig. 1. It is based on the standard TLA+ moduleFiniteSetsand declares the con-
stant parametersClientsandResourcesthat represent the sets of client processes and
resources; the latter is assumed to be finite. (We do not require the setClients to be
finite because the model is correct without this assumption: only a finite number of
clients will have issued a request at any point.)

The module declares two variables: as expressed by the typing invariant2, unsatis
a function that associates to each client the set of resources that it has requested but not
yet received. Similarly, the variablealloc is a function associating to each client the set
of resources that have been allocated to it. The constantavailable is defined to equal
the set of resources that are not currently allocated to any client.

The following definitions introduce the initial predicate and the elementary actions
of the model. The state predicateInit asserts that no resources have been requested or
allocated. The actionRequest(c,S) represents clientc issuing a request for the setSof
resources. As stated in requirement (1), this action is enabled only if clientc currently
has no pending requests and if it does not hold any resources. We also requireS to be
non-empty; obviously, issuing a request for the empty set of resources is uninteresting.3

The effect of the actionRequest(c,S) is to record the request in the arrayunsat; the
variablealloc is left unchanged.

The actionAllocate(c,S) represents allocation of the setS of resources to client
c. Again, we requireS to be non-empty. More importantly, the action states that the
resources inSshould not only be available but also thatc should have requested them, a
requirement that does not appear in the informal description (2). Informal requirements

2TLA+ is an untyped formalism [4], and the module formally simply definesTypeInvariantto be some
state predicate. It is, however, good engineering practice to assert the intended types of state variables, and
we will verify type correctness when analysing the model.

3Formally, such a step would simply be a stuttering action, invisible to the TLA+ specification, and
dropping the requirementS 6= {} results in an equivalent system specification. We have added it essentially
to simplify the interpretation of counter-examples produced by theTLC model checker.

2

MODULE SimpleAllocator

EXTENDS FiniteSet
CONSTANTSClients, Resources
ASSUME IsFiniteSet(Resources)
VARIABLES

unsat, unsat[c] denotes the outstanding requests of clientc

alloc alloc[c] denotes the resources allocated to clientc

TypeInvariant
∆=

∧ unsat∈ [Clients→ SUBSETResources]
∧ alloc∈ [Clients→ SUBSETResources]

available
∆= set of resources free for allocation

Resources\ (UNION {alloc[c] : c∈ Clients})
Init

∆= initially, no resources have been requested or allocated

∧ unsat= [c∈ Clients7→ {}]
∧ alloc = [c∈ Clients7→ {}]

Request(c,S) ∆= Clientc requests setSof resources

∧ unsat[c] = {}∧alloc[c] = {}∧S 6= {}
∧ unsat′ = [unsatEXCEPT ! [c] = S]
∧ UNCHANGED alloc

Allocate(c,S) ∆= SetSof available resources are allocated to clientc

∧ S 6= {}∧S⊆ available∩unsat[c]
∧ alloc′ = [alloc EXCEPT ! [c] = @∪S]
∧ unsat′ = [unsatEXCEPT ! [c] = @\S]

Return(c,S) ∆= Clientc returns a set of resources that it holds.

∧ S 6= {}∧S⊆ alloc[c]
∧ alloc′ = [alloc EXCEPT ! [c] = @\S]
∧ UNCHANGED unsat

Next
∆= The system’s next−state relation

∃c∈ Clients,S∈ SUBSETResources:
Request(c,S)∨Allocate(c,S)∨Return(c,S)

vars
∆= 〈unsat,alloc〉

SimpleAllocator
∆= The complete high−level specification

∧ Init ∧�[Next]vars

∧ ∀c∈ Clients : WFvars(Return(c,alloc[c]))
∧ ∀c∈ Clients : SFvars(∃S∈ SUBSETResources: Allocate(c,S))

Figure 1: First model of the resource allocator.

3

are bound to be incomplete, and the design process has to identify and resolve open
issues. In some cases, it may be desirable to give clients access to resources they
have not requested. Should we wish to allow such behavior, we should simply write
S⊆ available; it would not make much difference for the issues to be discussed in this
note.

Finally, the actionReturn(c,S) models clientc returning the resources inS; as stated
in the informal requirement (3), we do not require thatc returns all resources that it is
holding at once.

The system’s next-state relationNext is simply defined as the disjunction of the
actions introduced above, for any clientc and any setS of resources. The system
specification is represented by the formulaSimpleAllocator; it is of the standard form

Init ∧�[Next]vars∧L

whereL is a conjunction of fairness conditions, which we examine next. The first
fairness condition asserts that no client should keep its resources forever. There are
several ways to express this; we could for example have written

∀c∈ Clients : WFvars(∃S∈ SUBSETResources: Return(c,S))

without affecting the correctness of the protocol. Formally,Init ∧�[Next]vars implies
that the two conditions are equivalent—but the formal proof of this equivalence is not
trivial.

The second fairness condition is perhaps more interesting. Because resources can
be allocated to different clients and thus become temporarily unavailable, weak fairness
is not sufficient. One of several equivalent ways of defining strong fairness of action
〈A〉v in TLA is

SFv(A) ≡ �(�♦ENABLED 〈A〉v ⇒ ♦〈A〉v),

and thus our fairness condition asserts that the allocator must eventually allocate some
resources to clientc if this is repeatedly possible. It is a good exercise to try and con-
vince yourself that this is a reasonable fairness requirement for the allocator process.

3 Analysis of the model

Whereas programs can be compiled and executed, TLA+ models can be validated and
verified. In this way, one gains confidence that a model faithfully reflects the intended
system, and that it can serve as a basis for more detailed designs, and ultimately for
implementations. Although review and inspection remain the preferred means for val-
idating a model, tools can assist in that process. In particular, simulation can explore
some traces allowed by the model, possibly detecting deadlocks or violations of invari-
ants. Deductive tools such as model checkers and theorem provers assist in the formal
verification of properties.TLC, the TLA+ model checker, is a powerful and very usable
tool for verification and validation, and we will illustrate its use for our example in
section3.1. More ambitious is verification using theorem-proving techniques, and we
briefly discuss a hybrid approach in section3.2.

3.1 Analysis by model checking

Figure2 contains four correctness properties, beyond the type correctness predicate
TypeInvariant, that should be satisfied by the allocator. The predicateResourceMutex

4

ResourceMutex
∆= the same resource is never allocated to different clients

∀c1,c2 ∈ Clients : c1 6= c2 ⇒ alloc[c1]∩alloc[c2] = {}
ClientsWillReturn

∆= clients will return resources when requests have been fulfilled

∀c∈ Clients : unsat[c] = {} alloc[c] = {}
ClientsWillObtain

∆= every requested resource will eventually be allocated

∀c∈ Clients, r ∈ Resources: r ∈ unsat[c] r ∈ alloc[c]
InfOftenSatisfied

∆= entire request of each client will eventually be satisfied

∀c∈ Clients : �♦(unsat[c] = {})

Figure 2: Correctness properties of the resource allocator.

asserts that the sets of resources allocated to different clients are disjoint; it should be
an invariant of the system. The remaining formulas express liveness properties. For-
mula ClientsWillReturnstates that whenever some clientc has no pending resources
then eventually it will not hold any resources. In particular, clients whose request has
been entirely satisfied will eventually return the resources that have been allocated: this
is precisely requirement (4) of the informal description. FormulaClientsWillObtain
asserts that whenever clientc has requested resourcer, it will eventually obtain it;
this is the fundamental liveness property formulated in section1. Finally, formula
InfOftenSatisfiedexpresses that for every client, the set of its pending requests is in-
finitely often empty.

Before engaging on a full-scale verification effort, it is a good idea to analyze mod-
els usingTLC, the TLA+ model checker, which can analyze the state space of finite-
state instances of TLA+ models. Besides the TLA+ model written in an ASCII repre-
sentation,TLC requires a second input file, called theconfiguration file, that defines the
finite-state instance to analyze, and that declares the specification and the properties
to verify. (A TLA+ model essentially consists of a list of definitions, it does not indi-
cate which of the formulas represents the system specification to analyze. Also,TLC

does not interpret any theorems asserted in a module.) Figure3 shows a configuration
file for analyzing moduleSimpleAllocator. It defines a concrete instance of module
SimpleAllocatorby defining setsClientsandResourcesthat, in our case, contain sym-
bolic constants. The keywordSPECIFICATION indicates the formula representing the
main system specification. Finally, the keywordsINVARIANTS andPROPERTIES define
the properties to be verified byTLC. This is a very simple example of a configuration

CONSTANTS
Clients = {c1,c2,c3}
Resources = {r1,r2}

SPECIFICATION
SimpleAllocator

INVARIANTS
TypeInvariant ResourceMutex

PROPERTIES

ClientsWillReturn ClientsWillObtain InfOftenSatisfied

Figure 3: Sample configuration fileSimpleAllocator.cfg for TLC.

5

file that suffices for our case study; a detailed explanation of configuration files appears
in [3] and in the tool documentation available at [2].

When I runTLC on this model on my laptop, I obtain the following output (some
details will vary depending on the version and the installation ofTLC):

TLC Version 2.0 of Mar 17, 2004
Model-checking
Parsing file SimpleAllocator.tla
Parsing file /tools/tla/tlasany/StandardModules/FiniteSets.tla
Parsing file /tools/tla/tlasany/StandardModules/Naturals.tla
Parsing file /tools/tla/tlasany/StandardModules/Sequences.tla
Semantic processing of module Naturals
Semantic processing of module Sequences
Semantic processing of module FiniteSets
Semantic processing of module SimpleAllocator
Implied-temporal checking--satisfiability problem has 10 branches.
Finished computing initial states: 1 distinct state generated.
--Checking temporal properties for the complete state space...
Model checking completed. No error has been found.

Estimates of the probability that TLC did not check all reachable states
because two distinct states had the same fingerprint:

calculated (optimistic): 2.673642557349254E-14
based on the actual fingerprints: 6.871173129000332E-15

1633 states generated, 400 distinct states found, 0 states left on queue.
The depth of the complete state graph search is 6.

TLC invokes the syntactic and semantic analyzerTLASANY to parse the TLA+ in-
put file and check for well-formedness. It then computes the graph of reachable states
for the instance of our model defined by the configuration file, verifying the invariants
along the way. Finally, the temporal properties are verified over the state space. In our
case,TLC reports that it has not found any error. During the calculation of the state
space,TLC compares states based on a hash code (“fingerprint”) rather than comparing
states precisely, for better efficiency. In case of a hash collision,TLC will mistakenly
identify two distinct states and may therefore miss part of the state space.TLC attempts
to estimate the probability that this error occurred during the run, based on the distri-
bution of the fingerprints.TLC also reports the number of states it generated during its
analysis, the number of distinct states, and the depth of the state graph, i.e. the length
of the longest cycle. These statistics can be valuable information: too few states may
indicate that some action guards are too strong, while too many states may point to
missing conjuncts in guards, resulting in invariant violations. It is a good idea to use
TLC to verify every property you can think of, as well as some non-properties: for
example, assert the negation of every action guard as an invariant in order to letTLC

compute a finite execution that ends in a state where the action can actually be acti-
vated. For our example, theTLC run completes after just under 10 seconds (half of that
time is spent on the verification of propertyClientsWillObtain, which is expanded into
six properties, for each combination of clients and resources).

After this initial success, we can try to analyze somewhat larger models, but this
exploration is limited by the well-known problem of state-space explosion. For ex-
ample, increasing the number of resources from 2 to 3 in our model results in a state
graph that contains 8000 distinct states (among 45697 states generated in all), and the
analysis will take roughly 10 minutes instead of 10 seconds (2 minutes when dropping
the propertyClientsWillObtain).

6

You may notice that the specification and the properties to be verified are invariant
with respect to permutations of the sets of clients and resources, andTLC implements
a technique of symmetry reduction, which can counteract the effect of state-space ex-
plosion: it suffices to extend the TLA+ module by a definition of the predicate

Symmetry
∆= Permutations(Clients)∪Permutations(Resources)

(the operatorPermutationsis defined in the standard TLC module, which must there-
fore be added to theEXTENDS clause) and to indicate

SYMMETRY Symmetry

in the configuration file. Unfortunately, the implementation of symmetry reduction in
TLC is not compatible with checking liveness properties, and in fact,TLC reports a
meaningless “counter-example” when we enable symmetry reduction during the verifi-
cation of the liveness properties of our example. However, when restricted to checking
the invariants, symmetry reduction with respect to both parameter sets reduces the num-
ber of states explored to 50 (respectively 309 for three clients and three resources); the
runtimes are reduced to fractions of a second for either configuration.

We can easily useTLC to explore variations of our specification. For example,
you may want to try to replace the fairness condition for the allocator by one of the
following formulas:

(1) ∀c∈ Clients : WFvars(∃S∈ SUBSETResources: Allocate(c,S))
(2) SFvars(∃c∈ Clients,S∈ SUBSETResources: Allocate(c,S))
(3) ∀c∈ Clients, r ∈ Resources: SFvars(Allocate(c,{r}))

Try to understand these conditions and to predict the outcome ofTLC before running it
on the modified model, then interpret the results!

3.2 Analysis by deductive-algorithmic verification

Model checking can give some confidence in the correctness of a model since proper-
ties that do not hold of a model usually fail already for small instances. In fact, one way
to verify a system is to verify correctness of an instance for small parameter values (say,
two or three clients and resources), combined with a proof of data-independence that
establishes that the failure of a property to hold over an arbitrary model would already
manifest itself over the chosen instance. More traditional is deductive verification of
a model, based on proof rules for establishing system properties. This approach is in-
dependent of particular instances and can be aided by interactive or automatic theorem
provers. The drawback, of course, is the limited degree of automation: the proof has to
be planned in minute detail, and the verification rules tend to generate many proof obli-
gations. When assisted by a mechanical theorem prover, one should also have intimate
knowledge of its proof methods.

These difficulties can to some extent be alleviated by a hybrid approach that com-
bines theorem proving and model checking, based on the concept ofpredicate abstrac-
tion. In this framework, the system is represented as a finite-state transition system
whose states are labelled by predicates and thus represent (possibly infinite) sets of
system states. The overall verification can be decomposed into two subproblems: on
the one hand, we have to prove that the abstraction correctly represents the concrete
systems, and this is established using theorem proving, involving no or very little tem-
poral logic. On the other hand, the temporal correctness property of interest is verified

7

�
�

�
�

¬resourceavailable
IsFiniteSet(unsat[c])

unsat[c] 6= {} �
(unsat[c],⊆f)

?

Allocc

(unsat[c],⊂f)

�
�

�
�

alloc[c] = {}
unsat[c] = {}1

�
�

�
�

resourceavailable
IsFiniteSet(unsat[c])

unsat[c] 6= {}3

�
�

�
�

unsat[c] = {}
alloc[c] 6= {}

4

2

�

Allocc

(unsat[c],⊂f)

?

?

? ?

6
-

�

Allocc

ReqcReqc

Return6=c

(unsat[c],⊆f)

(unsat[c],⊆f)

Figure 4: Predicate diagram for the simple allocator.

over the finite-state abstraction by model checking. At our group in Nancy, we have
developed a visual representation of predicate abstractions that we callpredicate di-
agrams[1], and a supporting tool is currently under development. I will not present
predicate diagrams in detail in this note, but only demonstrate the use of the formalism
(and, in fact, of a beta version of our tool) to verify that the propertyInfOftenSatisfied
holds of specificationSimpleAllocator.

The predicate diagram shown in Fig.4 contains 4 nodes numbered 1 to 4. Nodes
are labeled with predicates, and edges are associated with actions and, possibly, with
ordering annotations. For example, the diagram asserts that actionReqc may take us
from the initial node 1 to either node 2 or node 3. Similarly, the actionAllocc may reach
nodes 2, 3 or 4 from node 3, the first two transitions ensuring thatunsat[c] decreases
with respect to the well-founded ordering⊂f , i.e. implyingunsat[c]′ ⊂f unsat[c]. The
predicate diagram is formally based on the TLA+ module shown in Fig.5, which in-
troduces some abbreviations for predicate and actions.

Informally, it is not hard to see that the predicate diagram faithfully reflects transi-
tions of the system. Besides the explicitly shown transitions, predicate diagrams also
allow for transitions that loop at the source node. (If that node has some outgoing edge
with an ordering annotation(t,≺), all looping transitions must ensure that the termt
does not increase with respect to that ordering.) For example, assume that the system
is in some state represented by node 3, i.e. where clientc has some pending request
and where some of the requested resources are currently available, and consider the
possible system transitions (for some clientd and setSof resources):

Request(d,S) : becauseunsat[c] 6= {} holds in the source state,d is different fromc.
Therefore, the transition changes neitherunsat[c] nor available, and it is repre-
sented by the implicit looping transition from node 3.

Return(d,S) : such transitions do not changeunsat[c] (even ifd = c), and they ensure
available′ ⊇ available, so again they preserve the predicates that characterize
node 3.

Allocate(d,S) : we consider several subcases:

8

MODULE SimpleAllocatorDiagram

EXTENDS SimpleAllocator
CONSTANT c
ASSUME c∈ Clients

resourceavailable
∆= unsat[c]∩available6= {}

Reqc
∆= ∃S∈ SUBSETResources: Request(c,S)

Allocc
∆= ∃S∈ SUBSETResources: Allocate(c,S)

Return6=c
∆=

∧ unsat[c] 6= {}∧¬resourceavailable
∧ ∃d ∈Clients : d 6= c∧alloc[d]∩unsat[c] 6= {}∧Return(d,alloc[d])

S⊂ f T
∆= IsFiniteSet(S)∧S⊆ T ∧S 6= T

S⊆ f T
∆= IsFiniteSet(S)∧S⊆ T

Figure 5: Auxiliary definitions for the predicate diagram.

• If d = c andunsat[c]′ = {} (i.e., whenS= unsat[c]) then clearly we have
alloc[c]′ 6= {}, and the transition is therefore represented by the edge from
node 3 to node 4.

• Otherwise, ifd = c, we have{} 6= unsat[c]′ ⊂f unsat[c], and the predicate
resourceavailablemay or may not hold in the post-state. The transition is
therefore represented either by the explicit loop at node 3 or by the edge
labeledAllocc from node 3 to node 2.

• Finally, if d 6= c, the setunsat[c] stays unchanged, andresourceavailable
may or may not hold in the post-state. The transition is therefore repre-
sented either by the implicit loop at node 3 (which, as mentioned before, is
annotated by(unsat[c],⊆f)), or by the lower edge from node 3 to node 2:
edges without an explicitly given action name are associated with the sys-
tem’s next-state relation.

Similar reasoning justifies the transitions for the remaining diagram nodes. For-
mally, the correctness of the diagram is established by a set of proof obligations that
have been defined in [1] and that are generated (but not yet proven) by our tool. Our
goal is to verify the property

�♦(unsat[c] = {})

(from which propertyInfOftenSatisfiedfollows by the∀ -introduction rule of ordinary
predicate logic). To do so, we must show that every path passes infinitely often through
nodes 1 or 4. At first sight, this is not obvious: the system may loop at or between
nodes 2 and 3. In fact, the various edge annotations serve to show that these loops must
eventually be exited. First, we assume weak fairness for the actionReturn6=c, and this
ensures that node 2 will eventually be left (it is easy to see that the predicate label of
node 2 ensures that the action is enabled). Thus, any trace looping at nodes 2 and 3
must visit node 3 infinitely often. Secondly, we assume strong fairness for the action
Allocc; clearly, this follows immediately from the fairness assumption of specification
SimpleAllocator. BecauseAllocc is enabled whenever the trace visits node 3, the action
must be taken infinitely often along our assumed loop. However, each such transition
implies thatunsat[c]′ ⊂f unsat[c], whereas no other transition along the loop increases

9

unsat[c]. Therefore, we obtain an infinite descent with respect to a well-founded or-
dering, which is of course impossible, and the loop must eventually be left by visiting
node 4.

This informal reasoning is formally backed up by our tool by starting a model
checker to verify the property over a finite-state model generated from the diagram,
and this can be very helpful to determine the necessary annotations. For example, I
had at first omitted the annotations(unsat[c],⊆f) for the edges between nodes 2 and 3,
except for the edge for theAllocc action. The model checker immediately produced a
counter example that pointed to the missing annotations.

Of course, the verification of properties from predicate diagrams is conclusive only
if we can actually discharge all the proof obligations that ensure the correctness of the
diagram with respect to the underlying specification. Most of them are non-temporal
formulas, concerning the enabledness or the effect of transitions at certain system
states. However, we must also show that the system specification implies the fair-
ness conditions associated with the diagram. These verification conditions are often
obvious, however, in the example above we must prove

SimpleAllocator⇒WFvars(Return6=c)

whose correctness requires some reasoning about the interaction of quantifiers and fair-
ness conditions (see [3, ch. 8.5.3]).

Finally, one may observe that the transition from node 4 to node 1 of the diagram
corresponds to an occurrence of the actionReturn(c,alloc[c]), for which we have as-
sumed weak fairness. We can add this information to our predicate diagram and use it
to verify the property

�♦(alloc[c] = {})

proving that clientc (and, therefore, all clients) will eventually return their resources.

3.3 The specification revisited

We have analyzed theSimpleAllocatorspecification using both model checking and
theorem proving techniques and have successfully verified its correctness properties.
Does this mean that the specification is correct? Consider the following scenario: two
clientsc1 andc2 both request resourcesr1 and r2. The allocator grantsr1 to c1 and
r2 to c2. From our informal description in section1, neither client should be required
to give up any of its resources before it has received all resources it requested. On the
other hand, neither client can acquire the entire set of resources it requested while the
other client is holding its resource, so the model appears to be deadlocked. Why didn’t
TLC report any deadlock in the model?

The reason is of course that, technically, the model is not deadlocked: both clients
have an enabled action because theymayreturn the resource they are holding according
to requirement (3) of the problem description. The problem is that our model actually
requiresclients to eventually return the resources they are holding, via the fairness
assertion

∀c∈ Clients : WFvars(Return(c,alloc[c]))

whereas the informal requirement (4) only asks that client return their resources pro-
vided they have no outstanding requests. We should therefore have imposed the weaker

10

fairness condition

∀c∈ Clients : WFvars
(
unsat[c] = {}∧Return(c,alloc[c])

)
RerunningTLC on the modified specification produces the following output (after the
initial diagnostic messages):

Error: Temporal properties were violated.
The following behaviour constitutes a counter-example:

STATE 1: <Initial predicate>
/\ unsat = (c1 :> {} @@ c2 :> {} @@ c3 :> {})
/\ alloc = (c1 :> {} @@ c2 :> {} @@ c3 :> {})

STATE 2: <Action line 43, col 3 to line 45, col 50 ...>
/\ unsat = (c1 :> {r1, r2} @@ c2 :> {} @@ c3 :> {})
/\ alloc = (c1 :> {} @@ c2 :> {} @@ c3 :> {})

STATE 3: <Action line 50, col 3 to line 52, col 50 ...>
/\ unsat = (c1 :> {r2} @@ c2 :> {} @@ c3 :> {})
/\ alloc = (c1 :> {r1} @@ c2 :> {} @@ c3 :> {})

STATE 4: <Action line 43, col 3 to line 45, col 50 ...>
/\ unsat = (c1 :> {r2} @@ c2 :> {r1, r2} @@ c3 :> {})
/\ alloc = (c1 :> {r1} @@ c2 :> {} @@ c3 :> {})

STATE 5: <Action line 50, col 3 to line 52, col 50 ...>
/\ unsat = (c1 :> {r2} @@ c2 :> {r1} @@ c3 :> {})
/\ alloc = (c1 :> {r1} @@ c2 :> {r2} @@ c3 :> {})

STATE 6: <Action line 43, col 3 to line 45, col 50 ...>
/\ unsat = (c1 :> {r2} @@ c2 :> {r1} @@ c3 :> {r1, r2})
/\ alloc = (c1 :> {r1} @@ c2 :> {r2} @@ c3 :> {})

STATE 7: Back to state 6.

In fact, TLC produces (essentially) the counter-example described above: clients
c1 andc2 request both available resources, the allocator grants each client access to
one resource, and no more progress is made from there since the trace ends in infinite
stuttering. As a result, the trace violates the liveness propertiesClientsWillObtainand
InfOftenSatisfied(TLC does not indicate precisely which properties are not satisfied by
the counterexample).

The moral of this observation is that models can be inappropriate even if they sat-
isfy all correctness properties, and that validation of models is extremely important
before engaging on verification. Of course, any experienced user of TLA+ would have
pointed out the problem immediately, but similar problems may be much harder to find
in real-world specifications. Stepwise development by refinement can help to some ex-
tent because high-level specifications are smaller. However, it may also become more
difficult to express adequate liveness assumptions at a higher level of abstraction.

11

4 A scheduling allocator

SpecificationSimpleAllocatoris too simple because the allocator is free to allocate
resources in any order. Therefore, it may “paint itself into a corner” as in the run
discussed in the previous section, requiring cooperation from the clients to recover. We
can prevent this from happening by having the allocator fix a schedule according to
which access to resources will be granted. We present a formal TLA+ model based on
this idea and useTLC to analyze it.

4.1 TLA+ model

A specification of a “scheduling” allocator appears in moduleSchedulingAllocatorin
Fig. 6. It is based on three state variables: as before, the variablesunsatandalloc
indicate the sets of pending requests and allocated resources per client. The variable
schedcontains a sequence of clients that represents the schedule according to which
resources will be granted.

The module contains a number of auxiliary definitions: again we find a typing in-
variant that asserts the types of the state variables, and the setavailableof resources
that are available for allocation. The operatorRange(f) computes the range of a func-
tion; because sequences are functions in TLA+, it can also be used to compute the
elements that appear in a sequence. The settoScheduleis defined to contain the clients
with unsatisfied requests that do not appear in the schedule. The operatorDrop is de-
fined such thatDrop(seq, i) returns the sequenceseqfrom which thei-th element has
been removed. Somewhat more involved is the definition ofPermSeqs(S) that com-
putes the set of permutation sequences of a finite setS. The idea is that〈x1, . . . ,xn〉 is
a permutation of a non-empty finite setS if and only if 〈x1, . . . ,xn−1〉 is a permutation
of S\ {xn}. The formal expression in TLA+ makes use of an auxiliary, recursively
defined, functionpermsthat computes the set of permutationsperms[T] of any subset
T ⊆ S, in a style that is similar to the recursive definition of functions over inductive
data types in a functional programming language.

The initial state predicateInit should be obvious: we again assume that we start
in a state where there are no outstanding requests and where no resources have been
allocated; also, the schedule is empty.

The definitions of the actionsRequest(c,S), Allocate(c,S), andReturn(c,S) extend
the corresponding definitions of the simple allocator by updating the variablesched. In
particular, the actionAllocate(c,S) modeling allocation of the resources inS to client
c adds a constraint to the corresponding action of the simple allocator: clientc must
have been scheduled for allocation, and no client appearing earlier in the schedule
must have an outstanding request for any resource inS. Moreover, ifSequals the set of
outstanding requests of clientc (and thereforec’s request is completely satisfied after
the allocation ofS), c is dropped from the schedule.

We introduce a newScheduleaction that models the scheduling of clients with out-
standing requests by the allocator. It is enabled iff the settoScheduleis non-empty; its
effect is to extend the current schedule by some arbitrary permutation of settoSchedule.
Of course, a real allocator would prescribe some strategy according to which waiting
clients are scheduled, and this would correspond to a refinement of theScheduleaction
described here. The purpose of this note is not to suggest some specific such strategy,
but to verify the correctness of the protocol for any strategy.

The specification of the allocator appears as formulaAllocator at the bottom of the
module. The safety part should be obvious. The two first fairness assumptions are

12

MODULE SchedulingAllocator

EXTENDS FiniteSet, Sequences, Naturals
CONSTANTSClients, Resources
ASSUME IsFiniteSet(Resources)
VARIABLES unsat, alloc, sched

TypeInvariant
∆=

∧ unsat∈ [Clients→ SUBSETResources] ∧ alloc∈ [Clients→ SUBSETResources]
∧ sched∈ Seq(Clients)

available
∆= Resources\ (UNION {alloc[c] : c∈ Clients})

Range(f) ∆= {f [x] : x∈ DOMAIN f}
toSchedule

∆= {c∈ Clients : unsat[c] 6= {}∧c /∈ Range(sched)}
PermSeqs(S) ∆= set of permutations of finite setS, represented as sequences

LET perms[ss∈ SUBSETS] ∆=
IF ss= {} THEN 〈〉
ELSE LET ps

∆=
[
x∈ ss 7→

{
Append(sq,x) : sq∈ perms[ss\{x}]

}]
IN UNION {ps[x] : x∈ ss}

IN perms[S]
Drop(seq, i) ∆= SubSeq(seq,1, i−1)◦SubSeq(seq, i +1,Len(seq)

Init
∆= unsat= [c∈ Clients7→ {}]∧alloc = [c∈ Clients7→ {}]∧sched= 〈〉

Request(c,S) ∆=
∧ unsat[c] = {}∧alloc[c] = {}∧S 6= {}
∧ unsat′ = [unsatEXCEPT ! [c] = S]∧UNCHANGED 〈alloc,sched〉

Allocate(c,S) ∆=
∧ S 6= {}∧S⊆ available∩unsat[c]
∧ ∃ i ∈ DOMAIN sched:

∧ sched[i] = c∧∀ j ∈ 1..i−1 : unsat[sched[j]]∩S= {}
∧ sched′ = IF S= unsat[c] THEN Drop(sched, i) ELSE sched

∧ alloc′ = [alloc EXCEPT ! [c] = @∪S]
∧ unsat′ = [unsatEXCEPT ! [c] = @\S]

Return(c,S) ∆=
∧ S 6= {}∧S⊆ alloc[c]
∧ alloc′ = [alloc EXCEPT ! [c] = @\S]∧UNCHANGED 〈unsat,sched〉

Schedule
∆=

∧ toSchedule6= {}
∧ ∃sq∈ PermSeqs(toSchedule) : sched′ = sched◦sq
∧ UNCHANGED 〈unsat,alloc〉

Next
∆=

∨ ∃c∈ Clients,S∈ SUBSETResources: Request(c,S)∨Allocate(c,S)∨Return(c,S)
∨ Schedule

vars
∆= 〈unsat,alloc,sched〉

Allocator
∆= ∧ Init ∧�[Next]vars

∧ ∀c∈ Clients : WFvars(unsat[c] = {}∧Return(c,alloc[c]))
∧ ∀c∈ Clients : WFvars(∃S∈ SUBSETResources: Allocate(c,S))
∧ WFvars(Schedule)

Figure 6: Specification of an allocator with scheduling.

13

UnscheduledClients
∆= set of clients that are not in the schedule

Clients\Range(sched)
PrevResources(i) ∆= available resources whenith process has to be satisfied

available
∪ UNION {unsat[sched[j]]∪alloc[sched[j]] : j ∈ 1..i−1}
∪ UNION {alloc[c] : c∈UnscheduledClients}

AllocatorInvariant
∆=

∧ ∀c∈ toSchedule: unsat[c] 6= {} ∧ alloc[c] = {}
∧ ∀ i ∈ DOMAIN sched: ∧ unsat[sched[i]] 6= {}

∧ ∀ j ∈ 1..i−1 : alloc[sched[i]]∩unsat[sched[j]] = {}
∧ unsat[sched[i]]⊆ PrevResources(i)

Figure 7: Lower-level invariant of scheduling allocator.

similar to those of theSimpleAllocatormodule: we impose the (corrected) fairness as-
sumption for returning resources discussed in section3.3. For the allocation action, we
require the scheduler to be fair with respect to all clients for which allocation is possi-
ble. Some thinking should convince you that it is now enough to require weak fairness
instead of the strong fairness condition imposed on the simple allocator because clients
acquire priority according to their rank in the schedule. A new fairness condition is
asserted of theScheduleaction such that the allocator will eventually schedule clients
that need to be scheduled.

4.2 Analysis usingTLC

We can again useTLC to verify the correctness properties described in section3.1.
Again, the typing invariant, the exclusive access to resources, and the three liveness
properties are verified over a sample model consisting of three clients and two re-
sources.TLC computes 1690 distinct states (out of 5854 states generated), requiring
roughly 39 seconds for the analysis (the run time drops to 13 seconds when the prop-
ertyClientsWillObtainis omitted). What setsTLC apart from more conventional model
checkers is its ability to analyze the model at the high level of abstraction at which it
has been presented in Fig.6: neither the definition of the operatorPermSeqsnor the
relatively complicated fairness constraints pose a problem. (For better efficiency, we
could override the definition ofPermSeqsby a method written in Java, but this is not a
big concern for a list that contains at most three elements.)

Given the experience with the verification of the simple allocator model, one should
be suspicious of the quick success with the new model. As Lamport [3, ch. 14.5.3]
writes, it is a good idea to verify as many properties as possible. Figure7 contains a
lower-level invariant of the scheduling allocator that can be verified usingTLC. The
first conjunct says that all clients in settoschedulehave a non-empty set of outstand-
ing resources, but hold no resources. The second conjunct concerns the clients in the
schedule; it is split into three sub-conjuncts: first, each client in the schedule has some
outstanding requests, second, no client may hold some resource that is requested by
some prioritized client (appearing earlier in the schedule), and finally, the set of out-
standing requests of a client in the schedule is bounded by the union of the set of
currently available resources, the resources requested or held by prioritized clients and
the resources held by clients that do not appear in the schedule. The idea behind this
last conjunct is to assert that a client’s requests can be satisfied using resources that

14

MODULE AllocatorRefinement

EXTENDS SchedulingAllocator

Simple
∆= INSTANCE SimpleAllocator

SimpleAllocator
∆= Simple!SimpleAllocator

THEOREM Allocator⇒ SimpleAllocator

Figure 8: A module asserting refinement of the allocator specifications.

are either already free or that are held by prioritized clients. It follows that prioritized
clients can obtain their full set of resources, after which they are required to eventually
release them again. Therefore, the scheduling allocator works correctly even under
the worst-case assumption that clients will only give up resources after their complete
request has been satisfied.

Beyond these correctness properties,TLC can also establish a formal refinement
relationship between the two specifications. In fact, the specification of the scheduling
allocator adds constraints on the allocation of resources. It also specifies the behavior
of the variablesched, which did not appear in the specification of the simple alloca-
tor, and which is therefore not constrained by that specification. More interestingly,
the scheduling policy and the (weaker) liveness assumptions imply that the (original)
fairness constraints are effectively met.

In order to check refinement byTLC, we define the moduleAllocatorRefinement
that appears in Fig.8. It extends moduleSchedulingAllocator, thus importing all dec-
larations and definitions of that module, and defines an instanceSimpleof module
SimpleAllocator, whose parameters are (implicitly) instantiated by the entities of the
same name inherited from moduleSchedulingAllocator. All operatorsOp defined in
the instance are available asSimple!Op. (It would have been illegal to extend both
modulesSchedulingAllocatorandSimpleAllocatorbecause they declare constants and
variables, as well as define operators, of the same names.) The module then asserts
refinement of specificationSimpleAllocatorby specificationAllocator; remember that
refinement is just implication in TLA+. We could of course have written

THEOREM Allocator⇒ Simple!SimpleAllocator

in the formulation of the theorem; to make the statement more readable we have defined
the formulaSimpleAllocatorto stand forSimple!SimpleAllocator. In fact, this auxiliary
definition is also required for analysis withTLC, whose present version does not allow
us to specify formulas of the formModule!Propertyin the configuration file. We can
call onTLC to verify the implication over the instance of the model consisting of three
clients and two resources just by asserting

PROPERTIES SimpleAllocator

in the configuration file.TLC declares the implication to be valid, for our small instance
of three clients and two resources in approximately 6 seconds. Since we already knew
from section3.1 that the (original) simple allocator specification satisfied the correct-
ness properties, it would not actually have been necessary to re-verify them for the
scheduling allocator: they are guaranteed to hold by transitivity of implication!

15

5 Towards an implementation

The specification of moduleSchedulingAllocatordescribes an overall algorithm (or
rather a class of algorithms) for resource allocation; analysis byTLC has indicated that
this algorithm satisfies all desired correctness properties, even under worst-case as-
sumptions about the clients’ behavior. Our next goal is to refine that specification into
one that is implementable as a distributed system. In particular, we will assume that
the allocator and the clients may run on different computers. Therefore, each process
should have direct access only to its local memory. It must use explicit communication
by message passing to interact with other processes. Instead of a centralized repre-
sentation of the system state based on the variablesunsatandalloc, we will have to
distinguish between the allocator’s view and each client’s view of its pending requests
and allocated resources. Similarly, the basic actions such as the request for resources
will be split into two parts, with different processes being responsible for carrying them
out: in a first step, the client issues a request, updates its local state, and sends a cor-
responding message to the allocator. Subsequently, the allocator receives the message
and updates its table of pending requests accordingly.

Figures9 and10 contain a TLA+ model based on this idea. It contains variables
unsat, alloc, and schedas before, but we now consider these to be local variables
of the allocator. New variablesrequestsandholding represent the clients’ views of
pending resource requests and of resources currently held; we interpretrequests[c] and
holding[c] as being local to the client processc. The variablenetworkrepresents the
set of messages in transit between the allocator and the clients.

Except for actionSchedule, which is a private action of the allocator, all actions
that appeared in specificationSchedulingAllocatorhave been split into two actions as
explained above. For example, clientc is considered to perform actionRequest(c,S)
because only its “local” variables and the state of the communication network are mod-
ified by the action. The allocator later performs actionRReq(m), for a suitable value
of m. The fairness conditions of our previous specification are complemented by weak
fairness requirements for the actionsRReq(m), RAlloc(m), andRRet(m), that are as-
sociated with message reception (for all possible messagesm); these requirements ex-
press that messages will eventually be received and handled.

A remark is in order concerning the style in which moduleAllocatorImplementationis writ-
ten: I describe it as representing a distributed system, attributing state components and actions
to different processes. Formally, however, this (de-)composition is not reflected in the structure
of the TLA+ formula, which is again of the form

Init ∧�[Next]vars∧Liveness.

I could instead have structured the specification as a composition (conjunction) of separate pro-
cess specifications, and Lamport discusses this issue in [3, ch. 10]. Monolithic specifications are
usually easier to write. Moreover, the current version ofTLC does not support compositions of
processes with separate next-state relations and fairness assumptions. One can debate whether
the style I have chosen is adequate or not, and in fact I believe that there is room for research on
how to make it more practical to write and analyze distributed systems written as a composition
of individual processes. Whether there is much practical merit in doing so is less clear to me at
this moment, and a detailed discussion is certainly beyond the scope of this tutorial note, so I’ll
return to the technical discussion of the specification as it stands.

Module AllocatorImplementationclaims that the model obtained in this way is a
refinement of the scheduling allocator specification, and we can again useTLC to ver-

16

MODULE AllocatorImplementation

EXTENDS FiniteSets, Sequences, Naturals
CONSTANTSClients, Resources
ASSUME IsFiniteSet(Resources)
VARIABLES unsat, alloc, sched, requests, holding, network

Sched
∆= INSTANCE SchedulingAllocator

Messages
∆=

[type : {“ request” , “allocate” , “ return”},clt : Clients, rsrc : SUBSETResources]
TypeInvariant

∆=
∧ Sched!TypeInvariant
∧ requests∈ [Clients→ SUBSETResources]
∧ holding∈ [Clients→ SUBSETResources]
∧ network∈ SUBSETMessages

Init
∆=

∧ Sched! Init
∧ requests= [c∈ Clients7→ {}]∧holding= [c∈ Clients7→ {}]∧network= {}

Request(c,S) ∆= clientc requests setSof resources

∧ requests[c] = {}∧holding[c] = {}∧S 6= {}
∧ requests′ = [requestsEXCEPT ! [c] = S]
∧ network′ = network∪{[type7→ “ request” ,clt 7→ c, rsrc 7→ S]}
∧ UNCHANGED 〈unsat,alloc,sched,holding〉

RReq(m) ∆= allocator handles request message sent by some client

∧ m∈ network∧m.type= “ request” ∧network′ = network\{m}
∧ unsat′ = [unsatEXCEPT ! [m.clt] = m.rsrc]
∧ UNCHANGED 〈alloc,sched, requests,holding〉

Allocate(c,S) ∆= allocator decides to allocate resourcesS to clientc

∧ Sched!Allocate(c,S)
∧ network′ = network∪{[type7→ “allocate” ,clt 7→ c, rsrc 7→ S]}
∧ UNCHANGED 〈requests,holding〉

RAlloc(m) ∆= some client receives resource allocation message

∧ m∈ network∧m.type= “allocate” ∧network′ = network\{m}
∧ holding′ = [holdingEXCEPT ! [m.clt] = @∪m.rsrc]
∧ requests′ = [requestsEXCEPT ! [m.clt] = @\m.rsrc]
∧ UNCHANGED 〈unsat,alloc,sched〉

Return(c,S) ∆= clientc returns resources inS

∧ S 6= {}∧S⊆ holding[c]
∧ holding′ = [holdingEXCEPT ! [c] = @\S]
∧ network′ = network∪{[type7→ “ return” ,clt 7→ c, rsrc 7→ S]}
∧ UNCHANGED 〈unsat,alloc,sched, requests〉

RRet(m) ∆= allocator receives returned resources

∧ m∈ network∧m.type= “ return” ∧network′ = network\{m}
∧ alloc′ = [alloc EXCEPT ! [m.clt] = @\m.rsrc]
∧ UNCHANGED 〈unsat,sched, requests,holding〉

Schedule
∆= Sched!Schedule∧UNCHANGED 〈requests,holding,network〉

Figure 9: An implementation of the allocator (part 1).

17

Next
∆=

∨ ∃c∈ Clients,S∈ SUBSETResources: Request(c,S)∨Allocate(c,S)∨Return(c,S)
∨ ∃m∈ network: RReq(m)∨RAlloc(m)∨RRet(m)
∨ Schedule

vars
∆= 〈unsat,alloc,sched, requests,holding,network〉

Liveness
∆=

∧ ∀c∈ Clients : WFvars(requests[c] = {}∧Return(c,holding[c]))
∧ ∀c∈ Clients : WFvars(∃S∈ SUBSETResources: Allocate(c,S))
∧ WFvars(Schedule)
∧ ∀m∈Messages: WFvars(RReq(m))∧WFvars(RAlloc(m))∧WFvars(RRet(m))

Implementation
∆= Init ∧�[Next]vars∧Liveness

THEOREM Implementation⇒ Sched!Allocator

Figure 10: An implementation of the allocator (part 2).

ify this theorem for our usual instance of three client processes and two resources.
However,TLC quickly produces a counterexample that ends in the following states:

STATE 7:
/\ holding = (c1 :> {} @@ c2 :> {} @@ c3 :> {})
/\ alloc = (c1 :> {r1} @@ c2 :> {} @@ c3 :> {})
/\ requests = (c1 :> {} @@ c2 :> {} @@ c3 :> {})
/\ sched = << >>
/\ network = {[type |-> "return", clt |-> c1, rsrc |-> {r1}]}
/\ unsat = (c1 :> {} @@ c2 :> {} @@ c3 :> {})

STATE 8:
/\ holding = (c1 :> {} @@ c2 :> {} @@ c3 :> {})
/\ alloc = (c1 :> {r1} @@ c2 :> {} @@ c3 :> {})
/\ requests = (c1 :> {r1} @@ c2 :> {} @@ c3 :> {})
/\ sched = << >>
/\ network = { [type |-> "request", clt |-> c1, rsrc |-> {r1}],

[type |-> "return", clt |-> c1, rsrc |-> {r1}] }
/\ unsat = (c1 :> {} @@ c2 :> {} @@ c3 :> {})

STATE 9:
/\ holding = (c1 :> {} @@ c2 :> {} @@ c3 :> {})
/\ alloc = (c1 :> {r1} @@ c2 :> {} @@ c3 :> {})
/\ requests = (c1 :> {r1} @@ c2 :> {} @@ c3 :> {})
/\ sched = << >>
/\ network = {[type |-> "return", clt |-> c1, rsrc |-> {r1}]}
/\ unsat = (c1 :> {r1} @@ c2 :> {} @@ c3 :> {})

We can infer (cf. state 7) that clientc1 has returned resourcer1 to the allocator. In
the transition to state 8, it issues a new request for the same resource, which is handled
by the allocator (according to actionRReq) in the transition to state 9. This action
modifies the variableunsatat positionc1 although the value ofalloc[c1] is not the
empty set—a transition that is not allowed by the scheduling allocator.

18

RequestsInTransit(c) ∆= requests sent by c but not yet received{
msg.rsrc : msg∈ {m∈ network: m.type= “ request” ∧m.clt = c}

}
AllocsInTransit(c) ∆= allocations sent to c but not yet received{

msg.rsrc : msg∈ {m∈ network: m.type= “allocate” ∧m.clt = c}
}

ReturnsInTransit(c) ∆= return messages sent by c but not yet received{
msg.rsrc : msg∈ {m∈ network: m.type= “ return” ∧m.clt = c}

}
Invariant

∆= ∀c∈ Clients :
∧ Cardinality(RequestsInTransit(c))≤ 1
∧ requests[c] = unsat[c]

∪ UNION RequestsInTransit(c)
∪ UNION AllocsInTransit(c)

∧ alloc[c] = holding[c]
∪ UNION AllocsInTransit(c)
∪ UNION ReturnsInTransit(c)

Figure 11: Relating the allocator and client variables by an invariant.

Intuitively, the problem is due to the asynchronous communication network under-
lying our model, which makes the allocator receive and handle the request message
before it receives the earlier return message. In our case, one can argue that the viola-
tion of refinement is harmless: a subsequent treatment of the pending return message
restores the situation to normal. However, such race conditions are in general better
avoided, and there are several ways to do so. For example, an implementation might
use FIFO communication between any pair of processes, and the network should then
be modeled as a queue (or a set of queues) of messages instead of a set. A less intrusive
change is to add the precondition

alloc[m.clt] = {}

to the definition of the actionRReq(m), which obviously excludes the run shown above
and is also implementable in terms of the local knowledge of the allocator. After this
correction,TLC confirms the refinement theorem for our small instance in about 2 min-
utes. We can also re-verify correctness properties similar to those of section3.1, but
now expressed in terms the clients’ variables, such as

∀c∈ Clients, r ∈ Resources: r ∈ requests[c] r ∈ holding[c]

Finally, we can assert the invariant shown in Fig.11 to relate the variables associated
with the clients and the allocator. The verification of these properties for our standard
instance of the model generates 64414 states (17701 of which are distinct) and takes
roughly 19 minutes (5 minutes without the propertyClientsWillObtain, 12 seconds for
verifying only the invariant properties).

6 Some lessons

Given the informal requirements outlined in section1, newcomers to formal specifi-
cation and to TLA+ would perhaps have started to write a model similar to the final
one presented in this note, or even a more detailed one. It is, however, best to start
with as abstract a specification as one can imagine. A low-level specification is at

19

least as likely to contain errors as a program, and the whole purpose of modeling is
to clarify and analyze a system at an adequate level of abstraction. The seemingly
trivial SimpleAllocatorspecification of Fig.1 was important because it helped us dis-
cover the need for fixing a schedule for resource allocation. It is not clear whether we
would have noticed the problem at the level of detail of the final specification, where
there are additional problems of synchronization and message passing to worry about.
The specificationSchedulingAllocatorcorrected the problem discovered for the initial
model while staying at the same level of abstraction; it helped us to convince ourselves
of the adequacy of the solution. Finally, moduleAllocatorImplementationintroduced a
step towards a possible implementation by attributing the state variables and the actions
to separate processes, and by introducing explicit communication.

For each model,TLC was of great help in analyzing various properties. Although
only small instances can be handled by model checking before running into the state
explosion problem, doing so greatly increases the confidence in the models. Because
TLC is fully automatic, variants of the specifications can be checked without great
effort, and various properties (invariants and more general temporal properties) can be
verified in a single run. Deductive verification can establish system properties in a
fully rigorous way, and I have presented a somewhat more usable approach based on
predicate diagrams in section3.2. However, the price to pay is that the proof has to be
planned much more carefully.

Throughout this note, I have emphasized refinement relationships between the dif-
ferent models. Developing a model by successive refinements greatly helps to make
formal development manageable; its benefit would become even clearer on a larger
example. But even here, we were able to reuse a large part of theSchedulingAllocator
specification when writing the implementation model, allowing us to focus on decom-
position of state and actions and on communication rather than on the underlying al-
location algorithm itself. Because refinement preserves properties established at the
abstract level, it can even help to reduce the effort needed for verification. For example,
TLC verified the final refinement theorem in just 2 minutes, whereas it took 18 minutes
to verify the high-level correctness properties over the implementation model.

The example presented in this note illustrates some of the aspects that are central to
TLA+, but Lamport’s book has of course much more to say. I hope that some readers
will find it useful, and I would be happy to receive feedback and suggestions.

References

[1] D. Cansell, D. Ḿery, and S. Merz. Diagram refinements for the design of reactive
systems.Journal of Universal Computer Science, 7(2):159–174, 2001.

[2] L. Lamport. The TLA home page.http://www.research.microsoft.com/
users/lamport/tla/tla.html.

[3] L. Lamport.Specifying Systems. Addison-Wesley, Boston, Mass., 2002.

[4] L. Lamport and L. C. Paulson. Should your specification language be typed?ACM
Transactions on Programming Languages and Systems, 21(3):502–526, 1999.

20

http://www.research.microsoft.com/users/lamport/tla/tla.html
http://www.research.microsoft.com/users/lamport/tla/tla.html

	Problem description
	A first model
	Analysis of the model
	Analysis by model checking
	Analysis by deductive-algorithmic verification
	The specification revisited

	A scheduling allocator
	TLA+ model
	Analysis using tlc

	Towards an implementation
	Some lessons

