A Summary of TLA™

Leslie Lamport

25 Aug 2000

Module-Level Constructs

[————— MODULE M ————
Begins the module or submodule named M.

EXTENDS M+, ..., M,
Incorporates the declarations, definitions, assumptions, and theorems from
the modules named M, ..., M, into the current module.

CONSTANTS C4q, ..., C, @

Declares the C to be constant parameters (rigid variables). Each C} is either
an identifier or has the form C(_, ..., _), the latter form indicating that C
is an operator with the indicated number of arguments.

VARIABLES Z1, ..., T, &
Declares the z; to be variables (parameters that are flexible variables).

ASSUME P

Asserts P as an assumption.

A
F(zy,...,z,) = exp
Defines F' to be the operator such that F(eq, ..., e,) equals exp with each
identifier zj, replaced by eg. (For n = 0, it is written F = exp.)

flres] = ep®
Defines f to be the function with domain S such that f[z] = ezp for all
in S. (The symbol f may occur in ezp, allowing a recursive definition.)

(1) The terminal s in the keyword is optional.
(2) z € S may be replaced by a comma-separated list of items v € S, where v is either a
comma-separated list or a tuple of identifiers.

INSTANCE M WITH pj <— €1, ..., Pm < €n
For each defined operator F' of module M, this defines F' to be the operator
whose definition is obtained from the definition of F' in M by replacing each
declared constant or variable p; of M with e;. (If m = 0, the WITH is
omitted.)

N(z1,...,2,) = INSTANCE M WITH p1 < €1, ..., Pm — €m
For each defined operator F of module M, this defines N (d1,...,d,)!F to be
the operator whose definition is obtained from the definition of F' by replacing
each declared constant or variable p; of M with e;, and then replacing each
identifier zy with dg. (If m = 0, the WITH is omitted.)

THEOREM P

Asserts that P can be proved from the definitions and assumptions of the
current module.

LOCAL def

Makes the definition(s) of def (which may be a definition or an INSTANCE
statement) local to the current module, thereby not obtained when extending
or instantiating the module.

Ends the current module or submodule.

The Constant Operators

Logic
ANV o = =
TRUE FALSE BOOLEAN [the set {TRUE, FALSE}]
Ve:p 3dxz:p VzeS:p ® drxeS:p O
CHOOSE z : p [An z satisfying p] CHOOSE z € § : p [An z in S satisfying p]

Sets
= # € ¢ U N C \ [set difference]
{e1,...,en} [Set consisting of elements e;]
{z €S :p} @ [Setof elements z in S satisfying p]
{e : €8} ™ [Set of elements e such that = in S|

SUBSET S [Set of subsets of 5]
UNION S [Union of all elements of S]
Functions
fle] [Function application]
DOMAIN f [Domain of function f]
[xe S —e® [Function f such that f[z] = e for z €]
[S — T] [Set of functions f with f[z] € T for z € S]

[f EXCEPT ![e1] = ea] @ [Function f equal to f except fle1] = e2. An @
in ez equals fle1].]

Records
e.h [The h-component of record e]
[h1 — e1,...,hy — €] [The record whose h; component is e;]
[h1 @ S1,...,hn + Su] [Set of all records with h; component in S;]
[r EXCEPT l.h =e] ® [Record T equal to r except 7.h = e. An @ in e
equals 7.h.]
Tuples
eli] [The i*" component of tuple ¢]
(e1,...,en) [The n-tuple whose i*" component is e;]

S1 X ...x S, [The set of all n-tuples with i** component in S;]

Strings and Numbers
“cp...¢p” [A literal string of n characters]
STRING [The set of all strings]
dy...dy, di...dn.dpy1...dy, [Numbers (where the d; are digits)]

(1) z € S may be replaced by a comma-separated list of items v € S, where v is either a
comma-separated list or a tuple of identifiers.

(2) = may be an identifier or tuple of identifiers.

(3) ![e1] or !.h may be replaced by a comma separated list of items !aj - - - an, where each
a; is [e;] or .h; .

Miscellaneous Constructs

IF p THEN e; ELSE e9 [e1 if p true, else e2]

CASE p; — e O ... Op, — e, [Some e; such that p; true]

CASE p; —e; O ... Op, — e, OOTHER — e [Some e; such that p; true,
or e if all p; are false]

LET d; = er ... dp 2 én IN e [ein the context of the definitions]

A p1 [the conjunction p1 A ... A py] V p1 [the disjunction p1 V...V py]

A Ppn V' Dn

The Action Operators

e [The value of e in the final state of a step]
[A] [AV (e =e)]

(A)e [AN (e # e)]

ENABLED A [An A step is possible]

UNCHANGED ¢ [e' = ¢]

A-B [Composition of actions]

The Temporal Operators

OoF [F' is always true]

OF [F is eventually true]

WF.(A) [Weak fairness for action A]

SF.(A) [Strong fairness for action A]

F~» G [F leads to G|

F %> G [F guarantees G (an assumption/guarantee specification)]
dx : F [Temporal existential quantification (hiding).]

Vz : F [Temporal universal quantification.]

User-Definable Operator Symbols
Infix Operators

+ (1) _ * (1) / (2) o ® ++
Lo 9 o ~ m _
o ® o ® ® %) ©® ok
< @ S @ < @ > o n //
=< — = - L -
< > <: 1 >© & &&
C 3 c® | | I
C D)) * %%
- 4 - =4 e
= = = = ? 77
x ! o O 1 a@®

Postfix Operators "
~p e ~

Prefix Operator
_®

ASCII Representations of Symbols

A /\ or \land \% \/ or \lor =
=~ or \lnot or \neg = <=> or \equiv 2
€ \in ¢ \notin £
(<<) >> O
< < > > S
< \leq or =< > \geq or >= ~
< \11 > \gg s
< \prec >~ \succ —
=< \preceq > \succeq =
C \subseteq 2 \supseteq
C \subset D \supset o
C \sgsubset J \sgsupset .
C \sgsubseteq J \sgsupseteq *
N b 4 -l O
= - = = Iy
- => — <- ~
N \cap or \intersect U \cup or \union =
M \sqcap U \sqcup ~
@ (+) or \oplus Y \uplus o
© (=) or \ominus X \X or \times =
® (.) or \odot l \wr zY
® (\X) or \otimes x \propto zt
© (/) or \oslash “gn mgn @ *
3 \E v \A o#
3 \EE v \AA /
— -) —
________ (3) | |

(1) s is a sequence of characters.
(2) z and y are any expressions.
(3) a sequence of four or more - or = characters.

or /=
[

<>

—+->

|->

\div
\cdot

\o or \circ
\bullet
\star
\bigcirc
\sim
\simeq
\asymp
\approx
\cong
\doteq
x"y @
x~+ @
x~*x (2
x“# @

J

The Most Common Standard Modules

Modules Naturals, Integers, Reals

Define -+ - * / - . Nat Real
+ % < > < > Int Infinity

Prefix — is not defined in Naturals.
a”~b denotes a’.

Nat, Int, and Real are the sets of naturals, integers, and real numbers.
a..bequals {ne€Int: a<n<b}.

a % b equals @ mod b, defined so 0 < a % b < b, if b is a positive integer.
+ is defined so a = b * (a + b) + (a % b) for a and b integers with b > 0.
/ (division) is defined only in Reals.

Infinity is defined in Reals so —Infinity < r < Infinity for all r € Real.

Module Sequences

Defines o Head SelectSeq SubSeq
Append Len Seq Tazl
The tuple/sequence (e, ..., e,) equals the function [i € 1 .. n — ¢;].

s ot is the concatenation of sequences s and ¢.

Append({e1, ..., en), ent1) = (€1, ..., €nt1)

Head({e1, ..., en)) = €1

Tail({e1, ..., en)) = (€2, ..., €pn)

Len({e1, ..., en)) = n

Seq(S) is the set of all finite sequences of elements of S.

SubSeq({e1, ..., en), 4, k) = (ej, ..., ex)

SelectSeq(s, Test) is the subsequence of elements e of s satisfying Test(e).

Module FiniteSets

Defines IsFiniteSet Cardinality

IsFiniteSet(S) is true iff S is a finite set.

Cardinality(S) is the number of elements in S, if S is a finite set.

