Verification of Heard-Of Algorithms in Isabelle

Stephan Merz

July 30, 2009

Contents

1 Heard-Of Algorithms 1
2 Verification of the LastVoting Consensus Algorithm 5
2.1 Formal Model of LastVoting 5
2.2 Proof of LastVoting: Preliminary Lemmas 8
2.3 Boundedness and monotonicity of timestamps 12
2.4 Obvious facts about the algorithm 13
2.5 Proof of Integrity 19
2.6 Proof of Agreement and Irrevocability 22
2.7 Proof of liveness 30
theory CHOimports Mainbegin

1 Heard-Of Algorithms

We propose a generic representation of (coordinated) HO algorithms [1] in Isabelle/HOL.
An HO algorithm executes a sequence of rounds. A concrete algorithm is described by the following parameters:

- a type 'proc of processes whose extension is assumed to be finite,
- a type 'pst of local process states,
- a type 'msg of messages sent in the course of the algorithm,
- a predicate initState such that initState p st is true precisely of the initial states st of process p,
- a function sendMsg where sendMsg r p q st crd yields the message that process p sends to process q at round r, given its local state st and coordinator $c r d$, and
- a predicate nextState where nextState r p st msgs crd st' characterizes the successor states $s t^{\prime}$ of state $s t$ for process p at round r, where $c r d$ denotes the process that p believes to be the coordinator of round r and the function msgs :: 'proc $\Rightarrow{ }^{\prime} m s g$ option represents the vector of messages that p received at round r,
- a communication predicate that constrains the heard-of and coordinator assignments (see below) that may occur during a run. For convenience, we split this predicate into a safety part that should hold at every round and a liveness part that should hold of the sequence of HO assignments.

An uncoordinated algorithm simply ignores the parameter crd of functions nextState and sendMsg. Similarly, the communication predicate does not refer to the coordinator assignment. The HO model assumes communication-closed rounds, that is, processes receive only messages sent for the round they are currently in. By a general result on the HO model, it can be assumed that each round is executed atomically. A snapshot of the system can therefore be represented by the local states of each process at the beginning of a round. The messages sent can be computed from the local state, so they do not have to be recorded explicitly.

We represent a system configuration as an array of process states. A system run is just an infinite sequence of configurations. At this generic level, process states are left parametric (represented by a type variable); they will be defined by particular algorithms. (For some reason type and record definitions cannot go inside locale definitions so we introduce them beforehand.)

```
types
    ('proc,'pst) run = nat }=>\mathrm{ 'proc }=>\mathrm{ 'pst
```

A heard-of assignment associates a set of processes with each process. The idea is that HO p designates the set of processes from which process p receives a message at the current round. A coordinator assignment associates a process (the coordinator) to each process.

```
types
    'proc \(H O=\) 'proc \(\Rightarrow\) 'proc set
types
    'proc coord \(=\) 'proc \(\Rightarrow\) 'proc
locale CHOAlgorithm \(=\)
    fixes
        initState :: 'proc \(\Rightarrow\) 'pst \(\Rightarrow\) bool
    and
        sendMsg :: nat \(\Rightarrow\) 'proc \(\Rightarrow\) 'proc \(\Rightarrow\) 'pst \(\Rightarrow\) 'proc \(\Rightarrow\) 'msg
    and
        nextState \(::\) nat \(\Rightarrow\) 'proc \(\Rightarrow\) 'pst \(\Rightarrow\left({ }^{\prime}\right.\) proc \(\Rightarrow\) 'msg option \() \Rightarrow\) 'proc \(\Rightarrow\) 'pst \(\Rightarrow\) bool
    and
        commSafe :: nat \(\Rightarrow\) 'proc \(\mathrm{HO} \Rightarrow{ }^{\prime}\) 'proc coord \(\Rightarrow\) bool
    and
        commLive \(:: \quad\left(\right.\) nat \(\Rightarrow{ }^{\prime}\) 'proc \(\left.H O\right) \Rightarrow(\) nat \(\Rightarrow\) 'proc coord \() \Rightarrow\) bool
    assumes
        finiteProc: finite (UNIV::'proc set)
begin
```

By assumption finiteProc, any set of processes is finite.

```
lemma finiteProcset [simp,intro]: finite (P::'proc set)
using finiteProc by (blast intro:finite-subset)
```

Similarly, the range of any partial function from Proc is finite. (The Isabelle library contains a similar lemma for the range of a total function, a generalization of the following lemma could go to the standard library.)

```
lemma finite-ran: finite (ran (f :: 'proc \rightharpoonup 'a))
```

```
proof -
    let \(? g=\lambda y\). case \(y\) of None \(=>\) arbitrary \(\mid\) Some \(x=>x\)
    have \(\operatorname{ran} f \subseteq ? g\) ' (range \(f)\)
    proof
        fix \(y\)
        assume \(y \in \operatorname{ran} f\)
        then obtain \(x\) where \(f x=\) Some \(y\) by (auto simp add: ran-def)
        hence \(y=? g(f x)\) by simp
        thus \(y \in ? g\) ' (range \(f\) ) by blast
    qed
    moreover
    have finite (?g'range f) by auto
    ultimately
    show ?thesis by (rule finite-subset)
qed
```

Any two sets S and T of processes such that the sum of their cardinalities exceeds the number of processes have a non-empty intersection.

```
lemma majorities-intersect:
    assumes crd: card (UNIV::'proc set) < card (S::'proc set) + card ( \(T::\) 'proc set)
    shows \(S \cap T \neq\{ \}\)
proof (clarify)
    assume contra: \(S \cap T=\{ \}\)
    with crd have card (UNIV::'proc set) \(<\operatorname{card}(S \cup T)\)
        by (auto simp add: card-Un-Int)
    moreover have card \((S \cup T) \leq\) card (UNIV ::'proc set)
        by (simp add: card-mono)
    ultimately show False
        by \(\operatorname{simp}\)
qed
lemma majoritiesE:
    assumes crd: card (UNIV::'proc set) < card ( \(S\) ::'proc set) + card ( \(T::\) 'proc set)
    obtains \(p\) where \(p \in S\) and \(p \in T\)
using crd majorities-intersect by blast
```

Frequent special case

```
lemma majorities \(E^{\prime}:\)
    assumes \(S\) : card ( \(S::\) 'proc set \()>(\) card (UNIV ::'proc set)) div 2
    and \(T\) : card \(\left(T::^{\prime}\right.\) proc set \()>(\) card (UNIV::'proc set)) div 2
    obtains \(p\) where \(p \in S\) and \(p \in T\)
proof (rule majoritiesE)
    from \(S T\) show card (UNIV::'proc set) \(<\) card \(S+\) card \(T\) by auto
qed
```

Because messages are not corrupted in the HO model and processes only react to messages sent at the current round, we need not explicitly represent the network state in the runs and use the following utility function to compute the messages that a process receives.
The function rcvMsgs computes the messages that process p receives at round r, given a HeardOf set, the collections of coordinators and process states, and a message send function. (This last parameter is useful in applications because rcvdMsgs can be used with sub-functions of the overall message sending function used by the algorithm.)

```
definition
    rcvdMsgs where
```

```
rcvdMsgs ( \(p::^{\prime}\) proc) (HO::'proc set) (coord::'proc coord) (cfg::'proc \(\Rightarrow\) 'pst)
    (send::'proc \(\Rightarrow\) 'proc \(\Rightarrow\) 'pst \(\Rightarrow\) 'proc \(\Rightarrow\) 'msg)
\(\equiv \lambda q\). if \(q \in H O\) then Some (send \(q p(c f g q)(\operatorname{coord} q))\) else None
```

An initial configuration is one where all processes are in an initial state.

```
definition
initConfig where
initConfig cfg \equiv}\forallp\mathrm{ . initState p (cfg p)
```

The following definition characterizes successor configurations $c f g^{\prime}$ of a source configuration $c f g$ at round r, given assignments $H O$ of heard-of sets and coord of coordinators.

```
definition
nextConfig where
nextConfig r cfg (HO :: 'proc HO) (coord :: 'proc coord) cfg' \equiv
\forall . nextState r p (cfg p) (rcvdMsgs p (HO p) coord cfg (sendMsg r)) (coord p) (cfg' p)
```

Given heard-of and coordinator collections, i.e. a heard-of and coordinator assignment for each round, a run ρ of the algorithm is a sequence of configurations starting with an initial configuration and respecting the successor function nextConfig.

```
definition
CHORun where
CHORun rho HOs coords \(\equiv\)
    (initConfig (rho 0))
\(\wedge(\forall r\). commSafe \(r\) (HOs \(r)(\) coords \(r)\)
    \(\wedge\) nextConfig \(r(\) rho \(r)(\) HOs \(r)(\) coords \(r)(r h o(S u c r)))\)
\(\wedge\) commLive HOs coords
```

The following derived proof rules are immediate consequences of the definition of CHORun; they simplify automatic reasoning.

```
lemma CHORun-0:
    assumes CHORun rho HOs coords and }\bigwedgecfg. initConfig cfg \LongrightarrowPcf
    shows P (rho 0)
using prems unfolding CHORun-def by blast
lemma CHORun-Suc:
    assumes CHORun rho HOs coords
    and }\bigwedger.\llbracket commSafe r (HOs r) (coords r)
                        nextConfig r (rho r) (HOs r) (coords r) (rho (Suc r)) \rrbracket
            Pr
    shows P n
using prems unfolding CHORun-def by blast
lemma CHORun-induct:
    assumes run: CHORun rho HOs coords
    and init: initConfig (rho 0) \LongrightarrowP0
    and step: \bigwedger. \llbracketP r; commSafe r (HOs r) (coords r);
            nextConfig r (rho r) (HOs r) (coords r) (rho (Suc r))\rrbracket
    P(Suc r)
    shows P n
using run unfolding CHORun-def by (induct n, auto elim: init step)
end - locale CHOAlgorithm
end - theory CHO
```

begin

2 Verification of the LastVoting Consensus Algorithm

declare split-if-asm [split] — enable default perform case splitting on conditionals
The LastVoting algorithm can be considered as a version of Lamport's Paxos consensus algorithm [2] for the Heard-Of model. Following [1], we define the algorithm as an instance of the generic Heard-Of model.

2.1 Formal Model of LastVoting

We begin by introducing an anonymous type of processes of finite cardinality that will instantiate the type variable 'proc of the generic CHO model.
typedecl Proc

axioms

procFinite: finite (UNIV::Proc set)

```
abbreviation
    N\equiv\operatorname{card (UNIV ::Proc set) - number of processes}
```

The algorithm proceeds in phases of 4 rounds each (we call steps the individual rounds that constitute a phase). The following utility functions compute the phase and step of a round, given the round number.

```
definition phase where phase (r::nat) \equivr div 4
```

definition step where step $(r:: n a t) \equiv r \bmod 4$
lemma phase-zero [simp]: phase $0=0$
by (simp add: phase-def)
lemma step-zero [simp]: step $0=0$
by (simp add: step-def)
lemma phase-step: (phase $r * 4)+$ step $r=r$
by (auto simp add: phase-def step-def)

The following record models the local state of a process.

```
record 'val pstate =
    x :: 'val - current value held by process
    vote :: 'val option - value the process voted for, if any
    commt :: bool - did the process commit to the vote?
    ready :: bool - for coordinators: did the round finish successfully?
    timestamp :: nat - time stamp of current value
    decide :: 'val option - value the process has decided on, if any
```

Possible messages sent during the algorithm.

```
datatype 'val msg=
    ValStamp 'val nat
```

```
Vote 'val
Ack
| Null - dummy message in case nothing needs to be sent
```

Characteristic predicates on messages.
definition isValStamp where isValStamp $m \equiv \exists v$ ts. $m=$ ValStamp v ts
definition isVote where isVote $m \equiv \exists v . m=$ Vote v
definition isAck where isAck $m \equiv m=A c k$
Selector functions to retrieve components of messages. These functions have a meaningful result only when the message is of appropriate kind.

```
fun val where
    val (ValStamp v ts )}=
| val (Vote v)=v
```

fun stamp where

```
stamp (ValStamp v ts) = ts
```

The x field of the initial state is unconstrained, all other fields are initialized appropriately.

```
definition initState where
initState \(p\) st \(\equiv\)
    \((\) vote st \(=\) None \() \wedge \neg(\) commt st \() \wedge \neg(\) ready st \() \wedge(\) timestamp st \(=0) \wedge(\) decide st \(=\) None \()\)
```

We separately define the transition predicates and the send functions for each step and later combine them to define the overall next-state relation.

- processes from which values and timestamps were received
definition valStampsRcvd where

```
valStampsRcvd (msgs :: Proc - 'val msg) \equiv
    {q.\existsv ts.msgs q = Some (ValStamp v ts)}
```

definition highestStampRcvd where

```
highestStampRcvd msgs \equivMax {ts.\existsqv.(msgs::Proc 一 'val msg) q = Some (ValStamp v ts)}
```

In step 0 , each process sends its current x and timestamp values to its coordinator.
A process that considers itself to be a coordinator updates its vote and commt fields if it has received messages from a majority of processes.

```
definition send0 where
    send0 r p q st crd \(\equiv\)
        if \(q=\) crd then ValStamp ( \(x\) st) (timestamp st) else Null
definition next0 where
    next0 r p st msgs crd \(s t^{\prime} \equiv\)
        if \(p=\operatorname{crd} \wedge\) card \((\) valStampsRcvd msgs \()>N\) div 2
        then \((\exists p\) v. msgs \(p=\) Some (ValStamp \(v\) (highestStampRcvd msgs))
            \(\wedge s t^{\prime}=\) st ( vote \(:=\) Some \(v\), commt \(:=\) True ())
        else \(s t^{\prime}=s t\)
```

In step 1, coordinators that have committed send their vote to all processes.
Processes update their x and timestamp fields if they have received a vote from their coordinator.
definition send1 where
send1 r p q st crd \equiv
if $p=$ crd \wedge commt st then Vote (the (vote st)) else Null

```
definition next1 where
next1 r \(p\) st msgs crd \(s t^{\prime} \equiv\)
    if msgs crd \(\neq\) None \(\wedge\) isVote (the (msgs crd))
    then st \(t^{\prime}=\operatorname{st}(x:=\operatorname{val}(\) the \((\) msgs crd \())\), timestamp \(:=\operatorname{Suc}(p h a s e r) \mid)\)
    else \(s t^{\prime}=s t\)
```

In step 2, processes that have current timestamps send an acknowledgement to their coordinator. A coordinator sets its ready field to true if it receives a majority of acknowledgements.
definition send2 where

```
send2 r p q st crd \(\equiv\)
    if timestamp st \(=\operatorname{Suc}(\) phase \(r) \wedge q=\) crd then \((\) Ack::'val msg) else Null
```

definition acksRcvd where - processes from which an acknowledgement was received
acksRcvd (msgs :: Proc - 'val msg) \equiv
$\{q \cdot$ msgs $q \neq$ None \wedge isAck $($ the $($ msgs $q))\}$
definition next2 where

```
next2 r \(p\) st msgs crd \(s t^{\prime} \equiv\)
if \(p=\) crd \(\wedge\) card (acksRcvd msgs) \(>N\) div 2
then st' \(=\) st ( ready \(:=\) True |)
else \(s t^{\prime}=s t\)
```

In step 3, coordinators that are ready send their vote to all processes.
Processes that received a vote from their coordinator decide on that value. Coordinators reset their ready and commt fields to false.

```
definition send3 where
    send3 r p q st crd \(\equiv\)
    if \(p=\) crd \(\wedge\) ready st then Vote (the (vote st)) else Null
definition next3 where
next3 r p st msgs crd st' \(\equiv\)
    (if msgs crd \(\neq\) None \(\wedge\) isVote (the (msgs crd))
            then decide st' \(=\) Some \((\) val \((\) the \((m s g s ~ c r d)))\)
            else decide \(s t^{\prime}=\) decide \(s t\) )
\(\wedge\) (if \(p=c r d\)
    then \(\neg\left(\right.\) ready st \(\left.{ }^{\prime}\right) \wedge \neg\) (commt st \(\left.{ }^{\prime}\right)\)
    else \((\) ready st' \(=\) ready st \() \wedge\left(\right.\) commt st \(t^{\prime}=\) commt st \(\left.)\right)\)
    \(\wedge\left(x s t^{\prime}=x\right.\) st \() \wedge\left(\right.\) vote st \(t^{\prime}=\) vote st \() \wedge\left(\right.\) timestamp st \(t^{\prime}=\) timestamp st \()\)
```

The overall send function and next-state relation are simply obtained as the composition of the individual relations defined above.

```
definition sendMsg :: nat \(\Rightarrow\) Proc \(\Rightarrow\) Proc \(\Rightarrow\) 'val pstate \(\Rightarrow\) Proc \(\Rightarrow\) 'val msg where
sendMsg ( \(r::\) nat \() \equiv\)
    if step \(r=0\) then send0 \(r\)
    else if step \(r=1\) then send1 \(r\)
    else if step \(r=2\) then send2 \(r\)
    else send3 r
```


definition

nextState $::$ nat \Rightarrow Proc $\Rightarrow{ }^{\prime}$ val pstate $\Rightarrow\left(\right.$ Proc \rightharpoonup^{\prime} 'val msg $) \Rightarrow$ Proc $\Rightarrow{ }^{\prime}$ val pstate \Rightarrow bool where

```
nextState r }
if step r = 0 then next0 r
else if step r = 1 then next1 r
else if step r = 2 then next2 r
else next3 r
```

We now define the communication predicate for the LastVoting algorithm. The safety part is trivial: integrity and agreement are always ensured. However, coordinators are supposed to change only between phases. For the liveness part, Charron and Bost propose a predicate that requires the existence of infinitely many phases $p h$ such that:

- all processes agree on the same coordinator c,
- c hears from a strict majority of processes in steps 0 and 2 of phase $p h$, and
- every process hears from c in steps 1 and 3 (this is slightly weaker than the predicate that appears in [1], but obviously sufficient).

In fact, it is enough (as noted in the text of [1]) to require the existence of a single such phase.

definition

```
LV-commSafe where
LV-commSafe r (HO::Proc HO) (coord::Proc coord) \equiv True
```


definition

```
\(L V\)-commLive where
\(L V\)-commLive HOs coords \(\equiv\)
        \((\forall\) r. step \(r \neq 3 \longrightarrow\) coords \((\) Suc \(r)=\) coords \(r)\)
    \(\wedge(\exists\) (ph::nat). \(\exists(c::\) Proc \()\).
            \((\forall p\). coords \((4 * p h) p=c)\)
            \(\wedge \operatorname{card}(\operatorname{HOs}(4 * p h) c)>N \operatorname{div} 2 \wedge \operatorname{card}(\operatorname{HOs}(S u c(S u c(4 * p h))) c)>N \operatorname{div} 2\)
            \(\wedge(\forall p . c \in \operatorname{HOs}(S u c(4 * p h)) p \cap H O s(S u c(S u c(S u c(4 * p h)))) p))\)
```

We instantiate the generic definition of Heard-Of algorithms for the LastVoting algorithm.
interpretation CHOAlgorithm initState sendMsg nextState LV-commSafe LV-commLive
by (unfold-locales, rule procFinite)

2.2 Proof of LastVoting: Preliminary Lemmas

We begin by proving some rather obvious lemmas about the utility functions used in the model of LastVoting. We also specialize the induction rules of the generic CHO model for this particular algorithm.

```
lemma timeStampsRcvdFinite:
    finite {ts.\existsqv.(msgs::Proc }\mp@subsup{\nabla}{}{\prime}\mathrm{ 'val msg) q = Some (ValStamp v ts)}
    (is finite ?ts)
proof -
    have ?ts = stamp'the'msgs ' (valStampsRcvd msgs) by (force simp add: valStampsRcvd-def
image-def)
    thus ?thesis by auto
qed
lemma highestStampRcvd-exists:
    assumes nempty: valStampsRcvd msgs }\not={
    obtains pv where msgs p=Some (ValStamp v (highestStampRcvd msgs))
proof -
```

```
    let ?ts={ts.\existsqv.msgs q=Some(ValStamp v ts)}
    from nempty have ?ts }\not={}\mathrm{ by (auto simp add: valStampsRcvd-def)
    with timeStampsRcvdFinite
    have highestStampRcvd msgs \in?ts unfolding highestStampRcvd-def by (rule Max-in)
    then obtain pv where msgs p=Some (ValStamp v (highestStampRcvd msgs))
    by (auto simp add: highestStampRcvd-def)
    with that show thesis .
qed
lemma highestStampRcvd-max:
    assumes msgs p = Some (ValStamp v ts)
    shows ts \leqhighestStampRcvd msgs
using prems unfolding highestStampRcvd-def
by (blast intro: Max-ge timeStampsRcvdFinite)
```

Many proofs are by induction on runs of the LastVoting algorithm，and we derive a specific induction rule to support these proofs．

```
lemma LV-induct:
    assumes run: CHORun rho HOs coords
    and init: \(\forall p\). initState \(p(\) rho \(0 p) \Longrightarrow P 0\)
    and step \(0: \bigwedge r\).
            \(\llbracket\) step \(r=0 ; P r ;\) phase \((\) Suc \(r)=\) phase \(r ;\) step \((\) Suc \(r)=1\);
                    \(\forall p\). next0 r \(p\) (rho r \(p\) )
                            (rcvdMsgs \(p(H O s r p)(\) coords \(r)(\) rho \(r)(\) send0 \(r))\)
                            (coords r p)
                            (rho (Suc r) p) 】
        \(\Longrightarrow P(\) Suc \(r)\)
    and step \(1: \bigwedge r\).
        \(\llbracket\) step \(r=1 ;\) Pr;phase (Suc r)=phase r; step \((\) Suc \(r)=2\);
            \(\forall p\). next1 r \(p\) (rho r \(p\) )
                            (rcvdMsgs \(p(H O s r p)(\) coords \(r)(\) rho \(r)(\) send1 r) \()\)
                            (coords r p)
                            (rho (Suc r) p) 】
        \(\Longrightarrow P(\) Suc \(r)\)
    and step2: \(\bigwedge r\).
            【 step \(r=2 ;\) Pr;phase \((\) Suc \(r)=\) phase \(r\); step \((\) Suc \(r)=3\);
        \(\forall p\). next2 \(r p\) (rho r \(p\) )
                            (rcvdMsgs \(p\) (HOs r \(p\) ) (coords \(r\) ) (rho r) (send2 r))
                            (coords r p)
                            (rho (Suc r) p) 】
        \(\Longrightarrow P(\) Suc \(r)\)
    and step3: \(\bigwedge r\).
            【 step \(r=3 ;\) Pr;phase \((\) Suc \(r)=\) Suc \((\) phase \(r) ;\) step \((\) Suc \(r)=0\);
            \(\forall p\). next3 r \(p\) (rho r \(p\) )
                                    (rcvdMsgs \(p\) (HOs r \(p\) ) (coords r)(rho r) (send3 r))
                            (coords r p)
                            (rho (Suc r) p) 】
        \(\Longrightarrow P(S u c r)\)
    shows \(P n\)
proof (rule CHORun-induct[OF run])
    assume initConfig (rho 0)
    thus \(P 0\) by (auto simp add: initConfig-def init)
next
    fix \(r\)
    assume ih: Pr and nxt: nextConfig r (rho r) (HOs r) (coords r) (rho (Suc r))
```

```
    have step }r\in{0,1,2,3} by (auto simp add: step-def
    thus P (Suc r)
    proof auto
    assume stp: step r=0
    hence stp': step (Suc r)=1 by (auto simp add: step-def mod-Suc)
    from stp have ph: phase (Suc r) = phase r by (auto simp add: phase-def step-def)
    from ih nxt stp stp' ph show ?thesis
        by (intro step0, auto simp add: nextConfig-def nextState-def sendMsg-def)
    next
    assume stp: step r = Suc 0
    hence stp': step (Suc r)=2 by (auto simp add: step-def mod-Suc)
    from stp have ph:phase (Suc r) = phase r
        unfolding step-def phase-def by presburger
    from ih nxt stp stp' ph show ?thesis
        by (intro step1, auto simp add: nextConfig-def nextState-def sendMsg-def)
    next
    assume stp: step r=2
    hence stp': step (Suc r)=3 by (auto simp add: step-def mod-Suc)
    from stp have ph: phase (Suc r) = phase r
        unfolding step-def phase-def by presburger
    from ih nxt stp stp' ph show ?thesis
        by (intro step2, auto simp add: nextConfig-def nextState-def sendMsg-def)
    next
    assume stp: step r=3
    hence stp': step (Suc r) = 0 by (auto simp add: step-def mod-Suc)
    from stp have ph:phase (Suc r) = Suc (phase r)
        unfolding step-def phase-def by presburger
    from ih nxt stp stp' ph show ?thesis
        by (intro step3, auto simp add: nextConfig-def nextState-def sendMsg-def)
    qed
qed
```

The following rule similarly establishes a property of two successive configurations of a run by case distinction on the step that was executed．
lemma $L V$－Suc：
assumes run：CHORun rho HOs coords
and step $0: \llbracket$ step $r=0$ ；step $($ Suc $r)=1$ ；phase $($ Suc $r)=$ phase r ；
$\forall p$ ．next0 r p（rho r p ）
（rcvdMsgs p（HOs r p ）（coords r）（rho r）（send0 r））
（coords rp）（rho（Suc r）p）】
$\Longrightarrow P r$
and step $1: \llbracket$ step $r=1$ ；step $($ Suc $r)=2$ ；phase $($ Suc $r)=$ phase r ； $\forall p$ ．next1 r p（rho r p ）
（rcvdMsgs p（HOs r p ）（coords r）（rho r）（send1 r））
（coords r p）（rho（Suc r）p）】
$\Longrightarrow P r$
and step2：【 step $r=$ 2；step $($ Suc $r)=$ 3；phase $($ Suc $r)=$ phase r ；
$\forall p$ ．next2 $r p$（rho r p ）
（rcvdMsgs p（HOs r p ）（coords r）（rho r）（send2 r））
（coords r p）（rho（Suc r）p）】
$\Longrightarrow P r$
and step3：【 step $r=3$ ；step $($ Suc $r)=0 ;$ phase $($ Suc $r)=$ Suc $($ phase $r)$ ；
$\forall p$ ．next3 r p（rho r p ）
（rcvdMsgs p（HOs r p ）（coords r）（rho r）（send3 r））
（coords rp）（rho（Suc r）p）】

```
    Pr
    shows Pr
proof -
    from run have nxt: nextConfig r (rho r) (HOs r) (coords r) (rho (Suc r))
        by (auto simp add: CHORun-def)
    have step }r\in{0,1,2,3} by (auto simp add: step-def
    thus Pr
    proof (auto)
        assume stp: step r=0
        hence stp': step (Suc r) = 1 by (auto simp add: step-def mod-Suc)
        from stp have ph:phase (Suc r) = phase r by (auto simp add: phase-def step-def)
        from nxt stp stp' ph show ?thesis
            by (intro step0, auto simp add: nextConfig-def nextState-def sendMsg-def)
    next
        assume stp: step r = Suc 0
        hence stp': step (Suc r) = 2 by (auto simp add: step-def mod-Suc)
        from stp have ph:phase (Suc r)=phase r
            unfolding step-def phase-def by presburger
        from nxt stp stp' ph show ?thesis
            by (intro step1, auto simp add: nextConfig-def nextState-def sendMsg-def)
    next
        assume stp: step r = 2
        hence stp': step (Suc r)=3 by (auto simp add: step-def mod-Suc)
        from stp have ph: phase (Suc r) = phase r
            unfolding step-def phase-def by presburger
        from nxt stp stp' ph show ?thesis
            by (intro step2, auto simp add: nextConfig-def nextState-def sendMsg-def)
    next
        assume stp: step r = 3
        hence stp': step (Suc r) = 0 by (auto simp add: step-def mod-Suc)
        from stp have ph:phase (Suc r) = Suc (phase r)
            unfolding step-def phase-def by presburger
        from nxt stp stp' ph show ?thesis
        by (intro step3, auto simp add: nextConfig-def nextState-def sendMsg-def)
    qed
qed
```

Sometimes the assertion to prove talks about a specific process and follows from the next－ state relation of that particular process．We prove corresponding variants of the induction and case－distinction rules．When these variants are applicable，they help automating the Isabelle proof．

```
lemma \(L V\)-induct':
    assumes run: CHORun rho HOs coords
    and init: initState \(p(\) rho \(0 p) \Longrightarrow P p 0\)
    and step \(0: \bigwedge r\). \(\llbracket\) step \(r=0 ; P\) pr;phase \((\) Suc \(r)=\) phase \(r\); step \((\) Suc \(r)=1\);
        next0 r \(p\) (rhor \(p\) )
                        (rcvdMsgs \(p\) (HOs r \(p\) ) (coords r) (rho r) (send0 r))
                        (coords r p) (rho (Suc r) p) 】
    \(\Longrightarrow P p(\) Suc \(r)\)
and step \(1: \bigwedge r . \llbracket\) step \(r=1 ; P \operatorname{pr}\) phase \((\) Suc \(r)=\) phase \(r\); step \((\) Suc \(r)=2\);
    next1 r \(p\) (rho r \(p\) )
    (rcvdMsgs \(p\) (HOs r \(p\) ) (coords \(r\) ) (rho r) (send1 r))
    (coords r p) (rho (Suc r) p) 】
    \(\Longrightarrow P p(S u c r)\)
```

and step2: $\bigwedge r$. 【 step $r=2$; P pr;phase $($ Suc $r)=$ phase r; step $($ Suc $r)=3$;

```
        next2 r p (rho r p)
            (rcvdMsgs p (HOs r p) (coords r) (rho r) (send2 r))
            (coords r p) (rho (Suc r) p)\rrbracket
    # p(Sucr)
and step3: \r. \llbracket step r=3; P p r; phase (Suc r)=Suc (phase r); step (Suc r)=0;
        next3 r p (rho r p)
    (rcvdMsgs p (HOs r p) (coords r) (rho r) (send3 r))
    (coords r p) (rho (Suc r) p) \rrbracket
    \LongrightarrowPp(Sucr)
shows \(P\) p \(n\)
by（rule LV－induct［OF run］，auto intro：init step0 step 1 step2 step3）
lemma LV－Suc＇：
assumes run：CHORun rho HOs coords
and step \(0: \llbracket\) step \(r=0\) ；step \((\) Suc \(r)=1\) ；phase \((\) Suc \(r)=\) phase \(r\) ； next0 r \(p\)（rhor \(p\) ） （rcvdMsgs \(p\)（HOs r \(p\) ）（coords r）（rho r）（send0 r）） （coords r p）（rho（Suc r）p）】
\(\Longrightarrow P p r\)
and step 1：【 step \(r=1\) ；step \((\) Suc \(r)=2\) ；phase \((\) Suc \(r)=\) phase \(r\) ； next1 r \(p\)（rho r \(p\) ）
（rcvdMsgs \(p(H O s\) r \(p)(\) coords \(r)(\) rho \(r)(\) send1 \(r))\) （coords rp）（rho（Suc r）p）】
\(\Longrightarrow P p_{r}\)
and step2：【 step \(r=2\) ；step \((\) Suc \(r)=3\) ；phase \((\) Suc \(r)=\) phase \(r\) ； next2 r \(p\)（rho r \(p\) ）
（rcvdMsgs \(p\)（HOs r \(p\) ）（coords r）（rho r）（send2 r））
（coords rp）（rho（Suc r）p）】
\(\Longrightarrow P p r\)
and step 3：【 step \(r=3\) ；step \((\) Suc \(r)=0 ;\) phase \((\) Suc \(r)=\) Suc \((\) phase \(r)\) ；
next3 r \(p\)（rho r \(p\) ）
（rcvdMsgs \(p\)（HOs r \(p\) ）（coords \(r\) ）（rho r）（send3 r）） （coords rp）（rho（Suc r）p）】
\(\Longrightarrow P p r\)
```

shows P pr
by（rule LV－Suc［OF run］，auto intro：step0 step1 step2 step3）

2．3 Boundedness and monotonicity of timestamps

The timestamp of any process is bounded by the current phase．
lemma LV－timestamp－bounded：
assumes run：CHORun rho HOs coords
shows timestamp（rho n p）\leq（if step $n<2$ then phase n else Suc（phase n ））
（is ？P $p n$ ）
by（rule LV－induct＇［OF run，where $P=? P]$ ，
auto simp add：initState－def next0－def next1－def next2－def next3－def）
Moreover，timestamps can only grow over time．

```
lemma LV-timestamp-increasing:
    assumes run: CHORun rho HOs coords
    shows timestamp (rho n p)\leqtimestamp (rho (Suc n) p)
        (is ?P p n is ?ts \leq-)
proof (rule LV-Suc'[OF run, where P=?P])
```

The case of next1 is the only interesting one because the timestamp may change：here we use the
previously established fact that the timestamp is bounded by the phase number.

```
    fix HO
    assume stp: step \(n=1\)
        and nxt: next1 n \(p\) (rho \(n p\) )
                            (rcvdMsgs \(p\) (HOs \(n p\) ) (coords \(n\) ) (rho \(n\) ) (send1 n))
                            (coords \(n\) p) (rho (Suc n) p)
from stp have ?ts \(\leq\) phase \(n\)
    using \(L V\)-timestamp-bounded \([\) OF run, where \(n=n\), where \(p=p]\) by auto
    with nxt show ?thesis by (auto simp add: next1-def)
qed (auto simp add: next0-def next2-def next3-def)
lemma \(L V\)-timestamp-monotonic:
    assumes run: CHORun rho HOs coords and le: \(m \leq n\)
    shows timestamp (rho \(m p\) ) \(\leq\) timestamp (rho \(n p\) )
        (is ? \(t s ~ m \leq-\) )
proof -
    from le obtain \(k\) where \(k: n=m+k\) by (auto simp add: le-iff-add)
    have ?ts \(m \leq\) ?ts \((m+k)(\) is ? \(P k)\)
    proof (induct \(k\) )
        case 0 show ?P 0 by simp
    next
        fix \(k\)
        assume \(i h\) : ? \(P k\)
        from run have ?ts \((m+k) \leq\) ?ts \((m+\) Suc \(k)\) by (auto simp add: LV-timestamp-increasing)
        with ih show ?P (Suc k) by simp
    qed
    with \(k\) show ?thesis by simp
qed
```

The following definition collects the set of processes whose timestamp is beyond a given bound at a system state.

definition

```
procsBeyondTS where procsBeyondTS ts cfg \equiv{ p.ts \leq timestamp (cfg p)}
```

Since timestamps grow monotonically, so does the set of processes that are beyond a certain bound.

```
lemma procsBeyondTS-monotonic:
    assumes run: CHORun rho HOs coords
        and \(p: p \in\) procsBeyondTS ts (rho \(m\) ) and le: \(m \leq(n:: n a t)\)
    shows \(p \in\) procsBeyondTS ts (rho \(n\) )
proof -
    from \(p\) have \(t s \leq\) timestamp (rho \(m p\) ) (is \(-\leq\) ?ts \(m\) )
        by (simp add: procsBeyondTS-def)
    moreover
    from run le have ?ts \(m \leq\) ?ts \(n\) by (rule \(L V\)-timestamp-monotonic)
    ultimately show ?thesis
        by (simp add: procsBeyondTS-def)
qed
```


2.4 Obvious facts about the algorithm

The following lemmas state some very obvious facts that follow "immediately" from the definition of the algorithm. We could prove them in one fell swoop by defining a big invariant, but it appears more readable to prove them separately.

Coordinators change only at step 3 . This is an immediate consequence of the communication/coordinator predicate.
lemma notStep3EqualCoord:
assumes CHORun rho HOs coords and step $r \neq 3$
shows coords (Suc r) $p=$ coords $r p$
using assms by (auto simp add: CHORun-def LV-commLive-def)
Votes only change at step 0 .
lemma notStep0EqualVote [rule-format]:
assumes run: CHORun rho HOs coords
shows step $r \neq 0 \longrightarrow$ vote (rho (Suc r) p) $=$ vote (rhor p) (is ?P pr)
by (rule $L V$-Suc' $[O F$ run, where $P=? P]$,
auto simp add: next0-def next1-def next2-def next3-def)
Commit status only changes at steps 0 and 3 .
lemma notStep03EqualCommit [rule-format]:
assumes run: CHORun rho HOs coords
shows step $r \neq 0 \wedge$ step $r \neq 3 \longrightarrow$ commt (rho (Suc r) p) $=$ commt (rho r p)
(is ? P pr)
by (rule $L V$-Suc' $[$ OF run, where $P=? P$],
auto simp add: next0-def next1-def next2-def next3-def)
Timestamps only change at step 1.
lemma notStep1EqualTimestamp [rule-format]:
assumes run: CHORun rho HOs coords
shows step $r \neq 1 \longrightarrow$ timestamp (rho (Suc r) p) = timestamp (rho r p) (is ?P $p r$)
by (rule $L V$-Suc' $[O F$ run, where $P=? P]$, auto simp add: next0-def next1-def next2-def next3-def)

The x field only changes at step 1 .
lemma notStep1EqualX [rule-format]:
assumes run: CHORun rho HOs coords
shows step $r \neq 1 \longrightarrow x($ rho $($ Suc $r) p$) $=x($ rho r p) (is ?P pr)
by (rule $L V$-Suc' $[O F$ run, where $P=? P]$], auto simp add: next0-def next1-def next2-def next3-def)

A process p has its commit flag set only if the following conditions hold:

- the step number is at least 1 ,
- p considers itself to be the coordinator,
- p has a non-null vote,
- a majority of processes consider p as their coordinator.
lemma commitE:
assumes run: CHORun rho HOs coords and cmt: commt (rho r p)
and conds: $\mathbb{1} 1 \leq$ step r; coords $r p=p$; vote (rho $r p) \neq$ None;
card $\{q$. coords $r q=p\}>N$ div 2
$\rrbracket \Longrightarrow A$
shows A
proof -

```
have commt (rho r p)}
            1\leq step r ^ coords r p = p^ vote (rho r p) \not= None ^card {q.coords r q=p}>N div 2
    (is ?P pr is - \longrightarrow?R r)
proof (rule LV-induct'[OF run, where P=?P])
    - the only interesting step is step 0
    fix n
    assume nxt: next0 n p (rho n p) (rcvdMsgs p (HOs n p) (coords n) (rho n) (send0 n)) (coords n p)
(rho (Suc n) p)
        and ph:phase (Suc n) = phase n
        and stp: step n = 0 and stp': step (Suc n) = 1
        and ih: ?P p n
    show ?P p (Suc n)
    proof
        assume cm': commt (rho (Suc n) p)
        from stp ih have cm: ᄀcommt (rho n p) by simp
        with nxt cm'
        have coords n p=p^ vote (rho (Suc n) p) \not= None
                ^card (valStampsRcvd (rcvdMsgs p (HOs n p) (coords n) (rho n) (send0 n))) > N div 2
            by (auto simp add: next0-def)
    moreover
    have valStampsRcvd (rcvdMsgs p (HOs n p) (coords n) (rho n) (send0 n))\subseteq{q. coords n q = p}
        by (auto simp add: valStampsRcvd-def rcvdMsgs-def send0-def)
        hence card (valStampsRcvd (rcvdMsgs p (HOs n p) (coords n) (rho n) (send0 n)))\leqcard {q.
coords n q = p}
        by (auto intro: card-mono)
        moreover
        note stp stp' run
        ultimately
        show ?R (Suc n)
        by (auto simp add: notStep3EqualCoord)
    qed
    - the remaining cases are all solved by expanding the definitions
    qed (auto simp add: initState-def next1-def next2-def next3-def notStep3EqualCoord[OF run])
    with cmt show ?thesis by (intro conds, auto)
qed
```

A process has a current timestamp only if:

- it is at step 2 or beyond,
- its coordinator has committed,
- its x value is the vote of its coordinator.

```
lemma currentTimestampE:
    assumes run: CHORun rho HOs coords
    and \(t\) s: timestamp (rho r \(p\) ) \(=\) Suc (phase \(r\) )
    and conds: \(\llbracket 2 \leq\) step \(r\);
    commt (rho r (coords r p));
    \(x(\) rho \(r p)=\) the \((\) vote \((\) rho \(r(\) coords \(r p)))\)
    \(\rrbracket \Longrightarrow A\)
    shows \(A\)
proof -
    let ?ts \(n=\) timestamp (rho \(n p\) )
    let ?crd \(n=\) coords \(n p\)
    have ?ts \(r=\) Suc \((\) phase \(r) \longrightarrow 2 \leq\) step \(r \wedge\) commt \((\) rho \(r(\) ? ?crd \(r)) \wedge x(\) rho \(r p)=\) the (vote (rho
\(r(?(c r d r)))\)
```

```
    (is ?Q pr is - \longrightarrow?R r)
proof (rule LV-induct'[OF run, where P=?Q])
    - The assertion is trivially true initially because the timestamp is 0.
    assume initState p (rho 0 p) thus ?Q p 0
        by (auto simp add: initState-def)
    next
    - The assertion is trivially preserved by step 0 because the timestamp in the post-state cannot be
current (cf. lemma LV-timestamp-bounded).
    fix n
    assume stp': step (Suc n)=1
    with run LV-timestamp-bounded[where n=Suc n] have ?ts (Suc n) \leq phase (Suc n)
        by auto
    thus ?Q p (Suc n) by simp
next
    - Step 1 establishes the assertion by definition of the transition relation.
    fix n
    assume stp: step n = 1 and stp': step (Suc n) =2
        and ph:phase (Suc n) = phase n
        and nxt: next1 n p (rho n p) (rcvdMsgs p (HOs n p) (coords n) (rho n) (send1 n)) (?crd n) (rho
(Suc n) p)
    show ?Q p (Suc n)
    proof
        assume ts: ?ts (Suc n)=Suc (phase (Suc n))
        from run stp LV-timestamp-bounded[where n=n] have ?ts n \leq phase n by auto
        moreover
        from run stp have vote (rho (Suc n) (?crd (Suc n))) = vote (rho n (?crd n))
            by (auto simp add: notStep3EqualCoord notStep0EqualVote)
        moreover
        from run stp have commt (rho (Suc n) (?crd (Suc n))) = commt (rho n (?crd n))
            by (auto simp add: notStep3EqualCoord notStep03EqualCommit)
        moreover
        note ts nxt stp' ph
        ultimately
        show ?R (Suc n)
            by (auto simp add: next1-def send1-def rcvdMsgs-def isVote-def)
    qed
next
```

 - For step 2, the assertion follows from the induction hypothesis, observing that none of the relevant
 state components change.
fix n
assume stp: step $n=2$ and stp $^{\prime}:$ step $($ Suc $n)=3$
and ph: phase (Suc n) $=$ phase n
and $i h$: ? $Q \quad p n$
and nxt: next2 $n p($ rho $n p)($ rcvdMsgs $p(H O s n p)($ coords $n)($ rho $n)($ send2 $n))(? c r d n)($ rho
(Suc n) p)
show ?Q p (Suc n)
proof
assume ts: ?ts (Suc n) = Suc (phase (Suc n))
from run stp
have vt: vote (rho (Suc n) (?crd (Suc n))) = vote (rho $n($?crd $n))$
by (auto simp add: notStep3EqualCoord notStep0EqualVote)
from run stp
have cmt: commt (rho (Suc n) (?crd (Suc n))) $=$ commt (rho $n(? c r d n))$
by (auto simp add: notStep3EqualCoord notStep03EqualCommit)
with vt ts ph stp stp' ih nxt

```
            show ?R (Suc n)
            by (auto simp add: next2-def)
    qed
    next
```

- The assertion is trivially preserved by step 3 because the timestamp in the post-state cannot be current (cf. lemma LV-timestamp-bounded).
fix n
assume stp': step (Suc n) $=0$
with run $L V$-timestamp-bounded $[$ where $n=$ Suc $n]$ have ?ts (Suc n) \leq phase (Suc n)
by auto
thus ? $Q p$ (Suc n) by simp
qed
with $t s$ show ?thesis by (intro conds, auto)
qed
If a process p has its ready bit set then:
- it is at step 3,
- it considers itself to be the coordinator of that phase and
- a majority of processes considers p to be the coordinator and has a current timestamp.
lemma readyE:
assumes run: CHORun rho HOs coords and rdy: ready (rho r p)
and conds: \llbracket step $r=3$; coords r $p=p$;
card $\{q$. coords $r q=p \wedge$ timestamp (rho r q) $=$ Suc (phase $r)\}>N$ div 2

$$
\rrbracket \Longrightarrow P
$$

shows P
proof -
let ? q s $n=\{q$. coords $n q=p \wedge$ timestamp (rho $n q)=$ Suc (phase n) $\}$
have ready (rho r p) \longrightarrow step $r=3 \wedge$ coords $r p=p \wedge \operatorname{card}(? q s r)>N$ div 2
(is ? $Q p r$ is $-\longrightarrow ? R p r$)
proof (rule $L V$-induct' $[$ OF run, where $P=$? $Q]$)

- the interesting case is step 2
fix n
assume stp: step $n=2$ and stp $^{\prime}:$ step $($ Suc $n)=3$
and $i h$: ?Q $p n$ and $p h$: phase (Suc n) $=$ phase n
and nxt: next2 $n p($ rho $n p)(r c v d M s g s p(H O s n p)(\operatorname{coords} n)(r h o n)(\operatorname{send2} n))(\operatorname{coords} n p)$
(rho (Suc n) p)
show ?Q p (Suc n)
proof
assume rdy: ready (rho (Suc n) p)
from stp ih have nrdy: \neg ready (rho $n p$) by simp
with rdy nxt have coords $n p=p$
by (auto simp add: next2-def)
with run stp have coord: coords (Suc n) $p=p$
by (simp add: notStep3EqualCoord)
let ?acks $=$ acksRcvd (rcvdMsgs $p(H O s n p)(\operatorname{coords} n)($ rho $n)($ send2 $n))$
from nrdy rdy nxt have aRcvd: card ?acks $>N$ div 2
by (auto simp add: next2-def)
have ?acks \subseteq ?qs (Suc n)
proof (clarify)
fix q
assume $q: q \in$?acks
hence n : coords $n q=p \wedge$ timestamp (rho $n q$) $=$ Suc (phase n)

```
                by (auto simp add: acksRcvd-def rcvdMsgs-def send2-def isAck-def)
        with run stp ph
        show coords (Suc n) q= p^ timestamp (rho (Suc n) q) = Suc (phase (Suc n))
            by (simp add: notStep3EqualCoord notStep1EqualTimestamp)
        qed
        hence card ?acks \leqcard (?qs (Suc n))
        by (intro card-mono, auto)
        with stp' coord aRcvd show ?R p (Suc n)
        by auto
    qed
    - the remaining steps are all solved trivially
    qed (auto simp add: initState-def next0-def next1-def next3-def)
    with rdy show ?thesis by (blast intro: conds)
qed
```

A process decides only if the following conditions hold:

- it is at step 3,
- its coordinator votes for the value the process decides on,
- the coordinator has its ready and commt bits set.

This is (essentially) Bernadette's Lemma 3.
lemma decisionE:
assumes run: CHORun rho HOs coords
and dec: decide (rho (Suc r) p) \neq decide (rho r p)
and conds: \llbracket step $r=3$;

```
                        decide (rho (Suc r) p)= Some (the (vote (rho r (coords r p))));
```

 ready (rho \(r\) (coords \(r\))); commt (rho r (coords \(r\) p))
 $$
\rrbracket \Longrightarrow P
$$

shows P
proof -
let $? c f g=r h o r$
let ${ }^{2} \mathrm{cfg}^{\prime}=$ rho $($ Suc r)
let $?$ crd $=$ coords r
let $?^{\text {dec }}{ }^{\prime}=\operatorname{decide~}\left(?{ }^{\circ} \mathrm{cfg}{ }^{\prime} p\right)$

- Except for the assertion about the commt field, the assertion can be proved directly from the next-state relation.
have 1: step $r=3 \wedge ?$ dec $^{\prime}=$ Some $($ the $(\operatorname{vote}(? c f g(? c r d p)))) \wedge$ ready $(? c f g(? c r d p))$ (is? $Q p r$)
proof (rule $L V$-Suc' $[$ OF run, where $P=$? $Q]$)
- for step 3 , we prove the thesis by expanding the relevant definitions
assume next3 r p (?cfg p) (rcvdMsgs p(HOs r p) ?crd ?cfg (send3 r)) (?crd p) (?cfg' p)
and step $r=3$
with dec show ?thesis by (auto simp add: next3-def send3-def isVote-def rcvdMsgs-def)
next
- for the other steps, the proof is by contradiction because they don't change the decision
assume next0 r $p(? c f g p)(r c v d M s g s ~ p(H O s ~ r p) ~ ? c r d ~ ? c f g ~(s e n d 0 ~ r)) ~(? c r d ~ p) ~(? c f g ' ~ p) ~$
with dec show ?thesis by (auto simp add: next0-def)
next
assume next1 r $p(? c f g ~ p)($ rcvdMsgs $p(H O s r p)$?crd ?cfg (send1 r)) (?crd p) (?cfg' p)
with dec show ?thesis by (auto simp add: next1-def)
next
assume next2 r $p(? c f g$ p) (rcvdMsgs $p(H O s r p)$?crd ?cfg (send2 r)) (?crd p) (?cfg' p)
with dec show ?thesis by (auto simp add: next2-def)
qed
hence ready (?cfg (?crd p)) by blast
- Because the coordinator is ready, there is a majority of processes that consider it to be the coordinator and that have a current timestamp.
with run
have card $\{q$. ?crd $q=$? crd $p \wedge$ timestamp $(? c f g q)=$ Suc $(p h a s e r)\}>N$ div 2 by (rule readyE)
- Hence there is at least one such process ...
hence card $\{q$. ?crd $q=$?crd $p \wedge$ timestamp $(? c f g q)=$ Suc $($ phase $r)\} \neq 0$
by arith
then obtain q where ?crd $q=? c r d p$ and timestamp $(? c f g q)=S u c(p h a s e r)$
by auto
- ... and by a previous lemma the coordinator must have committed.
with run have commt (?cfg (?crd p))
by (auto elim: currentTimestampE)
with 1 show ?thesis by (blast intro: conds)
qed

2.5 Proof of Integrity

Integrity is proved using a standard invariance argument that asserts that only values present in the initial state appear in the relevant fields.

```
lemma integrityInvariant:
    assumes run: CHORun rho HOs coords
    and inv: \llbracketrange (x\circ (rho n))\subseteq range (x\circ (rho 0));
        range (vote ○ (rho n))\subseteq{None} \cupSome'range (x\circ (rho 0));
        range (decide ○ (rho n))\subseteq{None} \cupSome'range (x\circ(rho 0))
        \Longrightarrow A
    shows A
proof -
    let ?x0 = range ( }x\circ\mathrm{ rho 0)
    let ?x0opt = {None} \cup Some'?x0
    have range ( }x\circ\mathrm{ rho }n)\subseteq?x0
        range (vote ○ rho n)\subseteq?x0opt }
        range (decide ○ rho n)\subseteq ?x0opt (is ?Inv n is ?X n ^ ?Vote n ^ ?Decide n)
    proof (induct n)
        from run show ?Inv 0
            by (auto simp add: CHORun-def initConfig-def initState-def)
    next
        fix n
        assume ih:?Inv n thus ?Inv (Suc n)
        proof (clarify)
            assume x:?X n and vt:?Vote n and dec:?Decide n
```

Proof of first conjunct

```
have \mp@subsup{x}{}{\prime}:?X (Suc n)
proof (clarsimp)
    fix p
    from run show x (rho (Suc n) p) \in range (\lambdaq. x (rho 0 q)) (is ?P p n)
    proof (rule LV-Suc'[where P=?P])
                - only step1 is of interest
                    assume nxt: next1 n p (rho n p)
                        (rcvdMsgs p (HOs n p) (coords n) (rho n) (send1 n))
                        (coords n p)(rho (Suc n) p)
```

```
    show ?thesis
    proof (cases rho (Suc n) \(p=\) rho \(n\) p)
        case True
        with \(x\) show ?thesis by auto
    next
        case False
        with nxt have cmt: commt (rho \(n\) (coords \(n p\) ))
            and \(x p: x(\) rho \((S u c n) p)=\) the \((\) vote (rho \(n(\) coords \(n p))\) )
        by (auto simp add: next1-def send1-def rcvdMsgs-def isVote-def)
        from run cmt have vote (rho \(n\) (coords \(n\) p)) \(\neq\) None
            by (rule commitE)
        moreover
        from \(v t\) have vote (rho \(n\) (coords \(n p)\) ) \(\in\) ? \(x 0\) opt
            by (auto simp add: image-def)
        moreover
        note \(x p\)
        ultimately
        show ?thesis by (force simp add: image-def)
    qed
    - the other steps don't change \(x\) and therefore follow from the induction hypothesis
    next
        assume step \(n=0\)
        with run have \(x\) (rho (Suc n) \(p\) ) \(=x\) (rho \(n\) p) by (simp add: notStep1EqualX)
        with \(x\) show ?thesis by auto
    next
        assume step \(n=2\)
        with run have \(x(\) rho \((S u c n) p)=x\) (rho \(n\) p) by (simp add: notStep1EqualX)
        with \(x\) show ?thesis by auto
    next
        assume step \(n=3\)
        with run have \(x\) (rho (Suc n) \(p\) ) \(=x\) (rho \(n\) p) by (simp add: notStep1EqualX)
        with \(x\) show ?thesis by auto
    qed
qed
```

Proof of second conjunct

```
have vt': ?Vote (Suc n)
proof (clarsimp simp add: image-def)
    fix pv
    assume v: vote (rho (Suc n) p)=Some v
    from run have vote (rho (Suc n) p)=Some v \longrightarrow v & ?x0 (is ?P p n)
    proof (rule LV-Suc'[where P=?P])
    - here only step0 is of interest
    assume nxt: next0 n p (rho n p)
                            (rcvdMsgs p (HOs n p) (coords n) (rho n) (send0 n))
                            (coords n p) (rho (Suc n) p)
    show ?thesis
    proof (cases rho (Suc n) p = rho n p)
        case True
        from vt have vote (rho n p)\in?x0opt by (auto simp add: image-def)
        with True show ?thesis by auto
    next
        case False
        from nxt False v obtain q}\mathrm{ where v=x (rho n q)
            by (auto simp add: next0-def send0-def rcvdMsgs-def)
            with }x\mathrm{ show ?thesis by (auto simp add: image-def)
```


qed

- the other cases don't change the vote and therefore follow from the induction hypothesis next
assume step $n=1$
with run have vote (rho (Suc n) p) $=$ vote (rho n p)
by (simp add: notStep0EqualVote)
moreover
from $v t$ have vote (rho $n p) \in$?x0opt by (auto simp add: image-def)
ultimately
show ?thesis by auto
next
assume step $n=2$
with run have vote (rho (Suc n) p) = vote (rho n p)
by (simp add: notStep0EqualVote)
moreover
from $v t$ have vote (rho $n p) \in$?x0opt by (auto simp add: image-def)
ultimately
show ?thesis by auto
next
assume step $n=3$
with run have vote (rho (Suc n) p) = vote (rho n p)
by (simp add: notStep0EqualVote)
moreover
from $v t$ have vote (rho $n p) \in$?x0opt by (auto simp add: image-def)
ultimately
show ?thesis by auto
qed
with v show $\exists q . v=x($ rho $0 q)$ by auto
qed
Proof of third conjunct
have dec': ?Decide (Suc n)
proof (clarsimp simp add: image-def)
fix $p v$
assume v: decide (rho (Suc n) p) = Some v
show $\exists q . v=x($ rho $0 q)$
proof (cases decide (rho (Suc n) p) = decide (rho n p))
case True
from dec have d : decide (rho $n p$) \in ?x0opt by (auto simp add: image-def)
with True v show ?thesis by (auto simp add: image-def)
next
case False
let ? crd $=$ coords $n p$
from False run have
d^{\prime} : decide (rho (Suc n) p) $=$ Some (the (vote (rho n?crd))) and
cmt: commt (rho n ?crd)
by (auto elim: decisionE)
from $v t$ have vtc: vote (rho n ?crd) \in ?x0opt by (auto simp add: image-def)
from run cmt have vote (rho n ?crd) \neq None by (rule commitE)
with $d^{\prime} v$ vtc show ?thesis by auto
qed
qed
from $x^{\prime} v t^{\prime}$ dec' show ?thesis by simp
qed
qed
with inv show?thesis by simp
qed
The Integrity theorem follows as an easy consequence.

```
theorem integrity:
    assumes run: CHORun rho HOs coords and dec: decide (rho n p) = Some \(v\)
    shows \(\exists q . v=x(\) rho \(0 q)\)
proof -
    from run have decide \((\) rho n \(p) \in\{\) None \(\} \cup\) Some ' (range \((x \circ(\) rho 0) \())\)
        by (rule integrityInvariant, auto simp add: image-def)
    with dec show ?thesis by (auto simp add: image-def)
qed
```


2.6 Proof of Agreement and Irrevocability

The following lemmas closely follow a hand proof provided by Bernadette Charron-Bost.
If a process decides, then a majority of processes have a current timestamp.

```
lemma decisionThenMajorityBeyondTS:
    assumes run: CHORun rho HOs coords
    and dec: decide (rho (Suc r) p) = decide (rho r p)
    shows card (procsBeyondTS (Suc (phase r)) (rho r)) > N div 2
    using run dec proof (rule decisionE)
    - Lemma decisionE tells us that we are at step 3 and that the coordinator is ready.
    let ?crd = coords r p
    let ?qs ={q. coords r q=?crd ^ timestamp (rho r q) = Suc (phaser) }
    assume stp: step r=3 and rdy: ready (rho r ?crd)
    - Now, lemma readyE implies that a majority of processes have a recent timestamp.
    from run rdy have card ?qs > N div 2 by (rule readyE)
    moreover
    from stp LV-timestamp-bounded[OF run, where n=r]
    have }\forallq. timestamp (rho r q)\leqSuc (phase r) by aut
    hence ?qs \subseteq procsBeyondTS (Suc (phase r)) (rho r)
    by (auto simp add: procsBeyondTS-def)
    hence card ?qs \leqcard (procsBeyondTS (Suc (phase r)) (rho r))
        by (intro card-mono, auto)
    ultimately show ?thesis by simp
qed
```

No two different processes have their commit flag set at any state.
lemma committedProcsEqual:
assumes run: CHORun rho HOs coords
and cmt : commt (rho r p) and cmt^{\prime} : commt (rho r p^{\prime})
shows $p=p^{\prime}$
proof -
from run cmt have card $\{q$. coords $r q=p\}>N$ div 2 by (blast elim: commitE)
moreover
from run $c m t^{\prime}$ have card $\left\{q\right.$. coords $\left.r q=p^{\prime}\right\}>N$ div 2 by (blast elim: commitE)
ultimately
obtain q where coords $r q=p$ and $p^{\prime}=$ coords $r q$ by (auto elim: majorities E^{\prime})
thus ?thesis by simp
qed

No two different processes have their ready flag set at any state.
lemma readyProcsEqual:

```
        assumes run: CHORun rho HOs coords
        and rdy: ready (rho r p) and rdy': ready (rho r p')
        shows p= p'
proof -
    let ?C p = {q. coords r q=p^ timestamp (rhorq)=Suc (phaser)}
    from run rdy have card (?C p)>N div 2 by (blast elim: readyE)
    moreover
    from run rdy' have card (?C p') > N div 2 by (blast elim: readyE)
    ultimately
    obtain q}\mathrm{ where coords r q=p and p'= coords r q by (auto elim: majoritiesE')
    thus ?thesis by simp
qed
```

The following lemma asserts that whenever a process p commits at a state where a majority of processes have a timestamp beyond $t s$, then p votes for a value held by some process whose timestamp is beyond $t s$.

```
lemma commitThenVoteRecent:
    assumes run: CHORun rho HOs coords
    and maj: card (procsBeyondTS ts (rho r)) > N div 2 and cmt: commt (rho r p)
    shows \(\exists q \in\) procsBeyondTS ts (rho r). vote (rho r \(p\) ) \(=\) Some ( \(x\) (rhor \(q\) ) )
    (is? \(Q r\) )
proof -
    let ?bynd \(n=\) procsBeyondTS ts (rho \(n\) )
    have card (?bynd r)>N div \(2 \wedge\) commt (rho r \(p\) ) \(\longrightarrow\) ? \(Q\) r
        (is ? P \(p r\) )
    proof (rule LV-induct[OF run])
next0 establishes the property
    fix \(n\)
    assume stp: step \(n=0\)
        and nxt: \(\forall q\). next0 \(n q(\) rho \(n q)(\) rcvdMsgs \(q(H O s n q)(\operatorname{coords} n)(\) rho \(n)(\) send0 \(n))(\) coords \(n\)
q) (rho (Suc n) q) (is \(\forall q\). ? \(n x t q\) )
    from nxt have nxp: ?nxt \(p\)..
    show ?P p (Suc n)
    proof (clarify)
        assume mj: card (?bynd (Suc \(n\) )) \(>N\) div 2 and ct:commt (rho (Suc n) p)
        show ?Q (Suc n)
        proof -
            let ?msgs \(=\) rcvdMsgs \(p(H O s n p)(\) coords \(n)(\) rho \(n)(\) send0 \(n)\)
            from stp run have \(\neg\) commt (rho \(n p\) ) by (auto elim: commitE)
            with \(n x p\) ct obtain \(q v\) where
                \(v\) : ? msgs \(q=\) Some (ValStamp \(v\) (highestStampRcvd?msgs)) and
                vote: vote (rho (Suc n) p) = Some \(v\) and
                rcvd: card (valStampsRcvd ?msgs) \(>N\) div 2
                by (auto simp add: next0-def)
            from \(m j\) rcvd obtain \(q^{\prime}\) where
                \(q 1^{\prime}: q^{\prime} \in\) ?bynd (Suc \(n\) ) and \(q 2^{\prime}: q^{\prime} \in\) valStampsRcvd ?msgs
                by (rule majorities \(E^{\prime}\) )
            have timestamp (rho \(n q^{\prime}\) ) \(\leq\) timestamp (rho \(n q\) )
            proof -
                from \(q 2^{\prime}\) obtain \(v^{\prime} t s^{\prime}\) where \(t s^{\prime}\) : ?msgs \(q^{\prime}=\) Some \(\left(\operatorname{ValStamp} v^{\prime} t s^{\prime}\right)\)
                by (auto simp add: valStampsRcvd-def)
            hence \(t s^{\prime} \leq\) highestStampRcvd ?msgs
                by (rule highestStampRcvd-max)
                    moreover
```

```
    from ts' have timestamp (rho n q') = ts'
        by (auto simp add: rcvdMsgs-def send0-def)
    moreover
    from v have timestamp (rho n q) = highestStampRcvd ?msgs
        by (auto simp add: rcvdMsgs-def send0-def)
    ultimately
    show ?thesis
        by simp
    qed
    moreover
    from run stp have timestamp (rho (Suc n) q') = timestamp (rho n q')
        by (simp add: notStep1EqualTimestamp)
    moreover
    from run stp have timestamp (rho (Suc n) q) = timestamp (rho n q)
        by (simp add: notStep1EqualTimestamp)
    moreover
    note q1'
    ultimately
    have q\in ?bynd (Suc n)
        by (simp add: procsBeyondTS-def)
    moreover
    from v vote have vote (rho (Suc n) p)=Some (x (rho n q))
        by (auto simp add: rcvdMsgs-def send0-def split: split-if-asm)
    moreover
    from run stp have x (rho (Suc n) q) = x (rho n q)
        by (simp add: notStep1EqualX)
    ultimately
    show ?thesis by force
    qed
qed
```

next

We now prove that next1 preserves the property. Observe that next1 may establish a majority of processes with current timestamps, so we cannot just refer to the induction hypothesis. However, if that happens, there is at least one process with a fresh timestamp that copies the vote of the (only) committed coordinator, thus establishing the property.
fix n
assume stp: step $n=1$
and nxt: $\forall q$. next1 $n q($ rho $n q)($ rcvdMsgs $q(H O s n q)(\operatorname{coords} n)($ rho $n)($ send1 $n))($ coords n
q) (rho (Suc n) q) (is $\forall q$. ?nxt q)
and $i h$: ? P $p n$
from $n x t$ have $n x p$: ?nxt p..
show ?P p (Suc n)
proof (clarify)
assume mj^{\prime} : card (?bynd (Suc n)) > N div 2 and ct' $^{\prime}$:commt (rho (Suc n) p)
from run stp $c t^{\prime}$ have ct: commt (rho n p)
by (simp add: notStep03EqualCommit)
from run stp have vote': vote (rho (Suc n) p) = vote (rho n p)
by (simp add: notStep0EqualVote)
show ?Q (Suc n)
proof (cases $\exists q \in$?bynd (Suc n). rho (Suc n) $q \neq$ rho $n q$)
case True
— in this case the property holds because q updates its x field to the vote
then obtain q where $q 1: q \in$?bynd (Suc n) and q 2: rho (Suc n) $q \neq$ rho $n q$.. from nxt have ?nxt q..
with $q 2$
have $x^{\prime}: x($ rho $($ Suc $n) q)=$ the $($ vote $($ rho $n(\operatorname{coords} n q)))$
and coord: commt (rho n (coords $n q$))
by (auto simp add: next1-def send1-def rcvdMsgs-def isVote-def)
from run ct have vote: vote (rho n p) \neq None by (rule commitE)
from run coord ct have coords $n q=p$ by (rule committedProcsEqual)
with $q 1 x^{\prime}$ vote vote' show ?thesis by auto
next
case False

- if no relevant process moves then procsBeyondTS doesn't change and we invoke the induction hypothesis
hence bynd: ?bynd (Suc n) = ?bynd n
proof (auto simp add: procsBeyondTS-def)
fix r
assume ts: ts timestamp (rho n r)
from run have timestamp (rho n r) \leq timestamp (rho (Suc n) r)
by (simp add: LV-timestamp-monotonic)
with $t s$ show $t s \leq$ timestamp (rho (Suc n) r) by simp
qed
with $m j^{\prime}$ have $m j$: card (?bynd n) $>N$ div 2 by simp
with $c t$ ih obtain q where
$q \in$?bynd n and vote (rho n p) $=$ Some (x (rho $n q$))
by blast
with vote' bynd False show ?thesis by auto
qed
qed
next
step2 preserves the property, via the induction hypothesis.
fix n
assume stp: step $n=2$
and $n x t$: $\forall q$. next2 $n q($ rho $n q)($ rcvdMsgs $q(H O s n q)($ coords $n)($ rho $n)($ send2 $n))($ coords n
q) $(r h o(S u c n) q)($ is $\forall q$. ? $n x t q)$ and $i h$: ? P $p n$
from $n x t$ have $n x p$: ?nxt p..
show ?P p (Suc n)
proof (clarify)
assume $m j^{\prime}:$ card $($?bynd $($ Suc $n))>N$ div 2 and $c t^{\prime}:$ commt (rho (Suc n) p)
from run stp ct ${ }^{\prime}$ have ct: commt (rho n p)
by (simp add: notStep03EqualCommit)
from run stp have vote': vote (rho (Suc n) p) = vote (rho n p)
by (simp add: notStep0EqualVote)
from run stp have \forall q. timestamp (rho (Suc n) q) = timestamp (rho $n q$)
by (simp add: notStep 1 EqualTimestamp)
hence bynd': ?bynd (Suc n) $=$?bynd n
by (auto simp add: procsBeyondTS-def)
from run stp have $\forall q$. x (rho (Suc n) q) $=x($ rho $n q)$
by (simp add: notStep1EqualX)
with bynd' vote' ct mj' ih show ?Q (Suc n)
by auto
qed
the initial state and the step3 transition are trivial because the commt flag cannot be set.
qed (auto elim: commitE[OF run])
with maj cmt show ?thesis by simp
qed
The following lemma gives the crucial argument for agreement: after some process p has decided, all processes whose timestamp is beyond the timestamp at the point of decision hold the decision value in their x field.

```
lemma XOfTimestampBeyondDecision:
    assumes run: CHORun rho HOs coords
    and dec: decide (rho (Suc r) \(p\) ) \(\neq\) decide (rho r \(p\) )
    shows \(\forall q \in\) procsBeyondTS (Suc (phase \(r\) )) (rho \((r+k)\) ).
        \(x(r h o(r+k) q)=\) the (decide (rho (Suc r) p))
    (is \(\forall q \in\) ?bynd \(k .-=? v\) is ?P \(p k\) )
proof (induct \(k\) )
    - base step
    show ? P p 0
    proof (clarify)
    fix \(q\)
    assume \(q: q \in\) ?bynd 0
```

use preceding lemmas about the decision value and the x field of processes with fresh timestamps
from run dec
have stp: step $r=3$
and v : decide $($ rho $($ Suc r) $p)=$ Some $($ the $(\operatorname{vote}($ rho $r(\operatorname{coords} r p))))$
and cmt: commt (rho r (coords r p))
by (auto elim: decisionE)
from stp $L V$-timestamp-bounded $[O F$ run, where $n=r$]
have timestamp (rho $r q$) \leq Suc (phase r) by simp
with q have timestamp (rho r q) = Suc (phase r)
by (simp add: procsBeyondTS-def)
with run
have $x: x($ rho $r q)=$ the $($ vote $($ rho $r($ coords $r q)))$
and $c m t^{\prime}$: commt (rho r (coords r q))
by (auto elim: currentTimestampE)
from run cmt cmt' have coords r $p=$ coords r q by (rule committedProcsEqual)
with $x v$ show $x(r h o(r+0) q)=? v$ by simp
qed
next

- induction step
fix k
assume $i h$:? $p k$
show ?P p (Suc k)
proof (clarify)
fix q
assume $q: q \in$?bynd (Suc k)
 - distinguish the kind of transition-only step1 is interesting
have $x($ rho $(S u c(r+k)) q)=? v$ (is ? $X q(r+k))$
proof (rule $L V$-Suc' $[$ OF run, where $P=$? $X]$)
fix $H O$
assume stp: step $(r+k)=1$
and nxt: next1 $(r+k) q(r h o(r+k) q)$
(rcvdMsgs $q(H O s(r+k) q)($ coords $(r+k))(r h o(r+k))($ send1 $(r+k)))$
$($ coords $(r+k) q)(r h o(S u c(r+k)) q)$
show ?thesis
proof (cases rho $(S u c(r+k)) q=r h o(r+k) q)$
case True
with q ih show ?thesis by (auto simp add: procsBeyondTS-def)

```
    next
        case False
        from run dec have card (?bynd 0) > N div 2
        by (simp add: decisionThenMajorityBeyondTS)
    moreover
    have ?bynd 0}\subseteq\mathrm{ ?bynd k
        by (auto elim: procsBeyondTS-monotonic[OF run])
    hence card (?bynd 0) \leq card (?bynd k)
        by (auto intro: card-mono)
    ultimately
    have maj: card (?bynd k)>N div 2 by simp
    let ?crd = coords (r+k)q
    from False nxt have
        cmt: commt (rho (r+k) ?crd) and
        x:x (rho (Suc (r+k)) q) = the (vote (rho (r+k) ?crd))
        by (auto simp add: next1-def rcvdMsgs-def send1-def isVote-def)
    from run maj cmt stp obtain q'
        where q\mp@subsup{1}{}{\prime}:q\mp@subsup{q}{}{\prime}\in?bynd k and q2': vote (rho (r+k) ?crd) = Some (x (rho (r+k) q'))
        by (blast dest: commitThenVoteRecent)
    with x ih show ?thesis by auto
    qed
    next
        - all other steps hold by induction hypothesis
        assume step (r+k)=0
        with run have x: x (rho (Suc (r+k)) q) =x (rho (r+k)q)
        and ts: timestamp (rho (Suc (r+k)) q) = timestamp (rho (r+k)q)
        by (auto simp add: notStep1EqualX notStep1EqualTimestamp)
    from ts q have q\in ?bynd k
        by (auto simp add: procsBeyondTS-def)
        with x ih show ?thesis by auto
    next
        assume step (r+k)=2
        with run have x: x (rho (Suc (r+k)) q) =x (rho (r+k)q)
        and ts: timestamp (rho (Suc (r+k)) q) = timestamp (rho (r+k)q)
        by (auto simp add: notStep1EqualX notStep1EqualTimestamp)
            from ts q have q\in ?bynd k
            by (auto simp add: procsBeyondTS-def)
            with }x\mathrm{ ih show ?thesis by auto
        next
            assume step (r+k)=3
            with run have x: x (rho (Suc (r+k)) q) =x (rho (r+k)q)
                and ts: timestamp (rho (Suc (r+k)) q) = timestamp (rho (r+k)q)
                by (auto simp add: notStep1EqualX notStep1EqualTimestamp)
            from ts q have q\in ?bynd k
                by (auto simp add: procsBeyondTS-def)
            with x ih show ?thesis by auto
qed
    thus x (rho (r+Suck)q)=?v by simp
    qed
qed
```

We are now in position to prove agreement: if some process decides at step r and another (or possibly the same) process decides at step $r+k$ then they decide the same value.
lemma laterProcessDecidesSameValue:
assumes run: CHORun rho HOs coords
and p : decide (rho (Suc r) p) \neq decide (rho r p)
and q : decide (rho $(S u c(r+k)) q) \neq$ decide $(r h o(r+k) q)$
shows decide (rho $(\operatorname{Suc}(r+k)) q$) $=$ decide (rho $($ Suc r) p)
proof -
let ?bynd $k=$ procsBeyondTS (Suc (phase r)) (rho $(r+k))$
let $? q c r d=$ coords $(r+k) q$
from run p have notNone: decide (rho (Suc r) p) \neq None
by (auto elim: decisionE)

- process q decides on the vote of its coordinator
from run q have dec: decide (rho $(S u c(r+k)) q$) $=$ Some (the (vote (rho $(r+k)$?qcrd))) and cmt: commt (rho $(r+k)$?qcrd)
by (auto elim: decisionE)
- that vote is the x field of some process q^{\prime} with a recent timestamp
from run p have card (?bynd 0) $>N$ div 2
by (simp add: decisionThenMajorityBeyondTS)
moreover
from run have ?bynd $0 \subseteq$?bynd k by (auto elim: procsBeyondTS-monotonic)
hence card (?bynd 0) \leq card (?bynd k) by (auto intro: card-mono)
ultimately
have maj: card (?bynd k) > N div 2 by simp
from run maj cmt obtain q^{\prime} where
$q^{\prime} 1: q^{\prime} \in ?$ bynd k and q^{\prime} 2: vote $($ rho $(r+k) ? q c r d)=\operatorname{Some}\left(x\left(r h o(r+k) q^{\prime}\right)\right)$
by (auto dest: commitThenVoteRecent)
- the x field of process q^{\prime} is the value p decided on
from run $p q^{\prime} 1$ have $x\left(r h o(r+k) q^{\prime}\right)=$ the (decide (rho (Suc r)p)) by (auto dest: XOfTimestampBeyondDecision)
- which proves the assertion
with dec q'2 notNone show ?thesis by auto
qed
A process that holds some decision v has decided v sometime in the past.

```
lemma decisionNonNullThenDecided:
    assumes run: CHORun rho HOs coords and dec: decide (rho n p) = Some \(v\)
    shows \(\exists m<n\). decide (rho (Suc m) \(p\) ) \(\neq\) decide (rho \(m p\) )
            \(\wedge\) decide (rho (Suc m) \(p\) ) \(=\) Some \(v\)
proof -
    let ?dec \(k=\) decide (rho \(k p\) )
    have \((\forall m<n\). ?dec \((\) Suc \(m) \neq\) ?dec \(m \longrightarrow\) ?dec \((\) Suc \(m) \neq\) Some \(v) \longrightarrow\) ?dec \(n \neq\) Some \(v\)
        (is? \(P n\) is ? \(A n \longrightarrow-\) )
    proof (induct \(n\) )
        from run show ?P 0 by (auto simp add: CHORun-def initConfig-def initState-def)
    next
        fix \(n\)
        assume \(i h\) :? \(n\)
        show ?P (Suc n)
        proof (clarify)
            assume \(p\) : ?A (Suc \(n\) ) and \(v\) : ?dec (Suc \(n)=\) Some \(v\)
            from \(p\) have? A \(n\) by simp
            with ih have ?dec \(n \neq\) Some \(v\) by simp
            moreover
            from \(p\) have ?dec \((\) Suc \(n) \neq\) ?dec \(n \longrightarrow\) ?dec \((\) Suc \(n) \neq\) Some \(v\) by simp
            ultimately
            have ?dec (Suc \(n\) ) \(\neq\) Some \(v\) by auto
            with \(v\) show False by simp
    qed
```

```
    qed
    with dec show ?thesis by auto
qed
```

Irrevocability and Agreement follow as easy consequences.

```
theorem irrevocability:
    assumes run: CHORun rho HOs coords
    and p: decide (rho m p)=Some v
    shows decide (rho (m+k) p)=Some v
proof -
    from run p obtain n where
        n1: n<m and
        n2: decide (rho (Suc n) p) \not= decide (rho n p) and
        n3: decide (rho (Suc n) p)=Some v
        by (auto dest: decisionNonNullThenDecided)
    have }\foralli.decide (rho (Suc (n+i)) p)=Some v (is \foralli. ?dec i
    proof
        fix }
        show ?dec i
        proof (induct i)
            from n3 show ?dec 0 by simp
        next
            fix }
            assume ih: ?dec j
            show ?dec (Suc j)
            proof (rule ccontr)
                    assume ctr: \neg (?dec (Suc j))
                    with ih have decide (rho (Suc (n+Suc j)) p)\not= decide (rho (n+Suc j) p)
                    by simp
                    with run n2 have decide (rho (Suc (n + Suc j)) p)=decide (rho (Suc n) p)
                    by (rule laterProcessDecidesSameValue)
                    with ctr n3 show False by simp
                qed
        qed
    qed
    moreover
    from n1 obtain }j\mathrm{ where m+k=Suc(n+j)
        by (auto dest: less-imp-Suc-add)
    ultimately
    show ?thesis by auto
qed
```

theorem agreement:
assumes run: CHORun rho HOs coords
and p : decide (rho $m p$) $=$ Some v and q : decide (rho $n q$) $=$ Some w
shows $v=w$
proof -
from run p obtain k where
k1: decide (rho (Suc k) p) $=$ decide (rho $k p$) and k 2: decide (rho (Suc k) p) = Some v
by (auto dest: decisionNonNullThenDecided)
from run q obtain l where
l1: decide (rho (Suc l) q) \neq decide (rho $l q$) and l2: decide (rho (Suc l) q) = Some w
by (auto dest: decisionNonNullThenDecided)
show ?thesis

```
proof (cases k\leql)
    case True
    then obtain m where m:l=k+m by (auto simp add:le-iff-add)
    from run k1 l1 m have decide (rho (Suc l) q) = decide (rho (Suc k) p)
        by (auto elim: laterProcessDecidesSameValue)
    with k2 l2 show ?thesis by simp
next
    case False
    hence l}\leqk\mathrm{ by simp
    then obtain m}\mathrm{ where m:k=l+m by (auto simp add:le-iff-add)
    from run l1 k1 m have decide (rho (Suc k) p) = decide (rho (Suc l) q)
        by (auto elim: laterProcessDecidesSameValue)
    with l2 k2 show ?thesis by simp
qed
qed
```


2.7 Proof of liveness

We now show that the communication predicate ensures termination of the algorithm: there exists some round r at which all processes have decided. In fact, the assumption ensures the existence of some phase during which there is a single coordinator that receives a majority of messages. Moreover, all processes receive the messages sent by the coordinator and therefore successfully execute the protocol, deciding at step 3 of that phase.

```
theorem decision:
    assumes run: CHORun rho HOs coords
    shows \(\exists r\). \(\forall p\). decide (rho r \(p\) ) \(\neq\) None
proof -
```

The communication predicate implies the existence of a "successful" phase ph, coordinated by some process c for all processes.

```
from run obtain phc
    where c: \forallp. coords (4*ph) p=c
    and maj0:card (HOs (4*ph) c) > N div 2
    and maj2: card (HOs (Suc (Suc (4*ph))) c)>N div 2
    and rcv1:\forallp.c \in (HOs (Suc (4*ph)) p)
    and rcv3: \forallp.c\in(HOs (Suc (Suc (Suc (4*ph)))) p)
    by (auto simp add: CHORun-def LV-commLive-def)
let ? }r=4*p
let ?r1 = Suc ?r
let ?r2 = Suc (Suc ?r)
let ?r3 = Suc (Suc (Suc ?r))
let ?r4 = Suc (Suc (Suc (Suc ?r)))
```

Process c is the coordinator of all steps of phase $p h$.

```
from run \(c\) have \(c 1: \forall p\). coords ? \(r 1 p=c\)
    by (auto simp add: step-def notStep3EqualCoord)
    with run have \(c 2: \forall p\). coords ? \(r 2 p=c\)
    by (auto simp add: step-def mod-Suc notStep3EqualCoord)
with run have \(c 3\) : \(\forall p\). coords ? \(r 3 p=c\)
    by (auto simp add: step-def mod-Suc notStep3EqualCoord)
```

The coordinator receives ValStamp messages from a majority of processes at step 0 of phase $p h$ and therefore commits during the transition at the end of step 0 .

```
have 1: commt (rho ?r1 c) (is ?P c (4*ph))
```

```
proof (rule \(L V\)-Suc' \([\) OF run, where \(P=? P]\), auto simp add: step-def)
    assume next0 ?r c (rho ?r c) (rcvdMsgs c (HOs ?r c) (coords ?r) (rho ?r) (send0 ?r))
                    (coords ?r c) (rho (Suc ?r) c)
    with \(c\) maj0 show commt (rho (Suc ?r) c)
    by (auto simp add: next0-def send0-def valStampsRcvd-def rcvdMsgs-def)
qed
```

All processes receive the vote of c at step 1 and therefore update their time stamps during the transition at the end of step 1.

```
have 2: \(\forall p\). timestamp (rho ?r2 p) \(=\) Suc \(p h\)
proof
    fix \(p\)
    let ?msgs \(=\) rcvdMsgs \(p(H O s\) ? r1 \(p)(\) coords ? r1 \()(r h o ~ ? r 1)(s e n d 1 ~ ? r 1) ~\)
    let \(?\) crd \(=\) coords \(? r 1 p\)
    from run 1 c1 rcv1 have cnd: ?msgs ? crd \(\neq\) None \(\wedge\) isVote (the (?msgs ?crd))
        by (auto elim: commitE simp add: rcvdMsgs-def send1-def isVote-def)
    show timestamp (rho ?r2 p) \(=\) Suc ph (is ?P p (Suc (4*ph)))
    proof (rule LV-Suc' \([\) OF run, where \(P=\) ? P], auto simp add: step-def mod-Suc)
        assume next1 ? r1 p (rho ?r1 p) ?msgs ? crd (rho ?r2 p)
        with cnd show ?thesis
            by (auto simp add: next1-def phase-def)
    qed
qed
```

The coordinator receives acknowledgements from a majority of processes at step 2 and sets its ready flag during the transition at the end of step 2.

```
have 3: ready (rho ?r3 c) (is ?P c (Suc (Suc (4*ph))))
proof (rule LV-Suc'[OF run, where P=?P], auto simp add: step-def mod-Suc)
    assume next2 ?r2 c (rho ?r2 c) (rcvdMsgs c (HOs ?r2 c) (coords ?r2) (rho ?r2) (send2 ?r2))
                (coords ?r2 c) (rho ?r3 c)
    with 2 c2 maj2 show ?thesis
        by (auto simp add: next2-def send2-def rcvdMsgs-def acksRcvd-def isAck-def phase-def)
qed
```

All processes receive the vote of the coordinator during step 3 and decide during the transition at the end of that step.

```
have 4:}\forallp\mathrm{ . decide (rho ?r4 p) f None
proof
    fix p
    let ?msgs = rcvdMsgs p(HOs ?r3 p)(coords ?r3) (rho ?r3) (send3 ?r3)
    let ?crd = coords ?r3 p
    from run 3 c3 rcv3 have cnd:?msgs ?crd \not= None ^ isVote (the (?msgs ?crd))
        by (auto elim: readyE simp add: rcvdMsgs-def send3-def isVote-def)
    show decide (rho ?r4 p) = None (is ?P p (Suc (Suc (Suc (4*ph)))))
    proof (rule LV-Suc' [OF run, where P=?P], auto simp add: step-def mod-Suc)
        assume next3 ?r3 p (rho ?r3 p) ?msgs ?crd (rho ?r4 p)
        with cnd show }\existsv\mathrm{ . decide (rho ?r4 p) = Some v
            by (auto simp add: next3-def)
    qed
qed
```

This immediately proves the assertion.
from 4 show ?thesis ..
qed
end

References

[1] B. Charron-Bost and A. Schiper: The Heard-Of Model: Computing in Distributed Systems with Benign Failures. LSR-Report 2007-001, EPFL, Lausanne, 2007.
[2] L. Lamport: The Part-Time Parliament. ACM Trans. Comput. Syst. 16(2):133-169, 1998.

