
module ACP NB
Time-stamp: < 10 Jun 2002 at 14:06:57 by charpov on berlioz .cs.unh.edu >

Non blocking Atomic Committment Protocol (ACP-NB)

The non blocking property AC5 is obtained by using a reliable broadcast

implemented as follows:

- upon reception of a broadcast message, this message is forwarded to all

participants before it’s delivered to the local site;

- since participant i does not forward to itself, forward [i ] is used to

store the decision before it’s delivered (and becomes “decision”)

extends ACP SB

Participants type is extended with a “forward” variable.

Coordinator type is unchanged.

TypeInvParticipantNB ∆= participant ∈ [
participants → [

vote : {yes, no},
alive : boolean ,
decision : {undecided , commit , abort},
faulty : boolean ,
voteSent : boolean ,
forward : [participants → {notsent , commit , abort}]

]
]

TypeInvNB ∆= TypeInvParticipantNB ∧ TypeInvCoordinator

Initially, participants have not forwarded anything yet

InitParticipantNB ∆= participant ∈ [
participants → [

vote : {yes, no},
alive : {true},
decision : {undecided},
faulty : {false},
voteSent : {false},
forward : [participants → {notsent}]

]
]

InitNB ∆= InitParticipantNB ∧ InitCoordinator

Participant statements that realize a better broadcast

forward(i , j ): forwarding of the predecision from participant i to participant j

if

particpant i is alive

participant i has received a decision (stored in forward [i ])

participant i has not yet forwarded this decision to participant j

then

participant i forwards the decision to participant j

forward(i , j ) ∆= ∧ i 6= j
∧ participant [i ].alive
∧ participant [i ].forward [i ] 6= notsent
∧ participant [i ].forward [j ] = notsent
∧ participant ′ = [participant except ![i ] =

1



[@ except !.forward =
[@ except ![j ] = participant [i ].forward [i ]]

]
]

∧ unchanged 〈coordinator〉

preDecideOnForward(i , j ): participant i receives decision from participant j

if

participant i is alive

participant i has yet to receive a decision

participant j has forwarded its decision to participant i

then

participant i (pre)decides in accordance with participant j ’s decision

preDecideOnForward(i , j ) ∆= ∧ i 6= j
∧ participant [i ].alive
∧ participant [i ].forward [i ] = notsent
∧ participant [j ].forward [i ] 6= notsent
∧ participant ′ = [participant except ![i ] =

[@ except !.forward =
[@ except ![i ] = participant [j ].forward [i ]]

]
]

∧ unchanged 〈coordinator〉

preDecide(i): participant i receives decision from coordinator

if

participant i is alive

participant i has yet to receive a decision

coordinator has sent its decision to participant i

then

participant i (pre)decides in accordance with coordinator’s decision

preDecide(i) ∆= ∧ participant [i ].alive
∧ participant [i ].forward [i ] = notsent
∧ coordinator .broadcast [i ] 6= notsent
∧ participant ′ = [participant except ![i ] =

[@ except !.forward =
[@ except ![i ] = coordinator .broadcast [i ]]

]
]

∧ unchanged 〈coordinator〉

decideNB(i): Actual decision, after predecision has been forwarded

if

participant i is alive

participant i has forwarded its (pre)decision to all other participants

then

participant i decides in accordance with it’s predecision

decideNB(i) ∆= ∧ participant [i ].alive
∧ ∀ j ∈ participants : participant [i ].forward [j ] 6= notsent
∧ participant ′ = [participant except ![i ] =

[@ except !.decision = participant [i ].forward [i ]]
]

∧ unchanged 〈coordinator〉

abortOnTimeout(i): conditions for a timeout are simulated

if

participant is alive and undecided and coordinator is not alive

2



coordinator died before sending decision to all participants who are alive

all dead participants died before forwarding decision to a participant who is alive

then

decide abort

abortOnTimeout(i) ∆= ∧ participant [i ].alive
∧ participant [i ].decision = undecided
∧ ¬coordinator .alive
∧ ∀ j ∈ participants : participant [j ].alive ⇒ coordinator .broadcast [j ] = notsent
∧ ∀ j , k ∈ participants : ¬participant [j ].alive ∧ participant [k ].alive ⇒ participant [j ].forward [k ] = notsent
∧ participant ′ = [participant except ![i ] = [@ except !.decision = abort ]]
∧ unchanged 〈coordinator〉

FOR N PARTICIPANTS

parProgNB(i , j ) ∆= ∨ sendVote(i)
∨ abortOnVote(i)
∨ abortOnTimeoutRequest(i)
∨ forward(i , j )
∨ preDecideOnForward(i , j )
∨ abortOnTimeout(i)
∨ preDecide(i)
∨ decideNB(i)

parProgNNB ∆= ∃ i , j ∈ participants : parDie(i) ∨ parProgNB(i , j )

progNNB ∆= parProgNNB ∨ coordProgN

fairnessNB ∆= ∧ ∀ i ∈ participants : WF〈coordinator , participant〉(∃ j ∈ participants : parProgNB(i , j ))
∧WF〈coordinator , participant〉(coordProgB)

SpecNB ∆= InitNB ∧2[progNNB ]〈coordinator , participant〉 ∧ fairnessNB

(SOME) INVALID PROPERTIES

AllCommit ∆= ∀ i ∈ participants : 3(participant [i ].decision = commit ∨ participant [i ].faulty)

AllAbort ∆= ∀ i ∈ participants : 3(participant [i ].decision = abort ∨ participant [i ].faulty)

AllCommitYesVotes ∆= ∀ i ∈ participants :
∀ j ∈ participants : participant [j ].vote = yes

; participant [i ].decision = commit ∨ participant [i ].faulty ∨ coordinator .faulty

3


