
A Summary of TLA+

Leslie Lamport

25 Aug 2000

Module-Level Constructs

Begins the module or submodule named M .

module M

extends M 1, . . . , M n

Incorporates the declarations, definitions, assumptions, and theorems from
the modules named M 1, . . . , M n into the current module.

constants C 1, . . . , C n
(1)

Declares the C j to be constant parameters (rigid variables). Each C j is either
an identifier or has the form C (, . . . ,), the latter form indicating that C
is an operator with the indicated number of arguments.

variables x 1, . . . , xn
(1)

Declares the x j to be variables (parameters that are flexible variables).

assume P
Asserts P as an assumption.

F (x 1, . . . , xn)
∆= exp

Defines F to be the operator such that F (e1, . . . , en) equals exp with each
identifier x k replaced by ek . (For n = 0, it is written F ∆= exp.)

f [x ∈ S] ∆= exp (2)

Defines f to be the function with domain S such that f [x] = exp for all x
in S . (The symbol f may occur in exp, allowing a recursive definition.)

(1) The terminal s in the keyword is optional.

(2) x ∈ S may be replaced by a comma-separated list of items v ∈ S , where v is either a
comma-separated list or a tuple of identifiers.

1

instance M with p1 ← e1, . . . , pm ← em

For each defined operator F of module M , this defines F to be the operator
whose definition is obtained from the definition of F in M by replacing each
declared constant or variable pj of M with ej . (If m = 0, the with is
omitted.)

N (x 1, . . . , xn)
∆= instance M with p1 ← e1, . . . , pm ← em

For each defined operator F of module M , this defines N (d1, . . . , dn)!F to be
the operator whose definition is obtained from the definition of F by replacing
each declared constant or variable pj of M with ej , and then replacing each
identifier x k with dk . (If m = 0, the with is omitted.)

theorem P
Asserts that P can be proved from the definitions and assumptions of the
current module.

local def
Makes the definition(s) of def (which may be a definition or an instance
statement) local to the current module, thereby not obtained when extending
or instantiating the module.

Ends the current module or submodule.

2

The Constant Operators

Logic
∧ ∨ ¬ ⇒ ≡
true false boolean [the set {true, false}]
∀ x : p ∃ x : p ∀ x ∈ S : p (1) ∃ x ∈ S : p (1)

choose x : p [An x satisfying p] choose x ∈ S : p [An x in S satisfying p]

Sets
=
= ∈ /∈ ∪ ∩ ⊆ \ [set difference]
{e1, . . . , en} [Set consisting of elements e i]

{x ∈ S : p} (2) [Set of elements x in S satisfying p]

{e : x ∈ S} (1) [Set of elements e such that x in S]

subset S [Set of subsets of S]

union S [Union of all elements of S]

Functions
f [e] [Function application]

domain f [Domain of function f]

[x ∈ S �→ e] (1) [Function f such that f [x] = e for x ∈ S]

[S → T] [Set of functions f with f [x] ∈ T for x ∈ S]

[f except ! [e1] = e2] (3) [Function f̂ equal to f except f̂ [e1] = e2. An @
in e2 equals f [e1].]

Records
e.h [The h-component of record e]

[h1 �→ e1, . . . , hn �→ en] [The record whose h i component is e i]

[h1 : S 1, . . . , hn : Sn] [Set of all records with h i component in S i]

[r except !.h = e] (3) [Record r̂ equal to r except r̂ .h = e. An @ in e
equals r .h.]

Tuples
e[i] [The i th component of tuple e]

〈e1, . . . , en 〉 [The n-tuple whose i th component is e i]

S 1 × . . .× Sn [The set of all n-tuples with i th component in S i]

Strings and Numbers
“c1 . . . cn” [A literal string of n characters]

String [The set of all strings]

d1 . . . dn d1 . . . dn . dn+1 . . . dm [Numbers (where the d i are digits)]

(1) x ∈ S may be replaced by a comma-separated list of items v ∈ S , where v is either a
comma-separated list or a tuple of identifiers.

(2) x may be an identifier or tuple of identifiers.

(3) ![e1] or ! .h may be replaced by a comma separated list of items !a1 · · · an , where each
ai is [ei] or .hi .

3

Miscellaneous Constructs
if p then e1 else e2 [e1 if p true, else e2]

case p1 → e1 ✷ . . . ✷ pn → en [Some e i such that pi true]

case p1 → e1 ✷ . . . ✷ pn → en ✷ other→ e [Some e i such that pi true,
or e if all pi are false]

let d1
∆= e1 . . . dn

∆= en in e [e in the context of the definitions]

∧ p1

...
∧ pn

[the conjunction p1 ∧ . . . ∧ pn] ∨ p1

...
∨ pn

[the disjunction p1 ∨ . . . ∨ pn]

The Action Operators

e ′ [The value of e in the final state of a step]

[A]e [A ∨ (e ′ = e)]

〈A〉e [A ∧ (e ′ �= e)]

Enabled A [An A step is possible]

unchanged e [e ′ = e]

A · B [Composition of actions]

The Temporal Operators

✷F [F is always true]

✸F [F is eventually true]

WFe(A) [Weak fairness for action A]

SFe(A) [Strong fairness for action A]

F ❀ G [F leads to G]

F +−� G [F guarantees G (an assumption/guarantee specification)]

∃∃∃∃∃∃ x : F [Temporal existential quantification (hiding).]

∀∀∀∀∀∀ x : F [Temporal universal quantification.]

4

User-Definable Operator Symbols

Infix Operators

+ (1) − (1) ∗ (1) / (2) ◦ (3) ++

÷ (1) % (1) ^ (1,4) . . (1) . . . −−
⊕ (5) � (5) ⊗ � � ∗∗
< (1) > (1) ≤ (1) ≥ (1) " //

≺ $ % & ' ^^

() < : :>(6) & &&

❁ ❂ * (5) + | ||
⊂ ⊃ ⊇ � %%

0 1 |= =| • ##

∼ 4 ≈ ∼= $ $$
:= ::= 6 .= ? ??

∝ 8 9 © ! ! @@ (6)

Postfix Operators (7)

^+ ^∗ ^#

Prefix Operator

− (8)

(1) Defined by the Naturals, Integers, and Reals modules.

(2) Defined by the Reals module.

(3) Defined by the Sequences module.

(4) x^y is printed as xy .

(5) Defined by the Bags module.

(6) Defined by the TLC module.

(7) e^+ is printed as e+, and similarly for ^∗ and ^#.

(8) Defined by the Integers and Reals modules.

5

ASCII Representations of Symbols

∧ /\ or \land
¬ ~ or \lnot or \neg
∈ \in
〈 <<
< <
≤ \leq or =<
(\ll
≺ \prec
% \preceq
⊆ \subseteq
⊂ \subset
❁ \sqsubset
* \sqsubseteq
0 |-
|= |=
→ ->
∩ \cap or \intersect
" \sqcap
⊕ (+) or \oplus
� (-) or \ominus
� (.) or \odot
⊗ (\X) or \otimes
� (/) or \oslash
∃ \E
∃∃∃∃∃∃ \EE

∨ \/ or \lor
≡ <=> or \equiv
/∈ \notin
〉 >>
> >
≥ \geq or >=
) \gg
$ \succ
& \succeq
⊇ \supseteq
⊃ \supset
❂ \sqsupset
+ \sqsupseteq
1 -|
=| =|
← <-
∪ \cup or \union
' \sqcup
9 \uplus
× \X or \times
8 \wr
∝ \propto
“s” "s" (1)

∀ \A
∀∀∀∀∀∀ \AA

⇒ =>
∆= ==

= # or /=
✷ []
✸ <>
❀ ~>
+−� -+->
�→ |->
÷ \div
· \cdot
◦ \o or \circ
• \bullet
� \star
© \bigcirc
∼ \sim
4 \simeq
6 \asymp
≈ \approx
∼= \cong
.= \doteq
x y x^y (2)

x+ x^+ (2)

x ∗ x^* (2)

x# x^# (2)

′ ’

-------- (3) -------- (3)

-------- (3) ======== (3)

(1) s is a sequence of characters.

(2) x and y are any expressions.

(3) a sequence of four or more - or = characters.

6

The Most Common Standard Modules

Modules Naturals , Integers , Reals
Define + − ∗ / ^ . . Nat Real

÷ % ≤ ≥ < > Int Infinity

Prefix − is not defined in Naturals .
a^b denotes ab .
Nat , Int , and Real are the sets of naturals, integers, and real numbers.
a . . b equals {n ∈ Int : a ≤ n ≤ b}.
a % b equals a mod b, defined so 0 ≤ a % b < b, if b is a positive integer.
÷ is defined so a = b ∗ (a ÷ b) + (a % b) for a and b integers with b > 0.
/ (division) is defined only in Reals .
Infinity is defined in Reals so −Infinity < r < Infinity for all r ∈ Real .

Module Sequences
Defines ◦ Head SelectSeq SubSeq

Append Len Seq Tail

The tuple/sequence 〈e1, . . . , en 〉 equals the function [i ∈ 1 . . n �→ ei].
s ◦ t is the concatenation of sequences s and t .
Append(〈e1, . . . , en 〉, en+1) = 〈e1, . . . , en+1 〉
Head(〈e1, . . . , en 〉) = e1

Tail(〈e1, . . . , en 〉) = 〈e2, . . . , en 〉
Len(〈e1, . . . , en 〉) = n
Seq(S) is the set of all finite sequences of elements of S .
SubSeq(〈e1, . . . , en 〉, j , k) = 〈ej , . . . , ek 〉
SelectSeq(s , Test) is the subsequence of elements e of s satisfying Test(e).

Module FiniteSets
Defines IsFiniteSet Cardinality
IsFiniteSet(S) is true iff S is a finite set.
Cardinality(S) is the number of elements in S , if S is a finite set.

7

