
Model Checking and Code Generation
for UML State Machines and Collaborations

Alexander Knapp and Stephan Merz

Institut für Informatik, Ludwig-Maximilians-Universiẗat München
{knapp,merz}@informatik.uni-muenchen.de

http://www.pst.informatik.uni-muenchen.de/projekte/hugo/

1 Supporting the UML by Formal Methods

The “Unified Modeling Language” (UML [1]) is generally accepted as the de facto
standard notation for the analysis and design of object-oriented software systems. It
provides diagrams for the description of static, dynamic, and architectural aspects of
systems at different levels of detail. In particular, dynamic aspects of system behavior
can be specified with the help of interaction (i.e., collaboration or sequence) diagrams
that describe single system runs. A more operational view is provided by UML state
machines, a variant of the Statechart notation introduced by Harel [2], that are associ-
ated with instances of classes.

The UML deliberately encourages the use of redundant descriptions of the same
aspects of a system, for example during different phases of software development. This
redundancy generates an obvious opportunity for verification and validation techniques
to ensure the consistency of these descriptions. Moreover, formal methods are generally
most beneficial when applied to abstract descriptions. We describe an ongoing project
to develop a set of tools, tentatively calledHUGO, where model checking technology is
applied to relate UML state machines and interaction diagrams. Considering the state
machine view as the “model” and the interaction view as the “property”, model check-
ing can be used to ensure that a system run as specified by the interaction diagram can
indeed be realised by a set of interacting state machines. In some cases, the absence of
errors can be expressed as the impossibility to realise certain “erroneous” interactions.
As is typical for applications of model checking, we concentrate on the control part of
UML models and largely abstract from the data manipulations.

While verification technology such as model checking can reveal errors in system
designs, coding errors during later implementation stages may still occur. Since state
machines can specify an object’s behavior in full detail, we propose to generate code
directly from the UML model. Ideally, formal analysis and code generation are applied
to the same model, raising the confidence in the correctness of the resulting system.

2 ATM Example

We will illustrate our approach at the hand of a simple UML model shown in Fig. 1
that describes the interaction of an automatic teller machine (ATM), a bank computer,
and a single user (left implicit). The simulation focuses on the validation of the user’s



«signal» done
verifyPIN()

«signal» PINVerified

«signal» abort
«signal» reenterPIN

1

atm

1

bank Bank

int maxNumIncorrect = 2
int numIncorrect = 0
boolean cardValid = true

ATM

(a) Class diagram

atm bank
a : ATM b : Bank

1: verifyPIN()
3: verifyPIN()

4: PINVerified
2: reenterPIN

(b) Expected collaboration

atm bank
a : ATM b : Bank

3: verifyPIN()

4: PINVerified
2: abort

1: verifyPIN()

(c) Erroneous collaboration

ReturningCard

AmountEntryVerification

CardEntry

Counting

Dispensing

PINEntry

Giving Money

PINVerified

abort

/ ^bank.done

/ ^bank.verifyPIN()

reenterPIN

(d) State machine diagram for classATM

CardValidVerifyingCard

Idle

PINCorrect

entry / numIncorrect = 0

PINIncorrect

VerifyingPIN

[else] / ^atm.abort

[cardValid]

[else] / cardValid = false; ^atm.abort

/ ^atm.PINVerified

[numIncorrect < maxNumIncorrect]
/ numIncorrect++; ^atm.reenterPIN

done

Verifying

verifyPIN()

(e) State machine diagram for classBank

Fig. 1.UML model of an ATM

60



card and PIN, abstracting from the actual data and computation. The class diagram in
Fig. 1(a) lays out the static structure of the system. The dynamic behavior is specified
by state machines for the classesATM andBank in Fig. 1(d) and 1(e).

State machines consist of states, which may be simple (likeCardEntry), compos-
ite (GivingMoney), or concurrent composite (Verifying) showing orthogonal regions that
represent the parallel composition of submachines. Each state can have entry and exit
actions (entry / numIncorrect = 0), which are executed when a state is activated or deac-
tivated, as well as a (do-)activities performed as long as the state is active. Transitions
between states are triggered by events (abort), show guards ([cardValid]), and may spec-
ify actions to be executed or events to be emitted when a transition is fired (ˆatm.abort).
Completion transitions (transition leavingCardEntry), are triggered by an implicit com-
pletion event emitted when a state completes all its internal activities. Fork and join
(pseudo-)states (bars) synchronize transitions entering or exiting orthogonal regions,
junction (pseudo-)states (lozenges) can be used for case splits.

The actual state of a state machine is given by its active state configuration, i.e., the
tree of active states where an active concurrent composite state contains one active sub-
state per orthogonal region, plus the contents of its event queue, containing the events
received but not yet dispatched. The event dispatcher dequeues the first event from the
queue, which is then processed in a run-to-completion (RTC) step. First, a maximally
consistent set of enabled transitions is chosen: a transition is enabled if all of its source
states are contained in the active state configuration, if its trigger is matched by the
current event, and if its guard is true; two enabled transitions are consistent if they do
not share a source state. For each transition in the set, its least common ancestor (LCA)
is determined, i.e. the lowest composite state containing all the transition’s source and
target states. The transition’s main source state, i.e. the direct substate of the LCA con-
taining the source states, is deactivated, the transition’s actions are executed, and its
target states are activated.

The collaboration diagram in Fig. 1(b) specifies an expected interaction between
an ATM a and a bankb: the bank reacts to an incorrect PIN (sent synchronously) by
requesting another PIN to be entered (sent asynchronously), which is then acknowl-
edged by the bank. In contrast, the collaboration in Fig. 1(c) describes an undesired
behaviour: when the bank aborts a transaction, the card should have been invalidated,
and no subsequent PIN entry should be valid.

3 Code generation inHUGO

The code generation component ofHUGO produces Java code that behaves as prescribed
by the state machines of a UML model. A generic set of Java classes (collected in
the packagehugo.rt.java) provides a standard runtime component state for UML
state machines. These classes are organized along the UML meta model in order to
ensure adherence to the UML semantics. For example, every state of a state machine
is represented by a separate object that provides methods for activation, deactivation,
initialization, and event handling. Similarly, objects representing the event queue and
the event dispatcher are generated for every state machine; they implement the RTC
semantics. Since the UML calls for completion events to be prioritized, there are actu-

61



ally two queues for completion events and ordinary events, and any completion events
are dispatched first. The event dispatcher hands the event to the top state of the state
machine. Transition selection is implemented by a greedy algorithm as suggested by
the UML semantics: the event traverses the state hierarchy until one or more states
are found that consume the event. Simple states determine whether to fire one of their
transitions, whereas composite states first let their active substate(s) handle the event
before trying to fire their own transitions. This policy ensures that innermost transitions
are prioritized, as required by the UML. In the case of concurrent composite states, the
orthogonal regions are traversed in a random permutation to ensure fair selection.

These generic classes are complemented by code that is specific to the given model.
In particular,HUGO generates a Java class for each class defined in the UML model
that contains method bodies for the specified operations and signal receptions, as well
as arun method to set up and initialize the associated state machine. Besides, auxiliary
classes are generated for all declared events as well as for guards and actions that appear
as annotations of transitions (we assume that Java syntax is used in the UML model).
A default implementation for do activities sets up a separate thread and handles the
interaction with the state machine concerning (de-)activation and completion; the user
should define a subclass that performs the actual task. For the ATM example about 800
lines of code in 39 classes are generated.

HUGO code generation, interpretative in nature, is not intended to produce product-
quality, optimized code, but rather to represent the UML semantics as faithfully as pos-
sible. The code generator supports all features of UML state machines except for time
and change events; support for time events is currently being implemented.

4 Model Checking

The main focus of the model checking component ofHUGO is to verify the consistency
of UML state machines against specifications expressed as collaboration or sequence
diagrams.HUGO can also check for absence of deadlocks. More sophisticated verifica-
tion (e.g., against properties expressed in temporal logic) is possible, but requires some
knowledge of the underlying model checker and the structure of the translation.

The first implementation of theHUGO back end for model checking compiled UML
state machines intoPROMELA, the input language of theSPIN model checker [3], and
attempted to closely follow the structure of the code generator. Instead of objects, dif-
ferent processes are generated for each (sub-)state of a state machine, and the transition
selection algorithm relied on passing messages between these processes. Collaborations
are compiled into observer automata that may synchronize on the messages exchanged
between the interacting instances. The feasibility of an interaction can thus be reduced
to a reachability problem for the observer automaton. A successful run produces a
“counter-example” that can be displayed to the user and contains detailed information
about the states entered and transitions taken by the participating state machines.

This compilation scheme still adheres closely to the UML meta model and made
us confident about the validity of the analysis. However, a naı̈ve implementation would
have resulted in state spaces far beyond the reach ofSPIN. Our implementation therefore
made use of (informal) symmetry arguments to reduce the amount of non-determinism,

62



and relied on the compression algorithm implemented inSPIN to reduce the memory re-
quirements [9]. Even with these optimizations, a UML model such as the ATM example
of Fig. 1 would generate about half a million states and transitions, takingSPIN about a
minute to analyze. Moreover, the size of the intermediatePROMELA and C codes could
be on the order of one megabyte or more, often causing the time taken by the C compiler
to dominate the running time of the model checker.

We have therefore optimized our translation such that the generic processes of the
original translation are replaced by processes tailored to the given model. We have
roughly followed the ideas presented by Lilius and Porres [7], although we have found
their implementation of the transition selection algorithm in vUML to be incorrect. With
these optimizations, the ATM example can be analyzed in less than a second, and code
size is reduced to about 900 lines. TheSPIN back end ofHUGO handles most features
of UML state machines, excepting deep history states, sync states, internal transitions,
and time as well as change events.

As a third component ofHUGO, we have also implemented a back end for the real-
time model checkerUPPAAL [5] to support the analysis of models involving real-time
constraints, expressed via time eventsafter(d) that are raisedd time units after the source
state has been entered [4]. The lack of complex data structures in theUPPAAL modeling
language and the absence of memory optimizations required yet a different compilation
strategy where the hierarchical structure of UML state machines is flattened out to ob-
tain a conventional finite-state machine model. Because the UML semantics does not
prescribe a particular timing model, we had to take several design decisions. Essentially,
we adopt a semantics where local computation takes zero time, whereas communication
between instances is time-consuming, bounded by a user-defined constant. TheUPPAAL

back end is the least complete of theHUGO components in terms of supported features,
lacking history states, deferred events, do activities, and change events. We have used it
to analyze a UML model of the “Generalized Railroad Crossing”, a standard benchmark
problem for timed systems, in a couple of seconds.

5 Discussion

The UML is widely used for the description of object-oriented designs and therefore
provides an excellent environment for applications of formal methods to increase the
quality of systems. We believe that tools that provide added value while being least in-
trusive and as much automated as possible will find it easier to be accepted by software
developers.HUGO takes as input standard XMI files that can be produced by off-the-
shelf UML editors and allows both the model and the properties to be specified in terms
of UML diagrams. Moreover, it provides both analysis and code generation features in
order to eliminate or at least reduce the potential for coding errors to creep in.

The idea to apply model checking technology to variants of Statecharts is certainly
not new. In the context of the UML, similar projects have been reported by Latella et
al. [6] and by Lilius and Porres [7]. The main problem is to what degree to formalize the
operational semantics of UML state machines, which is only described informally by
the UML designers [8]. Latella et al., following previous work on the formalization of
Harel Statecharts, encode UML state machines in the format of hierarchical automata,

63



which are then compiled toSPIN. Unfortunately, they do not support several important
features of UML state machines such as do activities, entry and exit actions, completion
events and transitions, history, and choice states, and it appears non-trivial to add some
of these features in their framework. Lilius and Porres instead employ a custom format
to describe the semantics of UML state machines, their vUML tool, however, shows
several deviations from the semantics, in particular, as regards completion events and
transition selection. In any case, the translations to such formats are non-trivial, and it is
not obvious how to adapt them to changes in the UML semantics that can be anticipated
for the forthcoming version 2.0 of the UML. We have therefore tried to ensure the
correctness of our compilers by close adherence to the UML meta model, which should
also make our compilers relatively straightforward to adapt to changes. Nevertheless,
we are now investigating the use of a common representation that would allow better
integration of the different components ofHUGO and could be used to justify different
optimizations performed by the back ends.

Development ofHUGO is an ongoing project, and we intend to support some more
advanced features of the UML. In particular, it is not always possible or convenient to
express properties as collaborations without referring to the active state configuration
of the state machines. We intend to support a limited set of OCL constraints when
compiling the UML model. Moreover, example runs are now only presented in textual
format (for theSPINback end) or in the built-in simulation environment (for theUPPAAL

back end). It would be desirable to present these again at the level of the UML model.

Acknowledgements.Timm Scḧafer implemented the first version ofHUGO, Christopher
Rauh the back end forUPPAAL. Simon B̈aumler optimized theSPIN back end.

References

1. G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Modeling Language User Guide.
Addison–Wesley, Reading, Mass., &c., 1998.

2. D. Harel. Statecharts: A Visual Formalism for Complex Systems.Sci. Comp. Program.,
8(3):231–274, 1987.

3. G. J. Holzmann. The Model Checker SPIN.IEEE Trans. Softw. Eng., 5(4), 1997.
4. A. Knapp, S. Merz, and C. Rauh. Model Checking Timed UML State Machines and Collabo-

rations. InProc. 7th Int. Symp. Formal Techniques in Real-Time and Fault Tolerant Systems,
2002. To appear.

5. K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell.Int. J. Softw. Tools for Techn.
Transfer, 1(1–2):134–152, 1997.

6. D. Latella, I. Majzik, and M. Massink. Automatic Verification of a Behavioural Subset
of UML Statechart Diagrams Using the SPIN Model-Checker.Formal Aspects Comp.,
11(6):637–664, 1999.

7. J. Lilius and I. P. Paltor. Formalising UML State Machines for Model Checking. In R. B.
France and B. Rumpe, editors,Proc. 2nd Int. Conf. UML, volume 1723 ofLect. Notes Comp.
Sci., pages 430–445. Springer, Berlin, 1999.

8. Object Management Group. Unified Modeling Language Specification, Version 1.4. Specifi-
cation, OMG, 2001.http://cgi.omg.org/cgi-bin/doc?formal/01-09-67.

9. T. Scḧafer, A. Knapp, and S. Merz. Model Checking UML State Machines and Collaborations.
In S. Stoller and W. Visser, editors,Proc. Wsh. Software Model Checking, volume 55(3) of
Elect. Notes Theo. Comp. Sci., Paris, 2001. 13 pages.

64


