
Verification of Heard-Of Algorithms in Isabelle

Stephan Merz

July 30, 2009

Contents

1 Heard-Of Algorithms 1

2 Verification of the LastVoting Consensus Algorithm 5
2.1 Formal Model of LastVoting . 5
2.2 Proof of LastVoting : Preliminary Lemmas . 8
2.3 Boundedness and monotonicity of timestamps . 12
2.4 Obvious facts about the algorithm . 13
2.5 Proof of Integrity . 19
2.6 Proof of Agreement and Irrevocability . 22
2.7 Proof of liveness . 30

theory CHO
imports Main
begin

1 Heard-Of Algorithms

We propose a generic representation of (coordinated) HO algorithms [1] in Isabelle/HOL.
An HO algorithm executes a sequence of rounds. A concrete algorithm is described by the
following parameters:

• a type ′proc of processes whose extension is assumed to be finite,

• a type ′pst of local process states,

• a type ′msg of messages sent in the course of the algorithm,

• a predicate initState such that initState p st is true precisely of the initial states st of
process p,

• a function sendMsg where sendMsg r p q st crd yields the message that process p sends
to process q at round r, given its local state st and coordinator crd, and

• a predicate nextState where nextState r p st msgs crd st ′ characterizes the successor states
st ′ of state st for process p at round r, where crd denotes the process that p believes to
be the coordinator of round r and the function msgs :: ′proc ⇒ ′msg option represents
the vector of messages that p received at round r,

1

• a communication predicate that constrains the heard-of and coordinator assignments (see
below) that may occur during a run. For convenience, we split this predicate into a safety
part that should hold at every round and a liveness part that should hold of the sequence
of HO assignments.

An uncoordinated algorithm simply ignores the parameter crd of functions nextState and
sendMsg. Similarly, the communication predicate does not refer to the coordinator assignment.
The HO model assumes communication-closed rounds, that is, processes receive only messages
sent for the round they are currently in. By a general result on the HO model, it can be assumed
that each round is executed atomically. A snapshot of the system can therefore be represented
by the local states of each process at the beginning of a round. The messages sent can be
computed from the local state, so they do not have to be recorded explicitly.

We represent a system configuration as an array of process states. A system run is just an infinite
sequence of configurations. At this generic level, process states are left parametric (represented
by a type variable); they will be defined by particular algorithms. (For some reason type and
record definitions cannot go inside locale definitions so we introduce them beforehand.)

types
(′proc, ′pst) run = nat ⇒ ′proc ⇒ ′pst

A heard-of assignment associates a set of processes with each process. The idea is that HO p
designates the set of processes from which process p receives a message at the current round.
A coordinator assignment associates a process (the coordinator) to each process.

types
′proc HO = ′proc ⇒ ′proc set

types
′proc coord = ′proc ⇒ ′proc

locale CHOAlgorithm =
fixes

initState :: ′proc ⇒ ′pst ⇒ bool
and

sendMsg :: nat ⇒ ′proc ⇒ ′proc ⇒ ′pst ⇒ ′proc ⇒ ′msg
and

nextState :: nat ⇒ ′proc ⇒ ′pst ⇒ (′proc ⇒ ′msg option) ⇒ ′proc ⇒ ′pst ⇒ bool
and

commSafe :: nat ⇒ ′proc HO ⇒ ′proc coord ⇒ bool
and

commLive :: (nat ⇒ ′proc HO) ⇒ (nat ⇒ ′proc coord) ⇒ bool
assumes

finiteProc: finite (UNIV :: ′proc set)
begin

By assumption finiteProc, any set of processes is finite.

lemma finiteProcset [simp,intro]: finite (P :: ′proc set)
using finiteProc by (blast intro:finite-subset)

Similarly, the range of any partial function from Proc is finite. (The Isabelle library contains a
similar lemma for the range of a total function, a generalization of the following lemma could
go to the standard library.)

lemma finite-ran: finite (ran (f :: ′proc ⇀ ′a))

2

proof −
let ?g = λy . case y of None => arbitrary | Some x => x
have ran f ⊆ ?g ‘ (range f)
proof
fix y
assume y ∈ ran f
then obtain x where f x = Some y by (auto simp add : ran-def)
hence y = ?g (f x) by simp
thus y ∈ ?g ‘ (range f) by blast

qed
moreover
have finite (?g ‘ range f) by auto
ultimately
show ?thesis by (rule finite-subset)

qed

Any two sets S and T of processes such that the sum of their cardinalities exceeds the number
of processes have a non-empty intersection.

lemma majorities-intersect :
assumes crd : card (UNIV :: ′proc set) < card (S :: ′proc set) + card (T :: ′proc set)
shows S ∩ T 6= {}

proof (clarify)
assume contra: S ∩ T = {}
with crd have card (UNIV :: ′proc set) < card (S ∪ T)
by (auto simp add : card-Un-Int)

moreover have card (S ∪ T) ≤ card (UNIV :: ′proc set)
by (simp add : card-mono)

ultimately show False
by simp

qed

lemma majoritiesE :
assumes crd : card (UNIV :: ′proc set) < card (S :: ′proc set) + card (T :: ′proc set)
obtains p where p ∈ S and p ∈ T

using crd majorities-intersect by blast

Frequent special case

lemma majoritiesE ′:
assumes S : card (S :: ′proc set) > (card (UNIV :: ′proc set)) div 2
and T : card (T :: ′proc set) > (card (UNIV :: ′proc set)) div 2
obtains p where p ∈ S and p ∈ T

proof (rule majoritiesE)
from S T show card (UNIV :: ′proc set) < card S + card T by auto

qed

Because messages are not corrupted in the HO model and processes only react to messages sent
at the current round, we need not explicitly represent the network state in the runs and use the
following utility function to compute the messages that a process receives.
The function rcvMsgs computes the messages that process p receives at round r, given a Heard-
Of set, the collections of coordinators and process states, and a message send function. (This
last parameter is useful in applications because rcvdMsgs can be used with sub-functions of the
overall message sending function used by the algorithm.)

definition
rcvdMsgs where

3

rcvdMsgs (p:: ′proc) (HO :: ′proc set) (coord :: ′proc coord) (cfg :: ′proc ⇒ ′pst)
(send :: ′proc ⇒ ′proc ⇒ ′pst ⇒ ′proc ⇒ ′msg)

≡ λq . if q ∈ HO then Some (send q p (cfg q) (coord q)) else None

An initial configuration is one where all processes are in an initial state.

definition
initConfig where
initConfig cfg ≡ ∀ p. initState p (cfg p)

The following definition characterizes successor configurations cfg ′ of a source configuration cfg
at round r, given assignments HO of heard-of sets and coord of coordinators.

definition
nextConfig where
nextConfig r cfg (HO :: ′proc HO) (coord :: ′proc coord) cfg ′ ≡
∀ p. nextState r p (cfg p) (rcvdMsgs p (HO p) coord cfg (sendMsg r)) (coord p) (cfg ′ p)

Given heard-of and coordinator collections, i.e. a heard-of and coordinator assignment for
each round, a run ρ of the algorithm is a sequence of configurations starting with an initial
configuration and respecting the successor function nextConfig.

definition
CHORun where
CHORun rho HOs coords ≡

(initConfig (rho 0))
∧ (∀ r . commSafe r (HOs r) (coords r)

∧ nextConfig r (rho r) (HOs r) (coords r) (rho (Suc r)))
∧ commLive HOs coords

The following derived proof rules are immediate consequences of the definition of CHORun;
they simplify automatic reasoning.

lemma CHORun-0 :
assumes CHORun rho HOs coords and

∧
cfg . initConfig cfg =⇒ P cfg

shows P (rho 0)
using prems unfolding CHORun-def by blast

lemma CHORun-Suc:
assumes CHORun rho HOs coords
and

∧
r . [[commSafe r (HOs r) (coords r);

nextConfig r (rho r) (HOs r) (coords r) (rho (Suc r))]]
=⇒ P r

shows P n
using prems unfolding CHORun-def by blast

lemma CHORun-induct :
assumes run: CHORun rho HOs coords
and init : initConfig (rho 0) =⇒ P 0
and step:

∧
r . [[P r ; commSafe r (HOs r) (coords r);

nextConfig r (rho r) (HOs r) (coords r) (rho (Suc r))]]
=⇒ P (Suc r)

shows P n
using run unfolding CHORun-def by (induct n, auto elim: init step)

end — locale CHOAlgorithm

end — theory CHO

4

theory LastVoting
imports CHO
begin

2 Verification of the LastVoting Consensus Algorithm

declare split-if-asm [split] — enable default perform case splitting on conditionals

The LastVoting algorithm can be considered as a version of Lamport’s Paxos consensus algo-
rithm [2] for the Heard-Of model. Following [1], we define the algorithm as an instance of the
generic Heard-Of model.

2.1 Formal Model of LastVoting

We begin by introducing an anonymous type of processes of finite cardinality that will instantiate
the type variable ′proc of the generic CHO model.

typedecl Proc

axioms
procFinite: finite (UNIV ::Proc set)

abbreviation
N ≡ card (UNIV ::Proc set) — number of processes

The algorithm proceeds in phases of 4 rounds each (we call steps the individual rounds that
constitute a phase). The following utility functions compute the phase and step of a round,
given the round number.

definition phase where phase (r ::nat) ≡ r div 4

definition step where step (r ::nat) ≡ r mod 4

lemma phase-zero [simp]: phase 0 = 0
by (simp add : phase-def)

lemma step-zero [simp]: step 0 = 0
by (simp add : step-def)

lemma phase-step: (phase r ∗ 4) + step r = r
by (auto simp add : phase-def step-def)

The following record models the local state of a process.

record ′val pstate =
x :: ′val — current value held by process
vote :: ′val option — value the process voted for, if any
commt :: bool — did the process commit to the vote?
ready :: bool — for coordinators: did the round finish successfully?
timestamp :: nat — time stamp of current value
decide :: ′val option — value the process has decided on, if any

Possible messages sent during the algorithm.

datatype ′val msg =
ValStamp ′val nat

5

| Vote ′val
| Ack
| Null — dummy message in case nothing needs to be sent

Characteristic predicates on messages.

definition isValStamp where isValStamp m ≡ ∃ v ts. m = ValStamp v ts

definition isVote where isVote m ≡ ∃ v . m = Vote v

definition isAck where isAck m ≡ m = Ack

Selector functions to retrieve components of messages. These functions have a meaningful result
only when the message is of appropriate kind.

fun val where
val (ValStamp v ts) = v

| val (Vote v) = v

fun stamp where
stamp (ValStamp v ts) = ts

The x field of the initial state is unconstrained, all other fields are initialized appropriately.

definition initState where
initState p st ≡
(vote st = None) ∧ ¬ (commt st) ∧ ¬(ready st) ∧ (timestamp st = 0) ∧ (decide st = None)

We separately define the transition predicates and the send functions for each step and later
combine them to define the overall next-state relation.

— processes from which values and timestamps were received
definition valStampsRcvd where

valStampsRcvd (msgs :: Proc ⇀ ′val msg) ≡
{q . ∃ v ts. msgs q = Some (ValStamp v ts)}

definition highestStampRcvd where
highestStampRcvd msgs ≡ Max {ts . ∃ q v . (msgs::Proc ⇀ ′val msg) q = Some (ValStamp v ts)}

In step 0, each process sends its current x and timestamp values to its coordinator.
A process that considers itself to be a coordinator updates its vote and commt fields if it has
received messages from a majority of processes.

definition send0 where
send0 r p q st crd ≡
if q = crd then ValStamp (x st) (timestamp st) else Null

definition next0 where
next0 r p st msgs crd st ′ ≡

if p = crd ∧ card (valStampsRcvd msgs) > N div 2
then (∃ p v . msgs p = Some (ValStamp v (highestStampRcvd msgs))

∧ st ′ = st (| vote := Some v , commt := True |))
else st ′ = st

In step 1, coordinators that have committed send their vote to all processes.
Processes update their x and timestamp fields if they have received a vote from their coordinator.

definition send1 where
send1 r p q st crd ≡

6

if p = crd ∧ commt st then Vote (the (vote st)) else Null

definition next1 where
next1 r p st msgs crd st ′ ≡
if msgs crd 6= None ∧ isVote (the (msgs crd))
then st ′ = st (| x := val (the (msgs crd)), timestamp := Suc(phase r) |)
else st ′ = st

In step 2, processes that have current timestamps send an acknowledgement to their coordinator.
A coordinator sets its ready field to true if it receives a majority of acknowledgements.

definition send2 where
send2 r p q st crd ≡
if timestamp st = Suc(phase r) ∧ q = crd then (Ack :: ′val msg) else Null

definition acksRcvd where — processes from which an acknowledgement was received
acksRcvd (msgs :: Proc ⇀ ′val msg) ≡
{ q . msgs q 6= None ∧ isAck (the (msgs q)) }

definition next2 where
next2 r p st msgs crd st ′ ≡
if p = crd ∧ card (acksRcvd msgs) > N div 2
then st ′ = st (| ready := True |)
else st ′ = st

In step 3, coordinators that are ready send their vote to all processes.
Processes that received a vote from their coordinator decide on that value. Coordinators reset
their ready and commt fields to false.

definition send3 where
send3 r p q st crd ≡
if p = crd ∧ ready st then Vote (the (vote st)) else Null

definition next3 where
next3 r p st msgs crd st ′ ≡

(if msgs crd 6= None ∧ isVote (the (msgs crd))
then decide st ′ = Some (val (the (msgs crd)))
else decide st ′ = decide st)

∧ (if p = crd
then ¬(ready st ′) ∧ ¬(commt st ′)
else (ready st ′ = ready st) ∧ (commt st ′ = commt st))

∧ (x st ′ = x st) ∧ (vote st ′ = vote st) ∧ (timestamp st ′ = timestamp st)

The overall send function and next-state relation are simply obtained as the composition of the
individual relations defined above.

definition sendMsg :: nat ⇒ Proc ⇒ Proc ⇒ ′val pstate ⇒ Proc ⇒ ′val msg where
sendMsg (r ::nat) ≡
if step r = 0 then send0 r
else if step r = 1 then send1 r
else if step r = 2 then send2 r
else send3 r

definition
nextState :: nat ⇒ Proc ⇒ ′val pstate ⇒ (Proc ⇀ ′val msg) ⇒ Proc ⇒ ′val pstate ⇒ bool
where

7

nextState r ≡
if step r = 0 then next0 r
else if step r = 1 then next1 r
else if step r = 2 then next2 r
else next3 r

We now define the communication predicate for the LastVoting algorithm. The safety part is
trivial: integrity and agreement are always ensured. However, coordinators are supposed to
change only between phases. For the liveness part, Charron and Bost propose a predicate that
requires the existence of infinitely many phases ph such that:

• all processes agree on the same coordinator c,

• c hears from a strict majority of processes in steps 0 and 2 of phase ph, and

• every process hears from c in steps 1 and 3 (this is slightly weaker than the predicate that
appears in [1], but obviously sufficient).

In fact, it is enough (as noted in the text of [1]) to require the existence of a single such phase.

definition
LV-commSafe where
LV-commSafe r (HO ::Proc HO) (coord ::Proc coord) ≡ True

definition
LV-commLive where
LV-commLive HOs coords ≡

(∀ r . step r 6= 3 −→ coords (Suc r) = coords r)
∧ (∃ (ph::nat). ∃ (c::Proc).

(∀ p. coords (4∗ph) p = c)
∧ card (HOs (4∗ph) c) > N div 2 ∧ card (HOs (Suc (Suc (4∗ph))) c) > N div 2
∧ (∀ p. c ∈ HOs (Suc (4∗ph)) p ∩ HOs (Suc (Suc (Suc (4∗ph)))) p))

We instantiate the generic definition of Heard-Of algorithms for the LastVoting algorithm.

interpretation CHOAlgorithm initState sendMsg nextState LV-commSafe LV-commLive
by (unfold-locales, rule procFinite)

2.2 Proof of LastVoting : Preliminary Lemmas

We begin by proving some rather obvious lemmas about the utility functions used in the model
of LastVoting. We also specialize the induction rules of the generic CHO model for this particular
algorithm.

lemma timeStampsRcvdFinite:
finite {ts . ∃ q v . (msgs::Proc ⇀ ′val msg) q = Some (ValStamp v ts)}
(is finite ?ts)

proof −
have ?ts = stamp ‘ the ‘ msgs ‘ (valStampsRcvd msgs) by (force simp add : valStampsRcvd-def

image-def)
thus ?thesis by auto

qed

lemma highestStampRcvd-exists:
assumes nempty : valStampsRcvd msgs 6= {}
obtains p v where msgs p = Some (ValStamp v (highestStampRcvd msgs))

proof −

8

let ?ts = {ts . ∃ q v . msgs q = Some (ValStamp v ts)}
from nempty have ?ts 6= {} by (auto simp add : valStampsRcvd-def)
with timeStampsRcvdFinite
have highestStampRcvd msgs ∈ ?ts unfolding highestStampRcvd-def by (rule Max-in)
then obtain p v where msgs p = Some (ValStamp v (highestStampRcvd msgs))
by (auto simp add : highestStampRcvd-def)

with that show thesis .
qed

lemma highestStampRcvd-max :
assumes msgs p = Some (ValStamp v ts)
shows ts ≤ highestStampRcvd msgs

using prems unfolding highestStampRcvd-def
by (blast intro: Max-ge timeStampsRcvdFinite)

Many proofs are by induction on runs of the LastVoting algorithm, and we derive a specific
induction rule to support these proofs.

lemma LV-induct :
assumes run: CHORun rho HOs coords
and init : ∀ p. initState p (rho 0 p) =⇒ P 0
and step0 :

∧
r .
[[step r = 0 ; P r ; phase (Suc r) = phase r ; step (Suc r) = 1 ;
∀ p. next0 r p (rho r p)

(rcvdMsgs p (HOs r p) (coords r) (rho r) (send0 r))
(coords r p)
(rho (Suc r) p)]]

=⇒ P (Suc r)
and step1 :

∧
r .
[[step r = 1 ; P r ; phase (Suc r) = phase r ; step (Suc r) = 2 ;
∀ p. next1 r p (rho r p)

(rcvdMsgs p (HOs r p) (coords r) (rho r) (send1 r))
(coords r p)
(rho (Suc r) p)]]

=⇒ P (Suc r)
and step2 :

∧
r .
[[step r = 2 ; P r ; phase (Suc r) = phase r ; step (Suc r) = 3 ;
∀ p. next2 r p (rho r p)

(rcvdMsgs p (HOs r p) (coords r) (rho r) (send2 r))
(coords r p)
(rho (Suc r) p)]]

=⇒ P (Suc r)
and step3 :

∧
r .
[[step r = 3 ; P r ; phase (Suc r) = Suc (phase r); step (Suc r) = 0 ;
∀ p. next3 r p (rho r p)

(rcvdMsgs p (HOs r p) (coords r) (rho r) (send3 r))
(coords r p)
(rho (Suc r) p)]]

=⇒ P (Suc r)
shows P n

proof (rule CHORun-induct [OF run])
assume initConfig (rho 0)
thus P 0 by (auto simp add : initConfig-def init)

next
fix r
assume ih: P r and nxt : nextConfig r (rho r) (HOs r) (coords r) (rho (Suc r))

9

have step r ∈ {0 ,1 ,2 ,3} by (auto simp add : step-def)
thus P (Suc r)
proof auto
assume stp: step r = 0
hence stp ′: step (Suc r) = 1 by (auto simp add : step-def mod-Suc)
from stp have ph: phase (Suc r) = phase r by (auto simp add : phase-def step-def)
from ih nxt stp stp ′ ph show ?thesis
by (intro step0 , auto simp add : nextConfig-def nextState-def sendMsg-def)

next
assume stp: step r = Suc 0
hence stp ′: step (Suc r) = 2 by (auto simp add : step-def mod-Suc)
from stp have ph: phase (Suc r) = phase r
unfolding step-def phase-def by presburger

from ih nxt stp stp ′ ph show ?thesis
by (intro step1 , auto simp add : nextConfig-def nextState-def sendMsg-def)

next
assume stp: step r = 2
hence stp ′: step (Suc r) = 3 by (auto simp add : step-def mod-Suc)
from stp have ph: phase (Suc r) = phase r
unfolding step-def phase-def by presburger

from ih nxt stp stp ′ ph show ?thesis
by (intro step2 , auto simp add : nextConfig-def nextState-def sendMsg-def)

next
assume stp: step r = 3
hence stp ′: step (Suc r) = 0 by (auto simp add : step-def mod-Suc)
from stp have ph: phase (Suc r) = Suc (phase r)
unfolding step-def phase-def by presburger

from ih nxt stp stp ′ ph show ?thesis
by (intro step3 , auto simp add : nextConfig-def nextState-def sendMsg-def)

qed
qed

The following rule similarly establishes a property of two successive configurations of a run by
case distinction on the step that was executed.

lemma LV-Suc:
assumes run: CHORun rho HOs coords
and step0 : [[step r = 0 ; step (Suc r) = 1 ; phase (Suc r) = phase r ;

∀ p. next0 r p (rho r p)
(rcvdMsgs p (HOs r p) (coords r) (rho r) (send0 r))
(coords r p) (rho (Suc r) p)]]

=⇒ P r
and step1 : [[step r = 1 ; step (Suc r) = 2 ; phase (Suc r) = phase r ;

∀ p. next1 r p (rho r p)
(rcvdMsgs p (HOs r p) (coords r) (rho r) (send1 r))
(coords r p) (rho (Suc r) p)]]

=⇒ P r
and step2 : [[step r = 2 ; step (Suc r) = 3 ; phase (Suc r) = phase r ;

∀ p. next2 r p (rho r p)
(rcvdMsgs p (HOs r p) (coords r) (rho r) (send2 r))
(coords r p) (rho (Suc r) p)]]

=⇒ P r
and step3 : [[step r = 3 ; step (Suc r) = 0 ; phase (Suc r) = Suc (phase r);

∀ p. next3 r p (rho r p)
(rcvdMsgs p (HOs r p) (coords r) (rho r) (send3 r))
(coords r p) (rho (Suc r) p)]]

10

=⇒ P r
shows P r

proof −
from run have nxt : nextConfig r (rho r) (HOs r) (coords r) (rho (Suc r))
by (auto simp add : CHORun-def)

have step r ∈ {0 ,1 ,2 ,3} by (auto simp add : step-def)
thus P r
proof (auto)
assume stp: step r = 0
hence stp ′: step (Suc r) = 1 by (auto simp add : step-def mod-Suc)
from stp have ph: phase (Suc r) = phase r by (auto simp add : phase-def step-def)
from nxt stp stp ′ ph show ?thesis
by (intro step0 , auto simp add : nextConfig-def nextState-def sendMsg-def)

next
assume stp: step r = Suc 0
hence stp ′: step (Suc r) = 2 by (auto simp add : step-def mod-Suc)
from stp have ph: phase (Suc r) = phase r
unfolding step-def phase-def by presburger

from nxt stp stp ′ ph show ?thesis
by (intro step1 , auto simp add : nextConfig-def nextState-def sendMsg-def)

next
assume stp: step r = 2
hence stp ′: step (Suc r) = 3 by (auto simp add : step-def mod-Suc)
from stp have ph: phase (Suc r) = phase r
unfolding step-def phase-def by presburger

from nxt stp stp ′ ph show ?thesis
by (intro step2 , auto simp add : nextConfig-def nextState-def sendMsg-def)

next
assume stp: step r = 3
hence stp ′: step (Suc r) = 0 by (auto simp add : step-def mod-Suc)
from stp have ph: phase (Suc r) = Suc (phase r)
unfolding step-def phase-def by presburger

from nxt stp stp ′ ph show ?thesis
by (intro step3 , auto simp add : nextConfig-def nextState-def sendMsg-def)

qed
qed

Sometimes the assertion to prove talks about a specific process and follows from the next-
state relation of that particular process. We prove corresponding variants of the induction and
case-distinction rules. When these variants are applicable, they help automating the Isabelle
proof.

lemma LV-induct ′:
assumes run: CHORun rho HOs coords
and init : initState p (rho 0 p) =⇒ P p 0
and step0 :

∧
r . [[step r = 0 ; P p r ; phase (Suc r) = phase r ; step (Suc r) = 1 ;

next0 r p (rho r p)
(rcvdMsgs p (HOs r p) (coords r) (rho r) (send0 r))
(coords r p) (rho (Suc r) p)]]

=⇒ P p (Suc r)
and step1 :

∧
r . [[step r = 1 ; P p r ; phase (Suc r) = phase r ; step (Suc r) = 2 ;

next1 r p (rho r p)
(rcvdMsgs p (HOs r p) (coords r) (rho r) (send1 r))
(coords r p) (rho (Suc r) p)]]

=⇒ P p (Suc r)
and step2 :

∧
r . [[step r = 2 ; P p r ; phase (Suc r) = phase r ; step (Suc r) = 3 ;

11

next2 r p (rho r p)
(rcvdMsgs p (HOs r p) (coords r) (rho r) (send2 r))
(coords r p) (rho (Suc r) p)]]

=⇒ P p (Suc r)
and step3 :

∧
r . [[step r = 3 ; P p r ; phase (Suc r) = Suc (phase r); step (Suc r) = 0 ;

next3 r p (rho r p)
(rcvdMsgs p (HOs r p) (coords r) (rho r) (send3 r))
(coords r p) (rho (Suc r) p)]]

=⇒ P p (Suc r)
shows P p n

by (rule LV-induct [OF run], auto intro: init step0 step1 step2 step3)

lemma LV-Suc ′:
assumes run: CHORun rho HOs coords
and step0 : [[step r = 0 ; step (Suc r) = 1 ; phase (Suc r) = phase r ;

next0 r p (rho r p)
(rcvdMsgs p (HOs r p) (coords r) (rho r) (send0 r))
(coords r p) (rho (Suc r) p)]]

=⇒ P p r
and step1 : [[step r = 1 ; step (Suc r) = 2 ; phase (Suc r) = phase r ;

next1 r p (rho r p)
(rcvdMsgs p (HOs r p) (coords r) (rho r) (send1 r))
(coords r p) (rho (Suc r) p)]]

=⇒ P p r
and step2 : [[step r = 2 ; step (Suc r) = 3 ; phase (Suc r) = phase r ;

next2 r p (rho r p)
(rcvdMsgs p (HOs r p) (coords r) (rho r) (send2 r))
(coords r p) (rho (Suc r) p)]]

=⇒ P p r
and step3 : [[step r = 3 ; step (Suc r) = 0 ; phase (Suc r) = Suc (phase r);

next3 r p (rho r p)
(rcvdMsgs p (HOs r p) (coords r) (rho r) (send3 r))
(coords r p) (rho (Suc r) p)]]

=⇒ P p r
shows P p r

by (rule LV-Suc[OF run], auto intro: step0 step1 step2 step3)

2.3 Boundedness and monotonicity of timestamps

The timestamp of any process is bounded by the current phase.

lemma LV-timestamp-bounded :
assumes run: CHORun rho HOs coords
shows timestamp (rho n p) ≤ (if step n < 2 then phase n else Suc (phase n))

(is ?P p n)
by (rule LV-induct ′ [OF run, where P=?P],

auto simp add : initState-def next0-def next1-def next2-def next3-def)

Moreover, timestamps can only grow over time.

lemma LV-timestamp-increasing :
assumes run: CHORun rho HOs coords
shows timestamp (rho n p) ≤ timestamp (rho (Suc n) p)

(is ?P p n is ?ts ≤ -)
proof (rule LV-Suc ′[OF run, where P=?P])

The case of next1 is the only interesting one because the timestamp may change: here we use the

12

previously established fact that the timestamp is bounded by the phase number.

fix HO
assume stp: step n = 1

and nxt : next1 n p (rho n p)
(rcvdMsgs p (HOs n p) (coords n) (rho n) (send1 n))
(coords n p) (rho (Suc n) p)

from stp have ?ts ≤ phase n
using LV-timestamp-bounded [OF run, where n=n, where p=p] by auto

with nxt show ?thesis by (auto simp add : next1-def)
qed (auto simp add : next0-def next2-def next3-def)

lemma LV-timestamp-monotonic:
assumes run: CHORun rho HOs coords and le: m ≤ n
shows timestamp (rho m p) ≤ timestamp (rho n p)

(is ?ts m ≤ -)
proof −
from le obtain k where k : n = m+k by (auto simp add : le-iff-add)
have ?ts m ≤ ?ts (m+k) (is ?P k)
proof (induct k)
case 0 show ?P 0 by simp

next
fix k
assume ih: ?P k
from run have ?ts (m+k) ≤ ?ts (m + Suc k) by (auto simp add : LV-timestamp-increasing)
with ih show ?P (Suc k) by simp

qed
with k show ?thesis by simp

qed

The following definition collects the set of processes whose timestamp is beyond a given bound
at a system state.

definition
procsBeyondTS where procsBeyondTS ts cfg ≡ { p . ts ≤ timestamp (cfg p) }

Since timestamps grow monotonically, so does the set of processes that are beyond a certain
bound.

lemma procsBeyondTS-monotonic:
assumes run: CHORun rho HOs coords

and p: p ∈ procsBeyondTS ts (rho m) and le: m ≤ (n::nat)
shows p ∈ procsBeyondTS ts (rho n)

proof −
from p have ts ≤ timestamp (rho m p) (is - ≤ ?ts m)
by (simp add : procsBeyondTS-def)

moreover
from run le have ?ts m ≤ ?ts n by (rule LV-timestamp-monotonic)
ultimately show ?thesis
by (simp add : procsBeyondTS-def)

qed

2.4 Obvious facts about the algorithm

The following lemmas state some very obvious facts that follow “immediately” from the defini-
tion of the algorithm. We could prove them in one fell swoop by defining a big invariant, but it
appears more readable to prove them separately.

13

Coordinators change only at step 3. This is an immediate consequence of the communica-
tion/coordinator predicate.

lemma notStep3EqualCoord :
assumes CHORun rho HOs coords and step r 6= 3
shows coords (Suc r) p = coords r p

using assms by (auto simp add : CHORun-def LV-commLive-def)

Votes only change at step 0.

lemma notStep0EqualVote [rule-format]:
assumes run: CHORun rho HOs coords
shows step r 6= 0 −→ vote (rho (Suc r) p) = vote (rho r p) (is ?P p r)

by (rule LV-Suc ′[OF run, where P=?P],
auto simp add : next0-def next1-def next2-def next3-def)

Commit status only changes at steps 0 and 3.

lemma notStep03EqualCommit [rule-format]:
assumes run: CHORun rho HOs coords
shows step r 6= 0 ∧ step r 6= 3 −→ commt (rho (Suc r) p) = commt (rho r p)

(is ?P p r)
by (rule LV-Suc ′[OF run, where P=?P],

auto simp add : next0-def next1-def next2-def next3-def)

Timestamps only change at step 1.

lemma notStep1EqualTimestamp [rule-format]:
assumes run: CHORun rho HOs coords
shows step r 6= 1 −→ timestamp (rho (Suc r) p) = timestamp (rho r p)

(is ?P p r)
by (rule LV-Suc ′[OF run, where P=?P],

auto simp add : next0-def next1-def next2-def next3-def)

The x field only changes at step 1.

lemma notStep1EqualX [rule-format]:
assumes run: CHORun rho HOs coords
shows step r 6= 1 −→ x (rho (Suc r) p) = x (rho r p) (is ?P p r)

by (rule LV-Suc ′[OF run, where P=?P],
auto simp add : next0-def next1-def next2-def next3-def)

A process p has its commit flag set only if the following conditions hold:

• the step number is at least 1,

• p considers itself to be the coordinator,

• p has a non-null vote,

• a majority of processes consider p as their coordinator.

lemma commitE :
assumes run: CHORun rho HOs coords and cmt : commt (rho r p)
and conds: [[1 ≤ step r ; coords r p = p; vote (rho r p) 6= None;

card {q . coords r q = p} > N div 2
]] =⇒ A

shows A
proof −

14

have commt (rho r p) −→
1 ≤ step r ∧ coords r p = p ∧ vote (rho r p) 6= None ∧ card {q . coords r q = p} > N div 2

(is ?P p r is - −→ ?R r)
proof (rule LV-induct ′[OF run, where P=?P])

— the only interesting step is step 0
fix n
assume nxt : next0 n p (rho n p) (rcvdMsgs p (HOs n p) (coords n) (rho n) (send0 n)) (coords n p)

(rho (Suc n) p)
and ph: phase (Suc n) = phase n
and stp: step n = 0 and stp ′: step (Suc n) = 1
and ih: ?P p n

show ?P p (Suc n)
proof
assume cm ′: commt (rho (Suc n) p)
from stp ih have cm: ¬ commt (rho n p) by simp
with nxt cm ′

have coords n p = p ∧ vote (rho (Suc n) p) 6= None
∧ card (valStampsRcvd (rcvdMsgs p (HOs n p) (coords n) (rho n) (send0 n))) > N div 2

by (auto simp add : next0-def)
moreover
have valStampsRcvd (rcvdMsgs p (HOs n p) (coords n) (rho n) (send0 n)) ⊆ {q . coords n q = p}

by (auto simp add : valStampsRcvd-def rcvdMsgs-def send0-def)
hence card (valStampsRcvd (rcvdMsgs p (HOs n p) (coords n) (rho n) (send0 n))) ≤ card {q .

coords n q = p}
by (auto intro: card-mono)

moreover
note stp stp ′ run
ultimately
show ?R (Suc n)
by (auto simp add : notStep3EqualCoord)

qed
— the remaining cases are all solved by expanding the definitions
qed (auto simp add : initState-def next1-def next2-def next3-def notStep3EqualCoord [OF run])
with cmt show ?thesis by (intro conds, auto)

qed

A process has a current timestamp only if:

• it is at step 2 or beyond,

• its coordinator has committed,

• its x value is the vote of its coordinator.

lemma currentTimestampE :
assumes run: CHORun rho HOs coords
and ts: timestamp (rho r p) = Suc (phase r)
and conds: [[2 ≤ step r ;

commt (rho r (coords r p));
x (rho r p) = the (vote (rho r (coords r p)))

]] =⇒ A
shows A

proof −
let ?ts n = timestamp (rho n p)
let ?crd n = coords n p
have ?ts r = Suc (phase r) −→ 2 ≤ step r ∧ commt (rho r (?crd r)) ∧ x (rho r p) = the (vote (rho

r (?crd r)))

15

(is ?Q p r is - −→ ?R r)
proof (rule LV-induct ′[OF run, where P=?Q])

— The assertion is trivially true initially because the timestamp is 0.
assume initState p (rho 0 p) thus ?Q p 0
by (auto simp add : initState-def)

next
— The assertion is trivially preserved by step 0 because the timestamp in the post-state cannot be

current (cf. lemma LV-timestamp-bounded).
fix n
assume stp ′: step (Suc n) = 1
with run LV-timestamp-bounded [where n=Suc n] have ?ts (Suc n) ≤ phase (Suc n)
by auto

thus ?Q p (Suc n) by simp
next

— Step 1 establishes the assertion by definition of the transition relation.
fix n
assume stp: step n = 1 and stp ′: step (Suc n) = 2

and ph: phase (Suc n) = phase n
and nxt : next1 n p (rho n p) (rcvdMsgs p (HOs n p) (coords n) (rho n) (send1 n)) (?crd n) (rho

(Suc n) p)
show ?Q p (Suc n)
proof
assume ts: ?ts (Suc n) = Suc (phase (Suc n))
from run stp LV-timestamp-bounded [where n=n] have ?ts n ≤ phase n by auto
moreover
from run stp have vote (rho (Suc n) (?crd (Suc n))) = vote (rho n (?crd n))
by (auto simp add : notStep3EqualCoord notStep0EqualVote)

moreover
from run stp have commt (rho (Suc n) (?crd (Suc n))) = commt (rho n (?crd n))
by (auto simp add : notStep3EqualCoord notStep03EqualCommit)

moreover
note ts nxt stp ′ ph
ultimately
show ?R (Suc n)
by (auto simp add : next1-def send1-def rcvdMsgs-def isVote-def)

qed
next
— For step 2, the assertion follows from the induction hypothesis, observing that none of the relevant

state components change.
fix n
assume stp: step n = 2 and stp ′: step (Suc n) = 3

and ph: phase (Suc n) = phase n
and ih: ?Q p n
and nxt : next2 n p (rho n p) (rcvdMsgs p (HOs n p) (coords n) (rho n) (send2 n)) (?crd n) (rho

(Suc n) p)
show ?Q p (Suc n)
proof
assume ts: ?ts (Suc n) = Suc (phase (Suc n))
from run stp
have vt : vote (rho (Suc n) (?crd (Suc n))) = vote (rho n (?crd n))
by (auto simp add : notStep3EqualCoord notStep0EqualVote)

from run stp
have cmt : commt (rho (Suc n) (?crd (Suc n))) = commt (rho n (?crd n))
by (auto simp add : notStep3EqualCoord notStep03EqualCommit)

with vt ts ph stp stp ′ ih nxt

16

show ?R (Suc n)
by (auto simp add : next2-def)

qed
next

— The assertion is trivially preserved by step 3 because the timestamp in the post-state cannot be
current (cf. lemma LV-timestamp-bounded).

fix n
assume stp ′: step (Suc n) = 0
with run LV-timestamp-bounded [where n=Suc n] have ?ts (Suc n) ≤ phase (Suc n)
by auto

thus ?Q p (Suc n) by simp
qed
with ts show ?thesis by (intro conds, auto)

qed

If a process p has its ready bit set then:

• it is at step 3,

• it considers itself to be the coordinator of that phase and

• a majority of processes considers p to be the coordinator and has a current timestamp.

lemma readyE :
assumes run: CHORun rho HOs coords and rdy : ready (rho r p)
and conds: [[step r = 3 ; coords r p = p;

card { q . coords r q = p ∧ timestamp (rho r q) = Suc (phase r) } > N div 2
]] =⇒ P

shows P
proof −
let ?qs n = { q . coords n q = p ∧ timestamp (rho n q) = Suc (phase n) }
have ready (rho r p) −→ step r = 3 ∧ coords r p = p ∧ card (?qs r) > N div 2

(is ?Q p r is - −→ ?R p r)
proof (rule LV-induct ′[OF run, where P=?Q])

— the interesting case is step 2
fix n
assume stp: step n = 2 and stp ′: step (Suc n) = 3

and ih: ?Q p n and ph: phase (Suc n) = phase n
and nxt : next2 n p (rho n p) (rcvdMsgs p (HOs n p) (coords n) (rho n) (send2 n)) (coords n p)

(rho (Suc n) p)
show ?Q p (Suc n)
proof
assume rdy : ready (rho (Suc n) p)
from stp ih have nrdy : ¬ ready (rho n p) by simp
with rdy nxt have coords n p = p
by (auto simp add : next2-def)

with run stp have coord : coords (Suc n) p = p
by (simp add : notStep3EqualCoord)

let ?acks = acksRcvd (rcvdMsgs p (HOs n p) (coords n) (rho n) (send2 n))
from nrdy rdy nxt have aRcvd : card ?acks > N div 2
by (auto simp add : next2-def)

have ?acks ⊆ ?qs (Suc n)
proof (clarify)
fix q
assume q : q ∈ ?acks
hence n: coords n q = p ∧ timestamp (rho n q) = Suc (phase n)

17

by (auto simp add : acksRcvd-def rcvdMsgs-def send2-def isAck-def)
with run stp ph
show coords (Suc n) q = p ∧ timestamp (rho (Suc n) q) = Suc (phase (Suc n))
by (simp add : notStep3EqualCoord notStep1EqualTimestamp)

qed
hence card ?acks ≤ card (?qs (Suc n))
by (intro card-mono, auto)

with stp ′ coord aRcvd show ?R p (Suc n)
by auto

qed
— the remaining steps are all solved trivially

qed (auto simp add : initState-def next0-def next1-def next3-def)
with rdy show ?thesis by (blast intro: conds)

qed

A process decides only if the following conditions hold:

• it is at step 3,

• its coordinator votes for the value the process decides on,

• the coordinator has its ready and commt bits set.

This is (essentially) Bernadette’s Lemma 3.

lemma decisionE :
assumes run: CHORun rho HOs coords
and dec: decide (rho (Suc r) p) 6= decide (rho r p)
and conds: [[step r = 3 ;

decide (rho (Suc r) p) = Some (the (vote (rho r (coords r p))));
ready (rho r (coords r p)); commt (rho r (coords r p))

]] =⇒ P
shows P

proof −
let ?cfg = rho r
let ?cfg ′ = rho (Suc r)
let ?crd = coords r
let ?dec ′ = decide (?cfg ′ p)
— Except for the assertion about the commt field, the assertion can be proved directly from the

next-state relation.
have 1 : step r = 3 ∧ ?dec ′ = Some (the (vote (?cfg (?crd p)))) ∧ ready (?cfg (?crd p))

(is ?Q p r)
proof (rule LV-Suc ′[OF run, where P=?Q])
— for step 3, we prove the thesis by expanding the relevant definitions
assume next3 r p (?cfg p) (rcvdMsgs p (HOs r p) ?crd ?cfg (send3 r)) (?crd p) (?cfg ′ p)

and step r = 3
with dec show ?thesis
by (auto simp add : next3-def send3-def isVote-def rcvdMsgs-def)

next
— for the other steps, the proof is by contradiction because they don’t change the decision
assume next0 r p (?cfg p) (rcvdMsgs p (HOs r p) ?crd ?cfg (send0 r)) (?crd p) (?cfg ′ p)
with dec show ?thesis by (auto simp add : next0-def)

next
assume next1 r p (?cfg p) (rcvdMsgs p (HOs r p) ?crd ?cfg (send1 r)) (?crd p) (?cfg ′ p)
with dec show ?thesis by (auto simp add : next1-def)

next
assume next2 r p (?cfg p) (rcvdMsgs p (HOs r p) ?crd ?cfg (send2 r)) (?crd p) (?cfg ′ p)

18

with dec show ?thesis by (auto simp add : next2-def)
qed
hence ready (?cfg (?crd p)) by blast
— Because the coordinator is ready, there is a majority of processes that consider it to be the coordinator

and that have a current timestamp.
with run
have card {q . ?crd q = ?crd p ∧ timestamp (?cfg q) = Suc (phase r)} > N div 2
by (rule readyE)

— Hence there is at least one such process . . .
hence card {q . ?crd q = ?crd p ∧ timestamp (?cfg q) = Suc (phase r)} 6= 0
by arith

then obtain q where ?crd q = ?crd p and timestamp (?cfg q) = Suc (phase r)
by auto

— . . . and by a previous lemma the coordinator must have committed.
with run have commt (?cfg (?crd p))
by (auto elim: currentTimestampE)

with 1 show ?thesis by (blast intro: conds)
qed

2.5 Proof of Integrity

Integrity is proved using a standard invariance argument that asserts that only values present
in the initial state appear in the relevant fields.

lemma integrityInvariant :
assumes run: CHORun rho HOs coords
and inv : [[range (x ◦ (rho n)) ⊆ range (x ◦ (rho 0));

range (vote ◦ (rho n)) ⊆ {None} ∪ Some ‘ range (x ◦ (rho 0));
range (decide ◦ (rho n)) ⊆ {None} ∪ Some ‘ range (x ◦ (rho 0))

]] =⇒ A
shows A

proof −
let ?x0 = range (x ◦ rho 0)
let ?x0opt = {None} ∪ Some ‘ ?x0
have range (x ◦ rho n) ⊆ ?x0 ∧

range (vote ◦ rho n) ⊆ ?x0opt ∧
range (decide ◦ rho n) ⊆ ?x0opt (is ?Inv n is ?X n ∧ ?Vote n ∧ ?Decide n)

proof (induct n)
from run show ?Inv 0
by (auto simp add : CHORun-def initConfig-def initState-def)

next
fix n
assume ih: ?Inv n thus ?Inv (Suc n)
proof (clarify)
assume x : ?X n and vt : ?Vote n and dec: ?Decide n

Proof of first conjunct

have x ′: ?X (Suc n)
proof (clarsimp)
fix p
from run show x (rho (Suc n) p) ∈ range (λq . x (rho 0 q)) (is ?P p n)
proof (rule LV-Suc ′[where P=?P])

— only step1 is of interest
assume nxt : next1 n p (rho n p)

(rcvdMsgs p (HOs n p) (coords n) (rho n) (send1 n))
(coords n p) (rho (Suc n) p)

19

show ?thesis
proof (cases rho (Suc n) p = rho n p)
case True
with x show ?thesis by auto

next
case False
with nxt have cmt : commt (rho n (coords n p))
and xp: x (rho (Suc n) p) = the (vote (rho n (coords n p)))

by (auto simp add : next1-def send1-def rcvdMsgs-def isVote-def)
from run cmt have vote (rho n (coords n p)) 6= None
by (rule commitE)

moreover
from vt have vote (rho n (coords n p)) ∈ ?x0opt
by (auto simp add : image-def)

moreover
note xp
ultimately
show ?thesis by (force simp add : image-def)

qed
— the other steps don’t change x and therefore follow from the induction hypothesis

next
assume step n = 0
with run have x (rho (Suc n) p) = x (rho n p) by (simp add : notStep1EqualX)
with x show ?thesis by auto

next
assume step n = 2
with run have x (rho (Suc n) p) = x (rho n p) by (simp add : notStep1EqualX)
with x show ?thesis by auto

next
assume step n = 3
with run have x (rho (Suc n) p) = x (rho n p) by (simp add : notStep1EqualX)
with x show ?thesis by auto

qed
qed

Proof of second conjunct

have vt ′: ?Vote (Suc n)
proof (clarsimp simp add : image-def)
fix p v
assume v : vote (rho (Suc n) p) = Some v
from run have vote (rho (Suc n) p) = Some v −→ v ∈ ?x0 (is ?P p n)
proof (rule LV-Suc ′[where P=?P])

— here only step0 is of interest
assume nxt : next0 n p (rho n p)

(rcvdMsgs p (HOs n p) (coords n) (rho n) (send0 n))
(coords n p) (rho (Suc n) p)

show ?thesis
proof (cases rho (Suc n) p = rho n p)
case True
from vt have vote (rho n p) ∈ ?x0opt by (auto simp add : image-def)
with True show ?thesis by auto

next
case False
from nxt False v obtain q where v = x (rho n q)
by (auto simp add : next0-def send0-def rcvdMsgs-def)

with x show ?thesis by (auto simp add : image-def)

20

qed
— the other cases don’t change the vote and therefore follow from the induction hypothesis

next
assume step n = 1
with run have vote (rho (Suc n) p) = vote (rho n p)
by (simp add : notStep0EqualVote)

moreover
from vt have vote (rho n p) ∈ ?x0opt by (auto simp add : image-def)
ultimately
show ?thesis by auto

next
assume step n = 2
with run have vote (rho (Suc n) p) = vote (rho n p)
by (simp add : notStep0EqualVote)

moreover
from vt have vote (rho n p) ∈ ?x0opt by (auto simp add : image-def)
ultimately
show ?thesis by auto

next
assume step n = 3
with run have vote (rho (Suc n) p) = vote (rho n p)
by (simp add : notStep0EqualVote)

moreover
from vt have vote (rho n p) ∈ ?x0opt by (auto simp add : image-def)
ultimately
show ?thesis by auto

qed
with v show ∃ q . v = x (rho 0 q) by auto

qed

Proof of third conjunct

have dec ′: ?Decide (Suc n)
proof (clarsimp simp add : image-def)
fix p v
assume v : decide (rho (Suc n) p) = Some v
show ∃ q . v = x (rho 0 q)
proof (cases decide (rho (Suc n) p) = decide (rho n p))
case True
from dec have d : decide (rho n p) ∈ ?x0opt by (auto simp add : image-def)
with True v show ?thesis by (auto simp add : image-def)

next
case False
let ?crd = coords n p
from False run have

d ′: decide (rho (Suc n) p) = Some (the (vote (rho n ?crd))) and
cmt : commt (rho n ?crd)
by (auto elim: decisionE)

from vt have vtc: vote (rho n ?crd) ∈ ?x0opt by (auto simp add : image-def)
from run cmt have vote (rho n ?crd) 6= None by (rule commitE)
with d ′ v vtc show ?thesis by auto

qed
qed
from x ′ vt ′ dec ′ show ?thesis by simp

qed
qed
with inv show ?thesis by simp

21

qed

The Integrity theorem follows as an easy consequence.

theorem integrity :
assumes run: CHORun rho HOs coords and dec: decide (rho n p) = Some v
shows ∃ q . v = x (rho 0 q)

proof −
from run have decide (rho n p) ∈ {None} ∪ Some ‘ (range (x ◦ (rho 0)))
by (rule integrityInvariant , auto simp add : image-def)

with dec show ?thesis by (auto simp add : image-def)
qed

2.6 Proof of Agreement and Irrevocability

The following lemmas closely follow a hand proof provided by Bernadette Charron-Bost.

If a process decides, then a majority of processes have a current timestamp.

lemma decisionThenMajorityBeyondTS :
assumes run: CHORun rho HOs coords
and dec: decide (rho (Suc r) p) 6= decide (rho r p)
shows card (procsBeyondTS (Suc (phase r)) (rho r)) > N div 2
using run dec proof (rule decisionE)
— Lemma decisionE tells us that we are at step 3 and that the coordinator is ready.
let ?crd = coords r p
let ?qs = { q . coords r q = ?crd ∧ timestamp (rho r q) = Suc (phase r) }
assume stp: step r = 3 and rdy : ready (rho r ?crd)
— Now, lemma readyE implies that a majority of processes have a recent timestamp.
from run rdy have card ?qs > N div 2 by (rule readyE)
moreover
from stp LV-timestamp-bounded [OF run, where n=r]
have ∀ q . timestamp (rho r q) ≤ Suc (phase r) by auto
hence ?qs ⊆ procsBeyondTS (Suc (phase r)) (rho r)
by (auto simp add : procsBeyondTS-def)

hence card ?qs ≤ card (procsBeyondTS (Suc (phase r)) (rho r))
by (intro card-mono, auto)

ultimately show ?thesis by simp
qed

No two different processes have their commit flag set at any state.

lemma committedProcsEqual :
assumes run: CHORun rho HOs coords
and cmt : commt (rho r p) and cmt ′: commt (rho r p ′)
shows p = p ′

proof −
from run cmt have card {q . coords r q = p} > N div 2 by (blast elim: commitE)
moreover
from run cmt ′ have card {q . coords r q = p ′} > N div 2 by (blast elim: commitE)
ultimately
obtain q where coords r q = p and p ′ = coords r q by (auto elim: majoritiesE ′)
thus ?thesis by simp

qed

No two different processes have their ready flag set at any state.

lemma readyProcsEqual :

22

assumes run: CHORun rho HOs coords
and rdy : ready (rho r p) and rdy ′: ready (rho r p ′)
shows p = p ′

proof −
let ?C p = {q . coords r q = p ∧ timestamp (rho r q) = Suc (phase r)}
from run rdy have card (?C p) > N div 2 by (blast elim: readyE)
moreover
from run rdy ′ have card (?C p ′) > N div 2 by (blast elim: readyE)
ultimately
obtain q where coords r q = p and p ′ = coords r q by (auto elim: majoritiesE ′)
thus ?thesis by simp

qed

The following lemma asserts that whenever a process p commits at a state where a majority
of processes have a timestamp beyond ts, then p votes for a value held by some process whose
timestamp is beyond ts.

lemma commitThenVoteRecent :
assumes run: CHORun rho HOs coords
and maj : card (procsBeyondTS ts (rho r)) > N div 2 and cmt : commt (rho r p)
shows ∃ q ∈ procsBeyondTS ts (rho r). vote (rho r p) = Some (x (rho r q))
(is ?Q r)

proof −
let ?bynd n = procsBeyondTS ts (rho n)
have card (?bynd r) > N div 2 ∧ commt (rho r p) −→ ?Q r

(is ?P p r)
proof (rule LV-induct [OF run])

next0 establishes the property

fix n
assume stp: step n = 0

and nxt : ∀ q . next0 n q (rho n q) (rcvdMsgs q (HOs n q) (coords n) (rho n) (send0 n)) (coords n
q) (rho (Suc n) q) (is ∀ q . ?nxt q)

from nxt have nxp: ?nxt p ..
show ?P p (Suc n)
proof (clarify)
assume mj : card (?bynd (Suc n)) > N div 2 and ct : commt (rho (Suc n) p)
show ?Q (Suc n)
proof −
let ?msgs = rcvdMsgs p (HOs n p) (coords n) (rho n) (send0 n)
from stp run have ¬ commt (rho n p) by (auto elim: commitE)
with nxp ct obtain q v where

v : ?msgs q = Some (ValStamp v (highestStampRcvd ?msgs)) and
vote: vote (rho (Suc n) p) = Some v and
rcvd : card (valStampsRcvd ?msgs) > N div 2
by (auto simp add : next0-def)

from mj rcvd obtain q ′ where
q1 ′: q ′ ∈ ?bynd (Suc n) and q2 ′: q ′ ∈ valStampsRcvd ?msgs
by (rule majoritiesE ′)

have timestamp (rho n q ′) ≤ timestamp (rho n q)
proof −
from q2 ′ obtain v ′ ts ′ where ts ′: ?msgs q ′ = Some (ValStamp v ′ ts ′)
by (auto simp add : valStampsRcvd-def)

hence ts ′ ≤ highestStampRcvd ?msgs
by (rule highestStampRcvd-max)

moreover

23

from ts ′ have timestamp (rho n q ′) = ts ′

by (auto simp add : rcvdMsgs-def send0-def)
moreover
from v have timestamp (rho n q) = highestStampRcvd ?msgs
by (auto simp add : rcvdMsgs-def send0-def)

ultimately
show ?thesis
by simp

qed
moreover
from run stp have timestamp (rho (Suc n) q ′) = timestamp (rho n q ′)
by (simp add : notStep1EqualTimestamp)

moreover
from run stp have timestamp (rho (Suc n) q) = timestamp (rho n q)
by (simp add : notStep1EqualTimestamp)

moreover
note q1 ′

ultimately
have q ∈ ?bynd (Suc n)
by (simp add : procsBeyondTS-def)

moreover
from v vote have vote (rho (Suc n) p) = Some (x (rho n q))
by (auto simp add : rcvdMsgs-def send0-def split : split-if-asm)

moreover
from run stp have x (rho (Suc n) q) = x (rho n q)
by (simp add : notStep1EqualX)

ultimately
show ?thesis by force

qed
qed

next

We now prove that next1 preserves the property. Observe that next1 may establish a majority of
processes with current timestamps, so we cannot just refer to the induction hypothesis. However, if
that happens, there is at least one process with a fresh timestamp that copies the vote of the (only)
committed coordinator, thus establishing the property.

fix n
assume stp: step n = 1

and nxt : ∀ q . next1 n q (rho n q) (rcvdMsgs q (HOs n q) (coords n) (rho n) (send1 n)) (coords n
q) (rho (Suc n) q) (is ∀ q . ?nxt q)

and ih: ?P p n
from nxt have nxp: ?nxt p ..
show ?P p (Suc n)
proof (clarify)
assume mj ′: card (?bynd (Suc n)) > N div 2 and ct ′: commt (rho (Suc n) p)
from run stp ct ′ have ct : commt (rho n p)
by (simp add : notStep03EqualCommit)

from run stp have vote ′: vote (rho (Suc n) p) = vote (rho n p)
by (simp add : notStep0EqualVote)

show ?Q (Suc n)
proof (cases ∃ q ∈ ?bynd (Suc n). rho (Suc n) q 6= rho n q)
case True
— in this case the property holds because q updates its x field to the vote
then obtain q where q1 : q ∈ ?bynd (Suc n) and q2 : rho (Suc n) q 6= rho n q ..
from nxt have ?nxt q ..

24

with q2
have x ′: x (rho (Suc n) q) = the (vote (rho n (coords n q)))
and coord : commt (rho n (coords n q))
by (auto simp add : next1-def send1-def rcvdMsgs-def isVote-def)

from run ct have vote: vote (rho n p) 6= None by (rule commitE)
from run coord ct have coords n q = p by (rule committedProcsEqual)
with q1 x ′ vote vote ′ show ?thesis by auto

next
case False
— if no relevant process moves then procsBeyondTS doesn’t change and we invoke the induction

hypothesis
hence bynd : ?bynd (Suc n) = ?bynd n
proof (auto simp add : procsBeyondTS-def)
fix r
assume ts: ts ≤ timestamp (rho n r)
from run have timestamp (rho n r) ≤ timestamp (rho (Suc n) r)
by (simp add : LV-timestamp-monotonic)

with ts show ts ≤ timestamp (rho (Suc n) r) by simp
qed
with mj ′ have mj : card (?bynd n) > N div 2 by simp
with ct ih obtain q where

q ∈ ?bynd n and vote (rho n p) = Some (x (rho n q))
by blast

with vote ′ bynd False show ?thesis by auto
qed

qed

next

step2 preserves the property, via the induction hypothesis.

fix n
assume stp: step n = 2

and nxt : ∀ q . next2 n q (rho n q) (rcvdMsgs q (HOs n q) (coords n) (rho n) (send2 n)) (coords n
q) (rho (Suc n) q) (is ∀ q . ?nxt q)

and ih: ?P p n
from nxt have nxp: ?nxt p ..
show ?P p (Suc n)
proof (clarify)
assume mj ′: card (?bynd (Suc n)) > N div 2 and ct ′: commt (rho (Suc n) p)
from run stp ct ′ have ct : commt (rho n p)
by (simp add : notStep03EqualCommit)

from run stp have vote ′: vote (rho (Suc n) p) = vote (rho n p)
by (simp add : notStep0EqualVote)

from run stp have ∀ q . timestamp (rho (Suc n) q) = timestamp (rho n q)
by (simp add : notStep1EqualTimestamp)

hence bynd ′: ?bynd (Suc n) = ?bynd n
by (auto simp add : procsBeyondTS-def)

from run stp have ∀ q . x (rho (Suc n) q) = x (rho n q)
by (simp add : notStep1EqualX)

with bynd ′ vote ′ ct mj ′ ih show ?Q (Suc n)
by auto

qed

the initial state and the step3 transition are trivial because the commt flag cannot be set.

qed (auto elim: commitE [OF run])
with maj cmt show ?thesis by simp

25

qed

The following lemma gives the crucial argument for agreement: after some process p has decided,
all processes whose timestamp is beyond the timestamp at the point of decision hold the decision
value in their x field.

lemma XOfTimestampBeyondDecision:
assumes run: CHORun rho HOs coords
and dec: decide (rho (Suc r) p) 6= decide (rho r p)
shows ∀ q ∈ procsBeyondTS (Suc (phase r)) (rho (r+k)).

x (rho (r+k) q) = the (decide (rho (Suc r) p))
(is ∀ q ∈ ?bynd k . - = ?v is ?P p k)

proof (induct k)
— base step
show ?P p 0
proof (clarify)
fix q
assume q : q ∈ ?bynd 0

use preceding lemmas about the decision value and the x field of processes with fresh timestamps

from run dec
have stp: step r = 3
and v : decide (rho (Suc r) p) = Some (the (vote (rho r (coords r p))))
and cmt : commt (rho r (coords r p))
by (auto elim: decisionE)

from stp LV-timestamp-bounded [OF run, where n=r]
have timestamp (rho r q) ≤ Suc (phase r) by simp
with q have timestamp (rho r q) = Suc (phase r)
by (simp add : procsBeyondTS-def)

with run
have x : x (rho r q) = the (vote (rho r (coords r q)))
and cmt ′: commt (rho r (coords r q))
by (auto elim: currentTimestampE)

from run cmt cmt ′ have coords r p = coords r q by (rule committedProcsEqual)
with x v show x (rho (r+0) q) = ?v by simp

qed
next
— induction step
fix k
assume ih: ?P p k
show ?P p (Suc k)
proof (clarify)
fix q
assume q : q ∈ ?bynd (Suc k)
— distinguish the kind of transition—only step1 is interesting
have x (rho (Suc (r + k)) q) = ?v (is ?X q (r+k))
proof (rule LV-Suc ′[OF run, where P=?X])
fix HO
assume stp: step (r + k) = 1
and nxt : next1 (r+k) q (rho (r+k) q)

(rcvdMsgs q (HOs (r+k) q) (coords (r+k)) (rho (r+k)) (send1 (r+k)))
(coords (r+k) q) (rho (Suc (r+k)) q)

show ?thesis
proof (cases rho (Suc (r+k)) q = rho (r+k) q)
case True
with q ih show ?thesis by (auto simp add : procsBeyondTS-def)

26

next
case False
from run dec have card (?bynd 0) > N div 2
by (simp add : decisionThenMajorityBeyondTS)

moreover
have ?bynd 0 ⊆ ?bynd k
by (auto elim: procsBeyondTS-monotonic[OF run])

hence card (?bynd 0) ≤ card (?bynd k)
by (auto intro: card-mono)

ultimately
have maj : card (?bynd k) > N div 2 by simp
let ?crd = coords (r+k) q
from False nxt have

cmt : commt (rho (r+k) ?crd) and
x : x (rho (Suc (r+k)) q) = the (vote (rho (r+k) ?crd))
by (auto simp add : next1-def rcvdMsgs-def send1-def isVote-def)

from run maj cmt stp obtain q ′

where q1 ′: q ′ ∈ ?bynd k and q2 ′: vote (rho (r+k) ?crd) = Some (x (rho (r+k) q ′))
by (blast dest : commitThenVoteRecent)

with x ih show ?thesis by auto
qed

next
— all other steps hold by induction hypothesis
assume step (r+k) = 0
with run have x : x (rho (Suc (r+k)) q) = x (rho (r+k) q)
and ts: timestamp (rho (Suc (r+k)) q) = timestamp (rho (r+k) q)
by (auto simp add : notStep1EqualX notStep1EqualTimestamp)

from ts q have q ∈ ?bynd k
by (auto simp add : procsBeyondTS-def)

with x ih show ?thesis by auto
next
assume step (r+k) = 2
with run have x : x (rho (Suc (r+k)) q) = x (rho (r+k) q)
and ts: timestamp (rho (Suc (r+k)) q) = timestamp (rho (r+k) q)
by (auto simp add : notStep1EqualX notStep1EqualTimestamp)

from ts q have q ∈ ?bynd k
by (auto simp add : procsBeyondTS-def)

with x ih show ?thesis by auto
next
assume step (r+k) = 3
with run have x : x (rho (Suc (r+k)) q) = x (rho (r+k) q)
and ts: timestamp (rho (Suc (r+k)) q) = timestamp (rho (r+k) q)
by (auto simp add : notStep1EqualX notStep1EqualTimestamp)

from ts q have q ∈ ?bynd k
by (auto simp add : procsBeyondTS-def)

with x ih show ?thesis by auto
qed
thus x (rho (r + Suc k) q) = ?v by simp

qed
qed

We are now in position to prove agreement: if some process decides at step r and another (or
possibly the same) process decides at step r+k then they decide the same value.

lemma laterProcessDecidesSameValue:
assumes run: CHORun rho HOs coords

27

and p: decide (rho (Suc r) p) 6= decide (rho r p)
and q : decide (rho (Suc (r+k)) q) 6= decide (rho (r+k) q)
shows decide (rho (Suc (r+k)) q) = decide (rho (Suc r) p)

proof −
let ?bynd k = procsBeyondTS (Suc (phase r)) (rho (r+k))
let ?qcrd = coords (r+k) q
from run p have notNone: decide (rho (Suc r) p) 6= None
by (auto elim: decisionE)

— process q decides on the vote of its coordinator
from run q have dec: decide (rho (Suc (r+k)) q) = Some (the (vote (rho (r+k) ?qcrd)))
and cmt : commt (rho (r+k) ?qcrd)
by (auto elim: decisionE)

— that vote is the x field of some process q ′ with a recent timestamp
from run p have card (?bynd 0) > N div 2
by (simp add : decisionThenMajorityBeyondTS)

moreover
from run have ?bynd 0 ⊆ ?bynd k by (auto elim: procsBeyondTS-monotonic)
hence card (?bynd 0) ≤ card (?bynd k) by (auto intro: card-mono)
ultimately
have maj : card (?bynd k) > N div 2 by simp
from run maj cmt obtain q ′ where

q ′1 : q ′ ∈ ?bynd k and q ′2 : vote (rho (r+k) ?qcrd) = Some (x (rho (r+k) q ′))
by (auto dest : commitThenVoteRecent)

— the x field of process q ′ is the value p decided on
from run p q ′1 have x (rho (r+k) q ′) = the (decide (rho (Suc r) p))
by (auto dest : XOfTimestampBeyondDecision)

— which proves the assertion
with dec q ′2 notNone show ?thesis by auto

qed

A process that holds some decision v has decided v sometime in the past.

lemma decisionNonNullThenDecided :
assumes run: CHORun rho HOs coords and dec: decide (rho n p) = Some v
shows ∃m<n. decide (rho (Suc m) p) 6= decide (rho m p)

∧ decide (rho (Suc m) p) = Some v
proof −
let ?dec k = decide (rho k p)
have (∀m<n. ?dec (Suc m) 6= ?dec m −→ ?dec (Suc m) 6= Some v) −→ ?dec n 6= Some v

(is ?P n is ?A n −→ -)
proof (induct n)
from run show ?P 0 by (auto simp add : CHORun-def initConfig-def initState-def)

next
fix n
assume ih: ?P n
show ?P (Suc n)
proof (clarify)
assume p: ?A (Suc n) and v : ?dec (Suc n) = Some v
from p have ?A n by simp
with ih have ?dec n 6= Some v by simp
moreover
from p have ?dec (Suc n) 6= ?dec n −→ ?dec (Suc n) 6= Some v by simp
ultimately
have ?dec (Suc n) 6= Some v by auto
with v show False by simp

qed

28

qed
with dec show ?thesis by auto

qed

Irrevocability and Agreement follow as easy consequences.

theorem irrevocability :
assumes run: CHORun rho HOs coords
and p: decide (rho m p) = Some v
shows decide (rho (m+k) p) = Some v

proof −
from run p obtain n where

n1 : n < m and
n2 : decide (rho (Suc n) p) 6= decide (rho n p) and
n3 : decide (rho (Suc n) p) = Some v
by (auto dest : decisionNonNullThenDecided)

have ∀ i . decide (rho (Suc (n+i)) p) = Some v (is ∀ i . ?dec i)
proof
fix i
show ?dec i
proof (induct i)
from n3 show ?dec 0 by simp

next
fix j
assume ih: ?dec j
show ?dec (Suc j)
proof (rule ccontr)
assume ctr : ¬ (?dec (Suc j))
with ih have decide (rho (Suc (n + Suc j)) p) 6= decide (rho (n + Suc j) p)
by simp

with run n2 have decide (rho (Suc (n + Suc j)) p) = decide (rho (Suc n) p)
by (rule laterProcessDecidesSameValue)

with ctr n3 show False by simp
qed

qed
qed
moreover
from n1 obtain j where m+k = Suc(n+j)
by (auto dest : less-imp-Suc-add)

ultimately
show ?thesis by auto

qed

theorem agreement :
assumes run: CHORun rho HOs coords
and p: decide (rho m p) = Some v and q : decide (rho n q) = Some w
shows v = w

proof −
from run p obtain k where

k1 : decide (rho (Suc k) p) 6= decide (rho k p) and k2 : decide (rho (Suc k) p) = Some v
by (auto dest : decisionNonNullThenDecided)

from run q obtain l where
l1 : decide (rho (Suc l) q) 6= decide (rho l q) and l2 : decide (rho (Suc l) q) = Some w
by (auto dest : decisionNonNullThenDecided)

show ?thesis

29

proof (cases k ≤ l)
case True
then obtain m where m: l = k+m by (auto simp add : le-iff-add)
from run k1 l1 m have decide (rho (Suc l) q) = decide (rho (Suc k) p)
by (auto elim: laterProcessDecidesSameValue)

with k2 l2 show ?thesis by simp
next
case False
hence l ≤ k by simp
then obtain m where m: k = l+m by (auto simp add : le-iff-add)
from run l1 k1 m have decide (rho (Suc k) p) = decide (rho (Suc l) q)
by (auto elim: laterProcessDecidesSameValue)

with l2 k2 show ?thesis by simp
qed

qed

2.7 Proof of liveness

We now show that the communication predicate ensures termination of the algorithm: there
exists some round r at which all processes have decided. In fact, the assumption ensures the
existence of some phase during which there is a single coordinator that receives a majority of
messages. Moreover, all processes receive the messages sent by the coordinator and therefore
successfully execute the protocol, deciding at step 3 of that phase.

theorem decision:
assumes run: CHORun rho HOs coords
shows ∃ r . ∀ p. decide (rho r p) 6= None

proof −

The communication predicate implies the existence of a “successful” phase ph, coordinated by some
process c for all processes.

from run obtain ph c
where c: ∀ p. coords (4∗ph) p = c
and maj0 : card (HOs (4∗ph) c) > N div 2
and maj2 : card (HOs (Suc (Suc (4∗ph))) c) > N div 2
and rcv1 : ∀ p. c ∈ (HOs (Suc (4∗ph)) p)
and rcv3 : ∀ p. c ∈ (HOs (Suc (Suc (Suc (4∗ph)))) p)
by (auto simp add : CHORun-def LV-commLive-def)

let ?r = 4∗ph
let ?r1 = Suc ?r
let ?r2 = Suc (Suc ?r)
let ?r3 = Suc (Suc (Suc ?r))
let ?r4 = Suc (Suc (Suc (Suc ?r)))

Process c is the coordinator of all steps of phase ph.

from run c have c1 : ∀ p. coords ?r1 p = c
by (auto simp add : step-def notStep3EqualCoord)

with run have c2 : ∀ p. coords ?r2 p = c
by (auto simp add : step-def mod-Suc notStep3EqualCoord)

with run have c3 : ∀ p. coords ?r3 p = c
by (auto simp add : step-def mod-Suc notStep3EqualCoord)

The coordinator receives ValStamp messages from a majority of processes at step 0 of phase ph and
therefore commits during the transition at the end of step 0.

have 1 : commt (rho ?r1 c) (is ?P c (4∗ph))

30

proof (rule LV-Suc ′[OF run, where P=?P], auto simp add : step-def)
assume next0 ?r c (rho ?r c) (rcvdMsgs c (HOs ?r c) (coords ?r) (rho ?r) (send0 ?r))

(coords ?r c) (rho (Suc ?r) c)
with c maj0 show commt (rho (Suc ?r) c)
by (auto simp add : next0-def send0-def valStampsRcvd-def rcvdMsgs-def)

qed

All processes receive the vote of c at step 1 and therefore update their time stamps during the transition
at the end of step 1.

have 2 : ∀ p. timestamp (rho ?r2 p) = Suc ph
proof
fix p
let ?msgs = rcvdMsgs p (HOs ?r1 p) (coords ?r1) (rho ?r1) (send1 ?r1)
let ?crd = coords ?r1 p
from run 1 c1 rcv1 have cnd : ?msgs ?crd 6= None ∧ isVote (the (?msgs ?crd))
by (auto elim: commitE simp add : rcvdMsgs-def send1-def isVote-def)

show timestamp (rho ?r2 p) = Suc ph (is ?P p (Suc (4∗ph)))
proof (rule LV-Suc ′[OF run, where P=?P], auto simp add : step-def mod-Suc)
assume next1 ?r1 p (rho ?r1 p) ?msgs ?crd (rho ?r2 p)
with cnd show ?thesis
by (auto simp add : next1-def phase-def)

qed
qed

The coordinator receives acknowledgements from a majority of processes at step 2 and sets its ready flag
during the transition at the end of step 2.

have 3 : ready (rho ?r3 c) (is ?P c (Suc (Suc (4∗ph))))
proof (rule LV-Suc ′[OF run, where P=?P], auto simp add : step-def mod-Suc)
assume next2 ?r2 c (rho ?r2 c) (rcvdMsgs c (HOs ?r2 c) (coords ?r2) (rho ?r2) (send2 ?r2))

(coords ?r2 c) (rho ?r3 c)
with 2 c2 maj2 show ?thesis
by (auto simp add : next2-def send2-def rcvdMsgs-def acksRcvd-def isAck-def phase-def)

qed

All processes receive the vote of the coordinator during step 3 and decide during the transition at the
end of that step.

have 4 : ∀ p. decide (rho ?r4 p) 6= None
proof
fix p
let ?msgs = rcvdMsgs p (HOs ?r3 p) (coords ?r3) (rho ?r3) (send3 ?r3)
let ?crd = coords ?r3 p
from run 3 c3 rcv3 have cnd : ?msgs ?crd 6= None ∧ isVote (the (?msgs ?crd))
by (auto elim: readyE simp add : rcvdMsgs-def send3-def isVote-def)

show decide (rho ?r4 p) 6= None (is ?P p (Suc (Suc (Suc (4∗ph)))))
proof (rule LV-Suc ′[OF run, where P=?P], auto simp add : step-def mod-Suc)
assume next3 ?r3 p (rho ?r3 p) ?msgs ?crd (rho ?r4 p)
with cnd show ∃ v . decide (rho ?r4 p) = Some v
by (auto simp add : next3-def)

qed
qed

This immediately proves the assertion.

from 4 show ?thesis ..
qed

31

end

References

[1] B. Charron-Bost and A. Schiper: The Heard-Of Model: Computing in Distributed Systems
with Benign Failures. LSR-Report 2007-001, EPFL, Lausanne, 2007.

[2] L. Lamport: The Part-Time Parliament. ACM Trans. Comput. Syst. 16(2):133–169, 1998.

32

	Heard-Of Algorithms
	Verification of the LastVoting Consensus Algorithm
	Formal Model of LastVoting
	Proof of LastVoting: Preliminary Lemmas
	Boundedness and monotonicity of timestamps
	Obvious facts about the algorithm
	Proof of Integrity
	Proof of Agreement and Irrevocability
	Proof of liveness

