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Abstract. Executions in the PharOS real-time system are determin-
istic in the sense that the sequence of local states for every process is
independent of the order in which processes are scheduled. The essential
ingredient for achieving this property is that a temporal window of ex-
ecution is associated with every instruction. Messages become visible to
receiving processes only after the time window of the sending message
has elapsed. We present a high-level model of PharOS in TLAT and
formally state and prove determinacy using the TLAT Proof System.

1 Introduction

The outcome of an execution of a concurrent system depends not only on the
inputs provided from the system’s environment, but also on the relative or-
der in which the system’s processes are scheduled for execution. This order is
largely unpredictable, especially when the system executes on parallel hardware;
it introduces an element of non-determinism even when every process behaves
deterministically. Testing and debugging of concurrent systems is therefore chal-
lenging and involves so-called “Heisenbugs” that are very difficult to reproduce.

For real-time systems, such as controllers of safety-critical components in
planes or cars, designers are very reluctant to admit systems that exhibit non-
deterministic behavior. Fortunately, it is possible to design concurrent real-time
systems such that their behavior does not depend on the order of scheduling, as
long as all components have access to a common time base. This hypothesis can
be satisfied in local networks of embedded systems. For example, the PharOS
real-time system [9, 10], commercialized® under the name Asterios®, has been
designed to ensure that system executions do not depend on the scheduling order
of processes. The core idea is to associate every instruction that some process
wishes to execute with a temporal window of execution and to ensure that a
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message sent from one process to another can be received only if the execution
window of the receiving instruction is strictly later than that of the sending in-
struction. Consider two executions that execute both the sending and the receiv-
ing instructions according to the given temporal constraints, then the message
will either be received in both executions, or in neither of them. This argument
is at the core of the determinacy proof for the PharOS model of execution [9].

In this work, we formally specify a high-level model of PharOS executions in
the specification language TLA™ [6] and use TLAPS, the TLA" Proof System [4],
to formally prove determinacy of our model. Our proof is based on the paper-
and-pencil proof of [9]. In contrast to that proof, TLA™ proofs such as ours must
be written in assertional style, i.e., based on inductive invariants, rather than
making explicit references to different states of an execution. Moreover, the mere
statement of determinacy is not entirely obvious in a linear-time framework such
as TLA™T because the property refers to the equivalence of different executions,
whereas formulas of linear-time temporal logic are expressed in terms of a single,
implicit execution.

Our work reinforces the confidence in the result that PharOS executions are
indeed deterministic and makes explicit some hypotheses that were implicit in
the original proof. It represents a significant case study for TLAPS and has also
contributed several lemmas that are now included in the standard library of the
TLAPS distribution.

Outline. Fundamental concepts of PharOS and of TLA™T are presented in Sec-
tion 2. Sections 3 and 4 are the core of the paper and describe the formal model
of PharOS and the proof of the main theorem. We conclude in Section 5.

2 Background

2.1 PharOS

The PharOS model of execution [9,10] is based on the OASIS model [2,12]
but relaxes the constraints on the precise instants of execution of individual pro-
cesses. It was designed with the objectives of ensuring predictability of execution
and of supporting formal reasoning. Avoiding race conditions between processes
is crucial for achieving the first objective. It is assumed that the system consists
of a fixed number of tasks (called agents), each of which executes instructions
sequentially and atomically. All agents share a common time reference, and each
instruction is associated with a fixed, non-empty time window of execution in
the sense that it must be executed between an earliest and latest time instant
(cf. Fig. 1). The only assumptions that are made about the scheduling policy for
the agents are that the specified time windows are respected, and that deadlines
are never missed. The latter property is in practice ensured by schedulability
analysis of the implementation, different from the techniques discussed in the
present paper [8].

Agents communicate with one another exclusively by asynchronous message
passing. It can be seen (and follows from our proof) that determinacy of the
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Fig. 1. Time constraints associated with instructions in PharOS.

execution model can therefore be reduced to determinacy of message reception.
In order for a message m to be received by an agent, it is not enough that the
corresponding send instruction was executed prior to reception: it must also be
visible to the receiving instruction. As indicated in Fig. 1, the message can be
visible only if the time window associated with the send instruction precedes the
time window of the receiving instruction, i.e. the latest possible instant at which
the message can be sent precedes the earliest instant at which it can be received.
Hence, if there exists a schedule in which the message was not sent prior to the
execution of the receiving instruction, the message cannot be received in any
execution.

2.2 The TLAT Specification Language

TLA™T [6] is a formal specification language that is mainly intended for model-
ing concurrent and distributed algorithms and systems, and that has successfully
been used in academic and industrial environments [3,7,13]. It is based on un-
typed Zermelo-Fraenkel set theory for modeling the data manipulated by the
system, and on the Temporal Logic of Actions, a variant of linear-time temporal
logic, for describing executions. Formulas of temporal logic serve for specifying
system behavior as well as properties of systems. Systems are modeled as state
machines. In particular, the system state is represented by a tuple of variables.
State predicates (i.e., first-order formulas containing state variables) represent
sets of system states, such as the initial condition or system invariants. Tran-
sition predicates, also called actions, are first-order formulas that contain both
ordinary (unprimed) and primed occurrences of state variables; they describe
state transitions where unprimed variables denote the value in the first state and
primed variables denote the value in the second state. For example, z’ = z — ¢/
is true of any pair (s, t) of states such that the value of z in state t equals the
difference between the values of x in state s and y in state ¢. The canonical form
of the safety part of a system specification in TLAT is a temporal formula of the
form

Init A O[Next]yars

where Init is a state predicate constraining the initial states, Nezt is an action
that describes all possible system steps, and vars is a tuple of all variables used to
represent the state of the system. Temporal formulas are evaluated over infinite
sequences of states, and the above formula is true iff Init is true of the first state



4 Azaiez, Doligez, Lemerre, Libal, Merz

and all pairs of subsequent states either leave vars unchanged or satisfy Nezt.
Fairness conditions can be added to the above formula in order to ensure liveness
properties, but they play no role in this paper.

If P is a state predicate then P’ denotes a copy of P in which all state
variables z have been replaced by their primed counterparts z’. It is a transition
formula that asserts that P is true of the second state of the pair of states.
For example, the familiar proof obligation requiring that an invariant Inv be
preserved by the system’s next-state relation is written as the formula

Inv A [Next]yars = Inv'.

Sets and functions are central in TLA™ for modeling systems and their data.
Semantically, every TLA™ value is a set. The notations for standard set-theoretic
constructions are familiar. In particular, {e(z) : 2 € S} and {z € S : p(z) }
are two forms of set comprehension: the first one denotes the set of values e(z)
for all elements x of set S, and the second one the subset of elements of S that
satisfy predicate p. Also, SUBSET S and UNION S denote the powerset (set of all
subsets) of S and the union of the elements of the family S of sets. A function f is
a total mapping over its domain DOMAIN f, function application is written f|e],
and [z € S — e(z)] denotes the function with domain S such that f[z] = e(z)
for all z € S. The set [S — T] denotes the set of functions f with domain S
such that f[z] € T for all z € S.

An n-tuple (or sequence of length n) d = (dy,...,d,) is a function with
domain 1..7n such that d[i] = d; for all i € 1..n. The set Seq(S) denotes the
set of all finite sequences whose elements are contained in the set S. Standard
operations on sequences include Append (adding an element at the end of a
sequence) and Head and Tail for accessing the first element and the remainder
of a non-empty sequence. The predicate IsPrefiz(s, t) holds if s is a prefix of the
finite sequence t.

Records are represented as functions whose domains are finite sets of strings.
For example, [id : String, bal : Int] denotes the set of records with two fields id
and bal whose values are respectively a string and an integer. For such a record
acent, the fields are accessed as acent.id and accnt.bal (short-hand forms for
acent['id"] and acent[“bal”]). The expression [id — ‘“xyz’, bal — 123] denotes a
record in the above set.

For writing long formulas, TLAT adopts the convention of writing multi-
line conjunctions and disjunctions as lists “bulleted” with A and V, and where
indentation is used instead of parentheses to indicate precedence. For example,

ANAVB
AV C
v D
NE=F

is a conjunction of three formulas, the first and second of which are disjunctions.
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2.3 TLA™T Modules

TLAT specifications are structured as modules. A module declares parameters
(for example, the set of processes of a multi-process algorithm), defines operators,
and may state assumptions and theorems about the parameters and operators. In
fact, standard integer and real arithmetic, as well as the operations on sequences
mentioned above, are not part of the language itself, but are defined in modules
of the standard library. Modules can be imported using the EXTENDS keyword,
which corresponds to copying the contents of the imported module into the
current module. A more elaborate form of import is provided through module
instantiation, which allows substituting expressions for module parameters.

We define several modules that provide operations used in our specification.
The module Streams defines an infinite sequence over a set S as a function from
positive integers to S and provides several theorems about streams. In order to
give a flavor of TLA™T, an excerpt of the module is shown here, omitting the
proofs.”

MODULE Streams
EXTENDS NaturalsInduction, Functions, Sequence Theorems
Natp = Nat \ {0}
Stream(S) = [Natp — S|
take(w,n) = Restrict(w,1..n)
LEMMA takeStream =

ASSUME NEW S, NEW w € Stream(S), NEW n € Nat

PROVE take(w,n) € Seq(S) A Len(take(w,n)) =n
LEMMA takeStreamMonotonic =

ASSUME NEW S, NEW w € Stream(S),

NEW m € Nat, NEW n € Nat, m < n

PROVE IsPrefiz(take(w, m), take(w, n)) |

Another module introduces the operation filter(s, a). It takes as its first ar-
gument s a finite sequence of system states (cf. set SystemState introduced in
section 3 below); each system state is a record whose st field is an array contain-
ing the local states of all agents. The second argument of filter is an agent a.
The operation projects s to the sequence of local states of agent a, and then
removes finite repetitions of states: when s corresponds to a prefix of a system
execution, repeated agent states typically correspond to steps where some other
agent than a was executed. Its formal definition is thus given as the composition
of a projection operator and another operator for removing finite stuttering:

project(s,a) = [i € 1.. Len(s) — si].st[a]]
unstutter(s € Seq(State)] =

7 The standard module Functions defines the domain restriction of a function as
Restrict(f, S) = [z € S — f[z]].
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IF Len(s) <1 THEN s
ELSE IF Last(s) = s[Len(s) — 1] THEN unstutter|[Front(s)]
ELSE Append(unstutter|Front(s)], Last(s))

filter(s,a) = unstutter[project(s, a)]

The definition of unstutter illustrates the definition of recursive functions in
TLA*. We prove many facts about these operations that are used in our main
proof, including those listed below.

LEMMA filter_range =
ASSUME NEW H € Seq(SystemState), NEW a € Agent
PROVE Range(filter(H, a)) = {H]Ji].st[a] : i € 1.. Len(H)}
LEMMA filter _IsPrefic =
ASSUME NEW H1 € Seq(SystemState), NEW H2 € Seq(SystemState),
NEW a € Agent, IsPrefic(H1, H2)
PROVE IsPrefiz(filter(H1, a), filter(H2, a))
LEMMA IsPrefiz_filter =
ASSUME NEW H1 € Seq(SystemState), NEW H2 € Seq(SystemState),
NEW a € Agent, IsPrefix(filter(H1, a), filter(H2, a))
PROVE JH € Seq(SystemState) : A IsPrefiz(H, H2)
A filter(H, a) = filter(H1, a)

2.4 Tool Support for TLAT

The formal verification of TLA™T specifications is supported by the TLC model
checker and by TLAPS, the TLAT Proof System. TLC [16] is an explicit-state
model checker that can verify properties of finite instances of TLA™T specifica-
tions. Similar to the ProB model checker [11], TLC is notable for its capability
to evaluate a highly expressive, set-based expression language.

For analysis with TLC, parameters of TLAT modules must be instantiated
by fixed values (such as instantiating the set of processes to the set {1,2,3}).
Additionally, it must be ensured that all values that variables take during any
execution of the specified system belong to some finite set. This is not always
possible: for example, a finite instance of a system may have an unbounded state
space when communication channels are represented by unbounded sequences
and messages may be resent. In such cases, analysis may be restricted to states
satisfying a user-defined constraint. While this implies an under-approximation
of the analyzed state space, any counter-example produced by TLC within the
restricted search space is an actual system execution. Going further, the user
may also override definitions that TLC either cannot evaluate or that lead to
unbounded state spaces. In these cases, the semantics can be changed arbitrarily,
and the significance of the results of verification must be ensured by the user,
but skilled use of these features helps building confidence in the specification.
In this project, we have mainly used TLC for validating definitions of complex
operators such as the filter operation shown in Section 2.3, where it helped us
to catch off-by-one and similar errors.
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TLAPS [4] is an interactive proof assistant for TLA™. It allows users to develop
proofs for lemmas and theorems asserted in a TLA' module, using a hierarchical
proof language. These proofs are interpreted by the core of TLAPS, called the
proof manager. Obligations corresponding to the steps in the proof are sent
to automatic proof backends, including first-order provers, SMT solvers, and
a decision procedure for propositional temporal logic. If no backend is able to
prove the step, the user can write a more detailed, lower-level proof of the step.
Proofs for the different steps can be developed in any order, which lets users
concentrate on the most difficult or interesting part of a proof first and fill in
details later. All proof obligations whose proof was already attempted during
the current project are stored in a data base, and TLAPS allows users to quickly
check the status of the proof and assess the impact of changes in definitions or
assertions.

Both TLC and TLAPS are accessed from the TLA' Toolbox, an Eclipse-based
GUI for editing TLA™ specifications. The ability to use the same specifications
for model checking and for proof is very valuable for validation. In particular,
TLC can be used to check if an assertion appearing in a proof can be invalidated
in a finite instance, before making a futile proof attempt.

3 A High-Level Model of PharOS in TLAT

Our objective in specifying PharOS in TLA™ is to provide a high-level model
that abstracts from choices made in particular implementations. In particular,
we do not wish to commit to any scheduling policy, nor fix the time taken by
individual instructions, or indeed the set of instructions that an instance of
PharOS executes. We thus obtain a highly non-deterministic specification that
is intended to encompass all possible system executions.

A TLA™ module representing the static model of PharOS appears in Fig. 2.
PharOS coordinates executions of processes, called agents, each of which has
local states. Correspondingly, the constants Agent and State are declared as
parameters in the module. We assume that every state s identifies the instruction
instrOf (s) that the agent will execute next. There are three kinds of instructions:
local instructions simply modify the local state of an agent by applying an update
function. Send instructions similarly update the local state but are also tagged
with a message identifier and inserted into the message pool. Receive instructions
attempt to retrieve the message® with the given identifier from the message pool
and apply an update to the local state whose effect depends on whether the
message could be received.

PharOS is a real-time system, and time is discrete, represented by natural
numbers. In particular, the instructions manipulated by PharOS are equipped
with a temporal execution window that indicates the earliest and latest points
in time when the instruction can be executed. The functions updating the local
states are assumed to be monotonic in the sense that the execution window of

8 For simplicity, messages are identified with the sending instruction.
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MODULE Types

EXTENDS Sequences, Streams, TLAPS
CONSTANT Agent, State, initState, instrOf (=), Msgld, Update, visible(_, )
Time = Nat
Instruction = [type : {“local”}, upd : Update]
U [type : {"send” }, msg : Msgld, upd : Update]
U [type : { “receive” }, msg : Msgld, bupd : [BOOLEAN — Update] |
DatedInstruction = { z € [ins : Instruction, early : Time, late : Time) :
z.early < z.late }
Message = { di € DatedInstruction : di.type = "send” }
ASSUME instrOf _type 2 Vs € State : instrOf (s) € DatedInstruction
SystemState = [st : [Agent — State], msgs : SUBSET Message, t : Time]
GoodNextTime(s, a,t) = A st <t
A instrOf (s.st[a]).early < t
A Vb € Agent : t < instrOf(s.st[b]).late
GoodSystemState = { s € SystemState :
Jda € Agent, t € Time : GoodNextTime(s, a,t) }
ASSUME goodInitState =
[ st — initState, msgs — {},t — 1] € GoodSystemState
ASSUME Update_type = Update € SUBSET [State — State]
ASSUME Update_monotonic 2 Vstate € State, upd € Update :
A instrOf (state).early < instrOf (upd|state]).early
A instrOf (state).late < instrOf (upd|[state)).late

ASSUME visible_cond = Vdi,dj € DatedInstruction :
A wisible(di, dj) € BOOLEAN
A wvisible(di, dj) = di.late < dj.early
msgReceived(msgs, di) 2 3i € msgs : di.ins.msg = 4.ins.msg A visible(i, di)
exec(state, msgs) =
LET i = instrOf (state)
IN IF i.ins.type = “update” THEN (i.ins.upd[state], msgs)
ELSE IF i.ins.type = “send” THEN (i.ins.upd[state], msgs U {i})
ELSE (i.ins.bupd[msgReceived(msgs, i)][state], msgs)
executes(a, pre, post) =
LET pstate = pre.st[a]
res = ezec(pstate, pre.msgs)
IN A GoodNextTime(pre, a, post.t)
A post.st = [ pre.st EXCEPT ![a] = res[1]]
A post.msgs = res|2]
ASSUME TimeProgress 2
VH € Stream(SystemState) :
(VYn € Natp : Ja € Agent : executes(a, H[n], H[n + 1]))
= VT € Time:3k € Natp : H[k].t > T

Fig. 2. Static model of PharOS.
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the instruction associated with the updated state cannot precede the execution
window of the instruction for the original state. As specified in the definition of
operator msgReceived, a message can be received if it is present in the message
pool and if it is wvisible, which implies that the execution window of the sending
instruction precedes the execution window of the receiving instruction.

The operator exec corresponds to the result of executing the pending instruc-
tion of the local state in the context of the message pool passed as the arguments.
It returns a pair consisting of the updated state and the new message pool. Note
that in our model, nothing is assumed about the delivery order of messages, and
that a message may be received multiple times.

A system state is represented as a record with three fields corresponding to
the array of local states per agent, the messages that have been sent, and the cur-
rent time. Given system state s and agent a, the predicate GoodNextTime(s, a, t)
identifies time instants ¢ at which a can take a step without any deadline being
missed. More precisely, it holds if ¢ is at least as big as both the time recorded in
system state s and the earliest execution time for the instruction that a is about
to execute, but does not exceed the time window of the pending instruction of
any agent b (including a itself). A good system state is one for which some such ¢
exists, for some agent a. The initial states of every agent are given by parameter
initState, and we assume that the system state formed by this state assignment,
an empty message pool, and initial time 1 is good.

The predicate ezecutes(a, pre, post) is true if the system state post can be
obtained from the system state pre by an execution of agent @ at a good
next time. It is easy to prove that whenever pre is a good system state then
executes(a, pre, post) implies that post is also good. As expressed by predicate
TimeProgress, we assume that in any infinite sequence of system states such that
every transition corresponds to the execution of some agent, the recorded time
progresses beyond any bound. This corresponds to the familiar non-Zenoness
assumption in the analysis of real-time systems [1].

Figure 3 presents the system specification of PharOS. The state of the system
is represented by the variables state, messages, and time.? Additionally, variable
history is used for the specification of determinacy; it records the sequence of all
previous states of the system. The overall system behavior is specified in standard
form as formula Spec. The definition of the initial condition is obvious. The
next-state relation requires that time advances, without missing any deadline,
to some value within the execution window for the instruction of some agent a,
and that the state and message pool are updated according to the execution of
that instruction. Moreover, the new system state is appended to the sequence
history.

We start by proving that the predicate TypeOK is indeed an invariant of
specification Spec, i.e. that Spec = OTypeOK is valid. Moreover, we prove the
following invariants.

9 Alternatively, we could have used a single variable and represented the system state
as a record in set SystemState.
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MODULE System_Spec

[
EXTENDS Types, Filters

VARIABLES state, messages, time, history
vars 2 (state, messages, time, history)
TypeOK = A state € [Agent — State]
A messages € SUBSET Message
A time € Time
A history € Seq(SystemState) \ {{)}
Init = A state = initState A messages = {} A time = 1
A history = ([st — state, msgs — messages, t — time])
Next =
A time’ € {t € Time : t > time}
A Va € Agent : time' < instrOf (state[a)).late
A Ja € Agent :
A instrOf (statela)).early < time’
A LET res = exec(state[a], messages)
IN A state’ = [state EXCEPT ![a] = res[1]]
A messages’ = res|2]
A history’ = Append(history, [st — state’, msgs — messages’, t — time'])
Spec 2 TInit A DO[Next]vars
L J

Fig. 3. Dynamic model of PharOS executions.

Inv = A Last(history) = [st — state, msgs — messages, t — time]
A Vi € 1.. Len(history) : history[i].t < time
A Ya € Agent : time < instrOf (state[a]).late

Msglnv = LET instr(a) = {instrOf (history[i].st[a]) : i € DOMAIN history}
sends(a) = {di € instr(a) : di.ins.type = “send” }
toSend = UNION {sends(a) : a € Agent}
expired = {m € toSend : m.late < time}
IN A messages C toSend
A expired C messages

Predicate Inv asserts that the last element of the history sequence records
the current system state, that the time recorded at any history entry cannot
exceed the current time, and that no agent attempts to execute an instruction
whose deadline has passed. Predicate Msglnv states bounds on the contents of
the message pool. First, any message that was sent corresponds to some send
instruction of some agent in the execution history. Second, send instructions
whose deadline has expired must indeed have been executed, and hence be in
the message pool. The proofs of these invariants are straightforward.
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4 Stating and Proving Determinacy

Our main result about the formal model of PharOS is that its executions are
deterministic in the sense that the sequence of local states of every agent is the
same in any execution, independently of the order of scheduling.

4.1 Witness Executions

Since we cannot directly refer to different executions in a linear-time formalism
such as TLAT, we will state and prove determinacy of executions in PharOS by
relating any execution as specified by formula Spec to a fixed, statically chosen
“witness” execution. The witness execution is represented as a stream of system
states. We will choose the witness such that every agent executes infinitely often.
Formally, we introduce the predicate

IsWitness(H) =
A H € Stream(GoodSystemState)
A H[1] = [ st — initState, msgs — {}, ¢t — 1]
A N¥n € Natp : Ja € Agent : executes(a, H[n], H[n + 1])
A Ya € Agent : ¥Yn € Natp :
Im € Natp : m > n A executes(a, H[m], H[m + 1])

In words, a witness is a stream of good system states that starts in the
initial system state, where all transitions correspond to the execution of some
agent, and where every agent executes infinitely often. Observe that the witness
execution is represented as a TLA™ value, independent of the actual system
execution, and that the predicate Is Witness does not refer to any state variable.
In particular, system states that appear in the witness are explicitly numbered.

In order to ensure that our subsequent results are not vacuous, we prove the
existence of a witness execution.

THEOREM wilnessEzistence = Jw € Stream(SystemState) : IsWitness(w)

The proof relies on the inductive definition of an execution according to a
specific scheduling strategy, for which we then prove that the resulting execution
is a witness. The time progress assumption stated in Fig. 2 ensures that every
agent must be scheduled infinitely often. We also prove some properties of witness
executions similar to the invariants stated in Section 3.

4.2 Determinacy of Executions

In order to express determinacy, we define a predicate Det(w) that relates the
current execution and the witness w. More precisely, the predicate holds if for
every agent a, the sequence of local states recorded in the history of the current
execution agrees with the local states predicted by w.

Det(w) = 3U € Natp : Va € Agent :
IsPrefix(filter (history, a), filter(take(w, U), a))



12 Azaiez, Doligez, Lemerre, Libal, Merz

Since w is a stream of system states, the formal definition requires the ex-
istence of a sufficiently long initial subsequence of w such that the sequence of
local states in the history is a prefix of the local states in that prefix of w. The
determinacy theorem states that given any witness execution w, the predicate
Det(w) holds throughout the execution of the actual system.

THEOREM Determinacy =
ASSUME NEW w € Seq(SystemState), IsWitness(w)
PROVE Spec = ODet(w)

The theorem is proved by induction, relying on the previously proved in-
variants of the specification and the witness. From the definition of the witness
predicate and the initial condition Init, the two executions start in the same sys-
tem state, hence the predicate Det holds trivially, choosing U = 1. Inductively,
assume that the predicate holds for some prefix of w up to U, and that the sys-
tem takes a non-stuttering step, with agent a executing its current instruction.
Since filter(history, a) is a prefix of filter(take(w, U), a) and a takes infinitely
many steps in w, there is some N such that

filter (history, a) = filter(take(w, N), a) (1)

and a performs a step in w from system state w[N] to w[N + 1]. Defining
nU = Maz(U, N + 1), it suffices to show that

IsPrefiz(filter(history’, b), filter (take(w, nU), b))

holds for all agents b. This is easy to see for b # a, since nU > U and the local
state of b does not change in the transition of the system. Now assume b = a.
Because N + 1 < nU, it is enough to show that

filter(history’, a) = filter(take(w, N + 1), a).

From (1) it follows that state[a] = w[N].st[a], i.e., the local states of a in the
current execution and in the N-th configuration of the witness execution are the
same. In particular, the same instruction is performed in both executions. For
local updates and send instructions, this is enough for proving that state’[a] =
w[N + 1].st[a], since the same update is applied to the same state, and this
implies the conclusion. For receive instructions, we must moreover show

msgReceived (w[N].msgs, instrOf (w[N].st[a]))
< msgReceived(messages, instrOf (state[a]))

in order to ensure that the updates are the same. For “=" if the message is
received in the witness execution it must be in the message pool w[N].msgs,
and it is visible. In particular, it was sent by some agent ¢, and the execution
window of the send instruction strictly precedes the execution window of the
current (receive) instruction. Therefore, the state at which ¢ performed the send
instruction is contained in the prefix 1.. U of w and therefore also in the history
of the system execution. Since no deadline is missed, the message must have
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l Module Definitions (lines) l Proofs (lines) l # Theorems ‘
Streams 2 50 5
Filters 9 624 27
System Model 78 226 10
Witness 22 832 11
Main proof 6 241 1

[ Total [ 117 | 1973 54

Table 1. Sizes of the different modules.

been sent in the system execution (recall invariant Msglnv), and will therefore
be received.

Conversely, if the message is received in the system execution, it must have
been sent by some agent ¢, and the deadline of the send instruction strictly pre-
cedes the execution window of the receive instruction. By invariant MsgInv and
theorem filter_Range, the message appears in sent(Range(filter(history, c))),
hence by induction hypothesis also in sent(Range(filter(take(w, U), ¢))). Be-
cause the deadline for sending the message has expired when the witness exe-
cutes the receive instruction in the step from w[N] to w[N + 1], and using the
analogue of MsgInv for the witness execution, the message must be contained in
witness[N].msgs, and is therefore received.

4.3 Evaluation

Table 1 summarizes the sizes of the definitions and proofs (measured as the
numbers of lines of TLA™ code) that make up the different modules that we
developed for the proof of determinacy, as well as the number of theorems proved
in each module. The overall development required almost 2000 lines of proof,
of which the main effort was devoted to proving auxiliary results about filters
and the witness execution. The system specification (static and dynamic model)
contains the bulk of the definitions; some basic invariants are also proved there.

The case study presented here also fed back into parts of the standard library
of TLAPS. In particular, many lemmas about finite sequences were informed by
the development of the proof of determinacy; these lemmas are being reused in
other developments and do not appear in Table 1.

Compared to the paper-and-pencil proof of [9], although the main arguments
are the same, the styles of proof differ in several respects.

— The original proof compares two possible system executions; determinism
then means that for every agent a, the projection of one execution to the
states of @ must be a prefix of the other. This gives rise to two symmetric sit-
uations and would likely have led to duplications of proofs, which we avoided
by choosing a fixed, infinite witness execution, of which the actual execution
is always a prefix. We also prove the existence of a witness execution by
exhibiting an actual scheduling strategy.
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— The original proof is behavioral and refers to past and future instants of
an execution, whereas the TLA™ proof is assertional, relying on a central
inductive invariant whose statement is distributed among the lemmas of
the paper proof. This style is imposed by the formalism, but also follows
established good practice on formalizing proofs of safety properties.

— The need for writing formal definitions in TLA™ led us to introduce certain
abstractions that were not explicit in the paper proof. For example, the
notion of “good” execution times or system states proved to be very helpful
in the machine-checked proof but are implicit in [9], where the assumption
that deadlines are not missed is inferred from the assumption that agents
execute infinitely often. Observe that our model does not impose a liveness
condition on the specification of the system execution, and only requires
non-Zenoness for the witness execution.

— Many of our auxiliary lemmas on filters and witness do not have a coun-
terpart in the original proof, and in fact they may appear obvious to a
mathematician. However, several mistakes that we made in the initial for-
mal statements of these lemmas convinced us of the added value of a fully
formal proof.

Our TLA™T specification is written at the same level of abstraction as the
model of computation of PharOS that was considered in [9]. In future work,
it would be interesting to extend the specification and proof in two directions.
First, we assume that no deadlines is ever missed. In typical instances of real-time
systems, schedulability analysis ensures that this assumption is met. However,
as discussed in [9], the result can be generalized to executions in which dead-
lines may actually be missed, or abrupt termination occurs for another reason.
Second, it would be challenging to show that an actual implementation, as in
the Asterios® system, refines our high-level model, and thus formally establish
determinacy for an implementation. While TLA™ includes a natural notion of
refinement as trace inclusion, such a project would constitute a significant effort
given the complexity of an actual implementation.

5 Conclusion

We have formally proved determinacy of the model of execution underlying
PharOS, a real-time system that is now being commercialized as Asterios®.
Based on an existing paper-and-pencil proof, our machine-checked proof rein-
forces the confidence in the result and clarifies some of the underlying assump-
tions. Moreover, our proof represents a sizable case study for the TLAT Proof
System, which is still actively being developed. The overall proof effort appears
to be reasonable. The final TLAT model and proof was obtained in several
iterations, mainly focusing on the introduction of auxiliary abstractions. The
hierarchical style of TLAT proofs helped us focus on the main argument and let
us fill in proofs of auxiliary lemmas only when we knew that they were actually
needed. Access to the TLC model checker was helpful for validating intermediate
definitions and lemmas.
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Several proposals exist in the literature for making computations of real-time
systems deterministic, and we refer to [9] for a detailed discussion. The time-
triggered architecture (TTA) [5] is probably the most widely known one. In com-
parison, PharOS imposes fewer static constraints on when tasks are scheduled,
and it is designed to run on off-the-shelf hardware without a specific, determinis-
tic communication substrate. TTA has also been the object of formal verification
using the PVS proof assistant [14, 15]. In contrast to our work, which focuses on
a high-level property of the execution model, these proofs focus on algorithms
that underly the implementations of mechanisms such as clock synchronization
or group membership. Relating our high-level model of execution with actual
implementations of PharOS, down to actual code written in PsyC (a real-time
extension of the C language) is left as a challenge for future work.

Acknowledgements. Jael Kriener contributed to this work by writing initial spec-
ifications and proofs of PharOS executions.
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