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Abstract. TLA+ is a specification language based on standard set the-
ory and temporal logic that has constructs for hierarchical proofs. We
describe how to write TLA+ proofs and check them with TLAPS, the
TLA+ Proof System. We use Peterson’s mutual exclusion algorithm as a
simple example to describe the features of TLAPS and show how it and
the Toolbox (an IDE for TLA+) help users to manage large, complex
proofs.

1 Introduction

TLA+ [10] is a specification language originally designed for specifying concur-
rent and distributed systems and their properties. Specifications and properties
are written as formulas of TLA, a linear-time temporal logic. TLA+ is based
on TLA and Zermelo-Fraenkel set theory with the axiom of choice; it also adds
a module system for structuring specifications. More recently, constructs for
writing proofs have been added to TLA+; these are derived from a hierarchi-
cal presentation of natural-deduction proofs proposed for writing rigorous hand
proofs [14].

In this paper, we present the main ideas that guided the design of the proof
language and our experience with using the TLA+ tools for verifying safety prop-
erties of TLA+ specifications. The TLA+ Toolbox is an integrated development
environment (IDE) based on Eclipse for writing TLA+ specifications and run-
ning the TLA+ tools on them, including the TLC model checker and TLAPS,
the TLA+ proof system [5, 19]. In particular, it provides commands to hide and
unhide parts of a proof, allowing a user to focus on a given proof step and its
context. It is also invaluable to be able to run the model checker on the same
formulas that one reasons about.

The TLA+ proof language and TLAPS have been designed to be independent
of any particular theorem prover. All interaction takes place at the level of TLA+,
letting the user focus on the specification of the algorithm being developed. We
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do not expect users to have precise knowledge of the inner workings of the back-
end provers that TLAPS uses, although with experience users learn about the
strengths and weaknesses of the different provers—for example, that SMT solvers
excel at arithmetic.

TLAPS has a Proof Manager (PM) that transforms a proof into individ-
ual proof obligations that it sends to back-end provers. Currently, the main
back-end provers are Isabelle/TLA+, an encoding of TLA+ as an object logic
in Isabelle [22], Zenon [4], a tableau prover for classical first-order logic with
equality, and a back-end for SMT solvers. Isabelle serves as the most trusted
back-end prover, and when possible, we expect back-end provers to produce a
detailed proof that is checked by Isabelle. This is currently implemented for the
Zenon back-end, which can export its proofs as Isar scripts that Isabelle can
certify.

We explain how to write and check TLA+ proofs, using a tiny well-known
example: a proof that Peterson’s algorithm [18] implements mutual exclusion.
We start by writing the algorithm in PlusCal [11], an algorithm language that
is based on the expression language of TLA+. The PlusCal code is translated to
a TLA+ specification, which is what we reason about. Section 3 introduces the
salient features of the proof language and of TLAPS with the proof of mutual ex-
clusion. Liveness of Peterson’s algorithm (processes eventually enter their critical
section) can also be asserted and proved with TLA+. However, liveness reasoning
makes full use of temporal logic, and TLAPS cannot yet check temporal logic
proofs. We therefore discuss only mutual exclusion.

Section 4 describes how TLA+, TLAPS, and the Toolbox scale to realistic
examples. Their relation to other proof systems is discussed in Section 5. A
concluding section summarizes what we have done and our plans for future
work.

2 Modeling Peterson’s Algorithm In TLA+

Peterson’s algorithm is a classic, very simple two-process mutual exclusion al-
gorithm. We specify the algorithm in TLA+ and prove that it satisfies mutual
exclusion, meaning that no two processes are in their critical sections at the
same time.6

2.1 From PlusCal To TLA+

We will write Peterson’s algorithm in the PlusCal algorithm language. To do so,
we have the Toolbox create an empty TLA+ module. We name the two processes
0 and 1, and we define an operator Not so that Not(0) = 1 and Not(1) = 0:

Not(i)
∆
= if i = 0 then 1 else 0

6 The TLA+ module containing the specification and proof is accessible at the TLAPS
Web page [19].
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--algorithm Peterson {
variables flag = [i ∈ {0, 1} 7→ false], turn = 0;
process (proc ∈ {0, 1}) {

a0: while (true) {
a1: flag [self ] := true;
a2: turn := Not(self );

a3a: if (flag [Not(self )]) {goto a3b} else {goto cs} ;
a3b: if (turn = Not(self )) {goto a3a} else {goto cs} ;

cs: skip; \∗ critical section
a4: flag [self ] := false;

} \∗ end while
} \∗ end process

} \∗ end algorithm

Fig. 1. Peterson’s algorithm in PlusCal.

The PlusCal code for Peterson’s algorithm is shown in Figure 1; it appears in a
comment in the TLA+ module.7 The variables statement declares the variables
and their initial values. For example, the initial value of flag is an array such
that flag [0] = flag [1] = false. (Mathematically, an array is a function; the TLA+

notation [x ∈ S 7→ e] for writing functions is similar to a lambda expression.)
To specify a multiprocess algorithm, it is necessary to specify what its atomic
actions are. In PlusCal, an atomic action consists of the execution from one label
to the next. With this brief explanation, the reader should be able to figure out
what the code means.

The PlusCal translator, accessible through a Toolbox menu, generates a
TLA+ specification from the PlusCal code of the algorithm. Figure 2 gives the
generated TLA+ translation.8 The PlusCal compiler adds a variable pc, which
explicitly records the control state of each process. For example, control in pro-
cess i is at cs iff pc[i ] equals the string “cs”.

The heart of the TLA+ specification consists of the initial predicate Init ,
which describes the initial state, and the next-state relation Next , which de-
scribes how the state can change. Given the PlusCal code, the meaning of for-
mula Init in the figure is straightforward. The formula Next is a predicate on
old-state/new-state pairs. Unprimed variables refer to the old state and primed
variables to the new state. Formula Next is the disjunction of the two formulas
proc(0) and proc(1), and each proc(self ) is the disjunction of seven formulas—
one for each label in the body of the process. The formula a0(self ) specifies
the state change performed by process self executing an atomic action starting

7 The figure shows the pretty-printed version of PlusCal code and TLA+ formulas.
As an example of how they are typed, here is the ascii version of the variables
declaration: variables flag = [i \in {0, 1} |-> FALSE], turn = 0;

8 For clarity of presentation, we have simplified the translation slightly by “in-lining”
a definition. The proof we develop works for the unmodified translation if we add a
global declaration that causes the definition to be expanded throughout the proof.
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variables flag , turn, pc
vars

∆
= 〈flag , turn, pc〉

Init
∆
= ∧ flag = [i ∈ {0, 1} 7→ false]
∧ turn = 0
∧ pc = [self ∈ {0, 1} 7→ “a0”]

a0(self )
∆
= ∧ pc[self ] = “a0”
∧ pc′ = [pc except ! [self ] = “a1”]
∧ unchanged 〈flag , turn〉

a1(self )
∆
= ∧ pc[self ] = “a1”
∧ flag ′ = [flag except ! [self ] = true]
∧ pc′ = [pc except ! [self ] = “a2”]
∧ turn ′ = turn

a2(self )
∆
= ∧ pc[self ] = “a2”
∧ turn ′ = Not(self )
∧ pc′ = [pc except ! [self ] = “a3a”]
∧ flag ′ = flag

a3a(self )
∆
= ∧ pc[self ] = “a3a”
∧ if flag [Not(self )]

then pc′ = [pc except ! [self ] = “a3b”]
else pc′ = [pc except ! [self ] = “cs”]

∧ unchanged 〈flag , turn〉

a3b(self )
∆
= ∧ pc[self ] = “a3b”
∧ if turn = Not(self )

then pc′ = [pc except ! [self ] = “a3a”]
else pc′ = [pc except ! [self ] = “cs”]

∧ unchanged 〈flag , turn〉

cs(self )
∆
= ∧ pc[self ] = “cs”
∧ pc′ = [pc except ! [self ] = “a4”]
∧ unchanged 〈flag , turn〉

a4(self )
∆
= ∧ pc[self ] = “a4”
∧ flag ′ = [flag except ! [self ] = false]
∧ pc′ = [pc except ! [self ] = “a0”]
∧ turn ′ = turn

proc(self )
∆
= a0(self ) ∨ a1(self ) ∨ a2(self ) ∨ a3a(self ) ∨ a3b(self )

∨ cs(self ) ∨ a4(self )

Next
∆
= ∃ self ∈ {0, 1} : proc(self )

Spec
∆
= Init ∧ 2[Next ]vars

Fig. 2. A pretty-printed version of the TLA+ translation, slightly simplified.
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at label a0, and similarly for the other six labels. (If f is a function, the TLA+

notation [f except ![arg ] = exp] denotes the function that is equal to f except
that it maps arg to exp.) The reader should be able to figure out the meaning
of the TLA+ notation and of formula Next by comparing these seven definitions
with the corresponding PlusCal code.

The temporal formula Spec is the complete specification. It is satisfied by a
behavior (i.e., an ω-sequence of states) iff the behavior starts in a state satisfying
Init and each of its steps (pairs of successive states) either satisfies Next or else
leaves the values of the three variables flag , turn, and pc unchanged.9 The 2

is the ordinary always operator of linear-time temporal logic, and [Next ]vars is
an abbreviation for Next ∨ unchanged vars , where unchanged vars is an
abbreviation for vars ′ = vars and priming an expression means priming all the
variables that occur in it.

2.2 Validation Through Model Checking

Before trying to prove that the algorithm is correct, we use TLC, the TLA+

model checker, to check it for errors. We first instruct the Toolbox to have TLC
check for “execution errors”.10 What are type errors in typed languages are one
source of execution errors in TLA+.

The Toolbox runs TLC on a model of a TLA+ specification. A model usually
assigns particular values to specification constants, such as the number N of
processes. It can also restrict the set of states explored, which is useful if the
specification allows an infinite number of reachable states. For this trivial exam-
ple, there are no constants to specify and only 58 reachable states. TLC finds
no execution errors.

We next check if the algorithm actually satisfies mutual exclusion. Since we
made execution of the critical section an atomic action, mutual exclusion means
that the two processes never both have control at label cs. Mutual exclusion
therefore holds iff the following predicate MutualExclusion is an invariant of the
algorithm—meaning that it is true in all reachable states:

MutualExclusion
∆
= (pc[0] 6= “cs”) ∨ (pc[1] 6= “cs”)

TLC reports that the algorithm indeed satisfies this invariant. Peterson’s al-
gorithm is so simple that TLC has checked that all possible executions satisfy
mutual exclusion. For more interesting algorithms that have an infinite set of
reachable states, TLC is no longer able to exhaustively verify all executions, and
correctness must be proved deductively. Still, TLC is invaluable for catching er-
rors in the algorithm or its formal model: the effort required for running TLC is
incomparably lower than that for writing a formal proof.

9 “Stuttering steps” that leave all variables unchanged are allowed in order to make
refinement simple [9].

10 The translation is a temporal logic formula, so there is no obvious definition of
an execution error. An execution error occurs in a behavior if whether or not the
behavior satisfies the formula is not specified by the semantics of TLA+—for example,
because the semantics do not specify whether or not 0 equals false.
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theorem Spec ⇒ 2MutualExclusion
〈1〉1. Init ⇒ Inv
〈1〉2. Inv ∧ [Next ]vars ⇒ Inv ′

〈1〉3. Inv ⇒ MutualExclusion
〈1〉4. qed

Fig. 3. The high-level proof.

3 Proving Mutual Exclusion For Peterson’s Algorithm

We now describe a deductive correctness proof of Peterson’s algorithm in TLA+.
Proofs of more interesting algorithms follow the same basic structure, but they
are longer. Section 4 describes how TLA+ proofs scale to larger algorithms.

3.1 The High-Level Proof

The assertion that Peterson’s algorithm implements mutual exclusion is formal-
ized in TLA+ as:

theorem Spec ⇒ 2MutualExclusion

The standard method of proving this invariance property is to find an inductive
invariant Inv that implies MutualExclusion. An inductive invariant is one that is
true in the initial state and whose truth is preserved by the next-state relation.
TLA+ proofs are hierarchically structured and are generally written top-down.
The top level of this invariance proof is shown in Figure 3. Step 〈1〉2 asserts that
the truth of Inv is preserved by the next-state relation.

Each proof in the hierarchy ends with a qed step that asserts the goal of that
proof, the qed step for the top level asserting the statement of the theorem. We
usually write the qed step’s proof first. This qed step follows easily from 〈1〉1,
〈1〉2, and 〈1〉3 by propositional logic and the following two temporal-logic proof
rules:

I ∧ [N ]v ⇒ I ′

I ∧2[N ]v ⇒ 2I

P ⇒ Q

2P ⇒ 2Q

However, TLAPS does not yet handle temporal reasoning, so we omit the proof
of the qed step. When temporal reasoning is added to TLAPS, we expect it
easily to check such a trivial proof.

To continue the proof, we must define the inductive invariant Inv . (A defini-
tion must precede its use, so the definition of Inv appears in the module before
the proof.) Figure 4 defines Inv to be the conjunction of two formulas. The first,
TypeOK , is a “type-correctness” invariant, asserting that the values of all vari-
ables are elements of the expected sets. (The expression [S → T ] is the set of all
functions whose domain is S and whose range is a subset of T .) In an untyped
logic like that of TLA+, almost any inductive invariant must assert type correct-
ness. The second conjunct, I , is the interesting one that explains why Peterson’s
algorithm implements mutual exclusion.
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TypeOK
∆
= ∧ pc ∈ [ {0, 1} → {“a0”, “a1”, “a2”, “a3a”, “a3b”, “cs”, “a4”} ]
∧ turn ∈ {0, 1}
∧ flag ∈ [ {0, 1} → boolean ]

I
∆
= ∀i ∈ {0, 1} :

∧ pc[i ] ∈ {“a2”, “a3a”, “a3b”, “cs”, “a4”} ⇒ flag [i ]
∧ pc[i ] ∈ {“cs”, “a4”} ⇒ ∧ pc[Not(i)] /∈ {“cs”, “a4”}

∧ pc[Not(i)] ∈ {“a3a”, “a3b”} ⇒ turn = i

Inv
∆
= TypeOK ∧ I

Fig. 4. The inductive invariant.

There is no point trying to prove that a formula is an inductive invariant if
TLC can show that it’s not even an invariant. So, we first run TLC to test if
Inv is an invariant. In the simple case of Peterson’s algorithm, TLC can check
not only that it is an invariant, but that it is an inductive invariant. We check
that Inv is an inductive invariant of Spec by checking that it is an (ordinary)
invariant of the specification Inv ∧2[Next ]vars , obtained from Spec by replacing
the initial condition by Inv . In most real examples, TLC can at best check an
inductive invariant on a tiny model—one that is too small to gain any confidence
that it really is an inductive invariant. However, TLC can still often find simple
errors in an inductive invariant.

3.2 Leaf Proofs for Steps 〈1〉1–〈1〉3

We now prove steps 〈1〉1–〈1〉3. We can prove them in any order; let us start with
〈1〉1. We expect this step to follow easily from the definitions of Init and Inv and
simple properties of sets and functions. TLAPS knows about sets and functions,
but it does not expand definitions unless directed to do so. (In complex proofs,
automatically expanding definitions often leads to formulas that are too big for
provers to handle.) We assert that the step follows from simple math and the
definitions of Init and Inv by writing the following leaf proof immediately after
the step:

by def Init , Inv

We then tell the Toolbox to run TLAPS to check this proof. It does so and
reports that the prover failed to prove the following obligation:

ASSUME NEW VARIABLE flag,

NEW VARIABLE turn,

NEW VARIABLE pc

PROVE (/\ flag = [i \in {0, 1} |-> FALSE]

/\ turn = 0

/\ pc = [self \in {0, 1} |-> "a0"])

=> TypeOK /\ I

This obligation is exactly what TLAPS’s back-end provers are trying to prove.
They are given no other facts. In particular, the provers know nothing about
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〈1〉2. Inv ∧ [Next ]vars ⇒ Inv ′

〈2〉1. suffices assume Inv , Next
prove Inv ′

〈2〉2. TypeOK ′

〈2〉3. I ′

〈2〉4. qed

Fig. 5. The top-level proof of 〈1〉2.

TypeOK and I , so they obviously can’t prove the obligation. We have to tell
TLAPS also to use the definitions of TypeOK and I . We do that by making
the obvious change to the by proof, after which TLAPS easily proves the step.
Forgetting to expand some definitions is a common mistake, and looking at the
formula displayed by the Toolbox usually reveals which definitions need to be
invoked.

Step 〈1〉3 is proved the same way, by simply expanding the definitions of
MutualExclusion, Inv , I , and Not . We next try the same technique on 〈1〉2. A
little thought shows that we have to tell TLAPS to expand all the definitions in
the module up to and including the definition of Next , except for the definition
of Init . However, when we direct TLAPS to prove the step, it fails to do so,
reporting a 65-line proof obligation.

TLAPS uses Zenon and Isabelle as its default back-end provers, first trying
Zenon and then trying Isabelle if Zenon fails to find a proof. However, TLAPS
also includes an SMT solver back-end [16] that is capable of handling larger
“shallow” proof obligations—in particular, ones that do not contain significant
quantifier reasoning. We instruct TLAPS to use the SMT back-end when proving
the current step by writing

by SMT def . . .

The SMT back-end translates the proof obligation to SMT-LIB [3], the standard
input language for different SMT solvers, and calls an SMT solver (CVC3 by
default) to try to prove the resulting formula. CVC3 proves step 〈1〉2 in a few
seconds. Variants of the SMT back-end translate to the native input languages
of Yices and Z3, which sometimes perform better than does CVC3 using the
standard SMT-LIB translation.

3.3 A Hierarchical Proof of Step 〈1〉2

For sufficiently complicated examples, an SMT solver will not be able to prove
inductive invariance as a single obligation. The proof will have to be hierarchi-
cally decomposed. To illustrate how this is done, we now write a proof of 〈1〉2
that can be checked using only the Zenon and Isabelle back-end provers.

Step 〈1〉2 and its top-level proof appear in Figure 5. The first step in the
proof of an implication like this would normally be:

〈2〉1. suffices assume Inv , [Next ]vars
prove Inv ′
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This step asserts that to prove the current goal, which is step 〈1〉2, it suffices to
assume that Inv and [Next ]vars are true and prove Inv ′. The step also changes the
goal of the rest of the level-2 proof to Inv ′ and allows the assumptions Inv and
[Next ]vars to be used in the rest of the proof. This step’s assertion is obviously
true, and TLAPS will check the one-word leaf proof obvious. However, the
proof of Figure 5 does something a little different.

Since the assumption [Next ]vars equals Next ∨ unchanged vars , it leaves
two cases to be proved: (i) Next is true and (ii) all variables are unchanged,
so their primed values equal their unprimed values. The proof in the second
case is trivial, and TLAPS should have no trouble checking it. In Figure 5, the
assumption in the suffices statement is Next rather than [Next ]vars , so the
remainder of the proof only has to consider case (i). To show that it suffices to
prove Inv ′ under this stronger assumption, the proof of that suffices step has
to prove case (ii).

The remainder of the level-2 proof is straightforward. Since Inv equals
TypeOK ∧ I , the goal Inv ′ is the conjunction of the two formulas TypeOK ′ and
I ′. We therefore decompose the proof by proving each conjunct separately. The
proof of the qed step is simply

by 〈2〉2, 〈2〉3 def Inv

Observe that we have to tell TLAPS exactly what facts to use as well as what
definitions to expand.

We next prove 〈2〉1–〈2〉3. Zenon proves 〈2〉1 when the definitions of vars, Inv ,
TypeOK , and I are expanded. Note that the definition of Next is not needed.
To prove 〈2〉2 and 〈2〉3, we need to use the definition of Next—that is, with all
definitions expanded down to TLA+ primitives—as well as the definition of Inv .
We also have to use the assumption that Inv and Next are true, introduced by
step 〈2〉1. This leads us to try the following proof for 〈2〉2.

by 〈2〉1 defs Inv , TypeOK , Next , proc, a0, a1, a2, a3a, a3b, cs, a4, Not

Instead of the reference to step 〈2〉1 in the by clause, we could also name the
required facts directly and write

by Inv ,Next defs . . .

The proof manager checks that Inv and Next indeed follow from the currently
available assumptions.

Zenon fails on this proof, but Isabelle succeeds. However, both Zenon and
Isabelle fail on the corresponding proof of 〈2〉3 (which requires also using the
definition of I ). To prove it (with only Zenon and Isabelle), we need one more
level of proof. That level appears in Figure 6, which contains the complete proof
of the theorem.

Since priming a formula means priming all variables in it, the goal I ′ has
the form ∀i ∈ {0, 1} : exp(i)′. A standard way to prove this formula is by ∀-
introduction: we introduce a new variable, say j , we assume j ∈ {0, 1}, and
we prove exp(j )′. TLA+ provides a notation for naming subexpressions of a
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theorem Spec ⇒ 2MutualExclusion
〈1〉1. Init ⇒ Inv
by def Init , Inv , TypeOK , I
〈1〉2. Inv ∧ [Next ]vars ⇒ Inv ′

〈2〉1. suffices assume Inv , Next
prove Inv ′

by def vars, Inv , TypeOK , I
〈2〉2. TypeOK ′

by 〈2〉1 def Inv , TypeOK , Next , proc, a0, a1, a2, a3a, a3b, cs, a4, Not
〈2〉3. I ′

〈3〉1. suffices assume new j ∈ {0, 1}
prove I ! (j )′

by def I
〈3〉2. pick i ∈ {0, 1} : proc(i)
by 〈2〉1 def Next
〈3〉3. case i = j
by 〈2〉1, 〈3〉2, 〈3〉3 def Inv , I , TypeOK , proc, a0, a1, a2, a3a, a3b,

cs, a4, Not
〈3〉4. case i 6= j
by 〈2〉1, 〈3〉2, 〈3〉4 def Inv , I , TypeOK , proc, a0, a1, a2, a3a, a3b,

cs, a4, Not
〈3〉5. qed
by 〈3〉3, 〈3〉4

〈2〉4. qed
by 〈2〉2, 〈2〉3 def Inv

〈1〉3. Inv ⇒ MutualExclusion
by def MutualExclusion, Inv , I , Not
〈1〉4. qed
proof omitted

Fig. 6. The complete proof.

definition. With that notation, the expression exp(j ) is written I !(j ). This leads
us to begin the proof of 〈2〉3 with the suffices step 〈3〉1 of Figure 6 and its
simple proof.

The assumption Next (introduced by 〈2〉1) equals ∃self ∈ {0, 1} : proc(self ) .
A standard way to use such an assumption is by ∃-elimination: we pick some
value of self such that proc(self ) is true. That is what step 〈3〉2 does, naming
the value i .

We simplified our task to proving I !(j )′ instead of I ′, using proc(i) instead of
Next , which eliminates two quantifiers. However, Zenon and Isabelle still cannot
prove the goal in a single step. The usual way to decompose the proof that process
i preserves an invariant is to show that each separate atomic action of process
i preserves the invariant. In mathematical terms, proc(i) is the disjunction of
the seven formulas a0(i), . . . , a4(i), each describing one of the process’s atomic
action. We can decompose the proof by considering each of the seven formulas
as a separate case.
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While this is the usual procedure, Peterson’s algorithm is simple enough
that it is not necessary. Instead, we just have to help the back-end provers by
splitting the proof into the two cases of i = j and i 6= j . The reader can see how
this is done in Figure 6. Observe that in the proof of case statement 〈3〉3, the
name 〈3〉3 refers to the case assumption i = j . There is no explicit use of 〈3〉1
because a new assumption in an assume is used by default in all proofs in the
assumption’s scope. The same is true of the formula i ∈ {0, 1} asserted by the
pick step. (This is a pragmatic choice in the design of TLAPS, based on the
observation that such facts are used so often.)

4 Writing Real Proofs

We have described how one writes and checks a TLA+ proof of a tiny example.
Several larger case studies have been carried out using the system. These include
verifications of Byzantine Paxos [13], the Memoir security architecture [17], and
the lookup and join protocols of the Pastry algorithm for maintaining a dis-
tributed hashtable over a peer-to-peer network [15]. TLA+ and TLAPS, with its
Toolbox interface, provide a number of features that help manage the complexity
of large proofs.

4.1 Hierarchical Proofs And The Proof Manager

The most important aid in writing large proofs is TLA+’s hierarchical and declar-
ative proof language, where intermediate proof obligations are stated explicitly.
While declarative proofs are more verbose than standard tactic scripts, they are
easier to understand and maintain because the information on what is currently
being proved is available at each point. Hierarchical proofs enable a user to keep
decomposing a complex proof into smaller steps until the steps become provable
by one of the back-end provers.

In logical terms, proof steps correspond to natural-deduction sequents whose
validity must be established in the current context (containing constant and
variable symbols, assumptions, and already-established facts). The Proof Man-
ager tracks the context, which is modified by non-leaf proof steps. For leaf proof
steps, it sends the corresponding sequent to the back-end provers, and records
the status of the step’s proof (succeeded, failed, canceled by the user, or omitted).

Because proof obligations are independent of one another, users can develop
proofs in any order and work on the proof of a step independently of the state
of the proof of other steps. This permits them to concentrate on the part of a
planned proof that is most likely to be wrong and require changes to other parts.
The Toolbox makes it easy to instruct TLAPS to check the proof of everything
in a file, of any single theorem, or of any single step. It displays every obligation
whose proof fails or is taking too long; in the latter case the user can cancel the
proof. Clicking on the obligation shows the part of the proof that generated it.

A linear presentation, as in Figure 6, is unsuitable for reading or writing
large proofs. The Toolbox’s editor helps reading and writing large TLA+ proofs,
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providing commands that show or hide particular subproofs. Commands to hide
a proof or view just its top level aid in reading a proof. A command that is
particularly useful when writing a subproof is one that hides all preceding steps
that cannot be used in that subproof because of their positions in the hierarchy.

TLA+’s hierarchical proofs provide a much more powerful mechanism for
structuring complex proofs than the conventional approach using lemmas. In a
TLA+ proof, each step with a non-leaf proof is effectively a lemma. One typical
1100-line invariance proof [13] contains 100 such steps. A conventional linear
proof with 100 lemmas would be impossible to read.

4.2 Fingerprinting: Tracking The Status Of Proof Obligations

During proof development, a user repeatedly modifies the proof structure or
changes details of the specification. Rerunning the back-end provers on a sizable
proof takes time. By default, TLAPS does not re-prove an obligation that it
has already proved—even if the proof has been reorganized and the step that
generated it has been moved, or if the step was removed from the proof and
reinserted in a later version. It can also show the user the impact of a change by
indicating which parts of the existing proof must be re-proved.

The Proof Manager computes a fingerprint of every obligation, which it
stores, along with the obligation’s status, in a separate file. Technically, a proof
obligation is canonically represented as a lambda term, with bound variables
replaced by de Bruijn indices [7] such that their actual names in the TLA+ proof
are irrelevant. The context is minimized by erasing symbols and hypotheses that
are not used in the step. The fingerprint is a compact representation of the
resulting term, which is therefore insensitive to structural modifications of the
proof context that do not affect the obligation’s logical validity.

The Toolbox displays the proof status of each step, indicating by color
whether the step has been proved or some obligation in its proof has failed or
has been omitted. Looking up an obligation’s status takes little time, so the user
can tell TLAPS to re-prove a step or a theorem even if only a small part of the
proof has changed; TLAPS will recognize any obligation that has not changed
and will not attempt to prove it anew. There is also a check-status command
that displays the proof status without actually launching any proofs.

An incident that occurred in the Byzantine Paxos proof reveals the advan-
tages of our method of writing proofs. The third author wrote the safety proof
primarily as a way of debugging TLAPS, spending a total of several weeks over
several months on it. Later, when writing a paper about the algorithm, he discov-
ered that it did not satisfy the desired liveness property, so it had to be modified.
He changed the algorithm, fixed minor bugs found by TLC, and reproved the
safety property—all in a day and a half, with about 12 hours of actual work. He
was able to do it that fast because of the hierarchical proof structure, TLAPS’s
fingerprinting mechanism (about 3/4 of the proof obligations in the new proof
had already been proved), and the Toolbox’s aid in managing the proof.

12



5 Related Work

We have designed the TLA+ proof system as a platform for interactively verify-
ing concurrent and distributed algorithms. Unlike most interactive proof assis-
tants [23], TLAPS has been designed around a declarative proof language that
is independent of any specific proof back-end. TLA+ proofs indicate what facts
are needed to prove a certain result, but they do not specify precisely how the
back-end provers should use these facts. Although this lack of fine control can
frustrate users who are intimately familiar with the inner workings of a partic-
ular prover, declarative proofs are less dependent on specific back-end provers
and less sensitive to changes in their implementation.

We write complex proofs by hierarchically structuring their logic. The graph-
ical user interface provides commands that support hierarchical proofs by allow-
ing a user to zoom in on the current context and by supporting non-linear proof
development. Although some other interactive proof systems such as Mizar [20]
and Isabelle/Isar [21] also offer hierarchical proofs, to the best of our knowledge
these systems do not provide the Toolbox’s abilities to use that structure to
aid in reading and writing proofs and to prove individual steps in any order—
facilities that we find crucial in developing and managing large proofs. The only
other proof assistant that we know to offer a mechanism comparable to our
fingerprinting facility is the KIV system [2].

The Rodin toolset supporting the Event-B formal method [1] shares several
aspects with TLAPS: Event-B and TLA+ are both based on set theory, both
emphasize refinement as a way to structure formal developments, and Rodin
and TLAPS mechanize proofs of safety properties with the help of different back-
end provers. Unlike with Event-B models, the structure of TLA+ specifications
is not fixed: any TLA+ formula can be considered as a system specification or
a property, and TLAPS does not impose a structure on invariant or refinement
proofs.

Provers designed for program verification such as VCC [6] or Why [8] target
low-level source code rather than high-level specifications of algorithms. They
are based on generators of verification conditions corresponing to programming
constructs, that are discharged by invoking powerful automatic provers. User
interaction is essentially restricted to the choice of suitable program annotations.

6 Conclusion

Using the example of Peterson’s algorithm, we have presented the main con-
structs of the TLA+ proof language and, by extension, the ideas underlying
the language design. That algorithm was chosen because it is well known and
simple—so simple that we had to eschew the use of the SMT solver back-end so
we could write a nontrivial proof. We explained in Section 4 why TLA+ proofs
scale to more complex algorithms and specifications that we do not expect any
prover to handle automatically. The hierarchical structure of the proof language
is essential for giving users flexibility in designing their proof structure, and it
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ensures that individual proof steps are independent of one another. The finger-
printing mechanism of TLAPS makes use of this independence by storing previ-
ously proved results and retrieving them, even when they appear in a different
context.

While not illustrating the entire proof language [12], Peterson’s algorithm
does show its main features. Steps correspond to natural-deduction sequents.
Leaf proofs immediately prove a step, citing the necessary definitions, facts, and
assumptions. Non-leaf proofs consist of another level of proof steps that end
with a qed step. This basic structure is oriented towards forward-style proofs,
but the judicious use of backward chaining (suffices steps) can make proofs
more readable. Some features of the proof language that do not appear in the
proof of Figure 6 are constructs for providing a witness to prove an existentially
quantified formula, introducing local definitions, and specifying facts that can
be used by the back-end provers even when they are not explicitly mentioned.

Different proof techniques, such as resolution, tableau methods, rewriting,
and SMT solving offer complementary strengths. Future versions of TLAPS will
probably add new back-end provers. Adding a new back-end mainly involves
writing a translation from TLA+ to the input language of the prover. Such trans-
lations can be complex, and there is a legitimate concern about their soundness
as well as about the soundness of the back-ends themselves. For back-ends that
can produce proof traces, TLAPS provides the option to certify the traces within
Isabelle. Proof trace certification has been implemented for Zenon, and we plan
to implement it for other back-end provers including SMT solvers. Still, it is
much more likely that a proof is meaningless because of an error in the formula
we are proving than because of an error in a back-end. Soundness also depends
on parts of the proof manager. Users who do not trust its fingerprinting mech-
anism can disable it and reprove the entire proof or any part of it. The proof
manager also carries out some critical transformations, such as replacing (a +b)′

by (a ′ + b′).

We cannot overstate how important it is that TLAPS is integrated with
the other TLA+ tools—especially the TLC model checker. Checking putative
invariants and assertions with TLC on finite instances of a specification is much
more productive than discovering errors during the proof. Users check the exact
same specifications that appear in their proofs. Less obvious is how useful it is
that TLC can evaluate TLA+ formulas. When verifying a system, we don’t want
to prove well-known mathematical facts; we want to assume them. However, it
is easy to make a mistake in formalizing even simple mathematics, and assuming
the truth of an incorrect formula can lead to an incorrect proof. TLC can usually
check the exact TLA+ formulas assumed in a proof for a large enough instance
to make us confident that our formalization of a correct mathematical result is
indeed correct.

We are actively developing TLAPS. The current version supports reason-
ing about non-temporal formulas, which is enough for proving safety properties,
including invariants and step simulation. Non-trivial temporal reasoning is re-
quired for proving liveness properties, and our main short-term objective is to
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support temporal reasoning in TLAPS. It is not obvious how best to extend nat-
ural deduction to temporal logic. We have designed an approach involving two
forms of sequents, expressed with two forms of the assume/prove statement
having different semantics, that we think will work well. We also plan to improve
support for standard TLA+ data structures such as sequences.
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