
Extending PlusCal
for Modeling Distributed Algorithms⋆

Horatiu Cirstea and Stephan Merz

University of Lorraine, CNRS, Inria, LORIA, Nancy, France

Abstract. PlusCal is a language for describing algorithms at a high level
of abstraction. The PlusCal translator generates a TLA+ specification
that can be verified using the TLA+ model checkers or proof assistant.
We describe Distributed PlusCal, an extension of PlusCal that is intended
to facilitate the description of distributed algorithms. Distributed PlusCal
adds two orthogonal concepts to PlusCal: (i) processes can consist of
several threads that share process-local variables, and (ii) Distributed
PlusCal provides communication channels with associated primitives for
sending and receiving messages. The existing PlusCal translator has been
extended to support these concepts, and we report on initial experience
with the use of Distributed PlusCal.

1 Introduction

Distributed systems and the algorithms that these systems implement are no-
toriously difficult to design and to verify. This is due to the high number of
potential executions that interleave steps of system components (distributed
nodes, threads, messaging subsystem) executing independently, leading to bugs
that are difficult to reproduce. Formal verification techniques such as model
checking or theorem proving help ensure correctness properties of algorithms
and of programs. They can be applied at different levels of abstraction. In par-
ticular, verifying formal specifications of distributed algorithms at high levels
of abstraction allows designers to identify errors that would be very costly to
correct during later development stages.

However, languages used for formal modeling and verification are often sub-
stantially different from languages used in software development. For example,
TLA+ specifications [10] are formulas in a logical language that mixes mathe-
matical set theory and temporal logic, which can be intimidating for system de-
velopers. It is therefore desirable to introduce front-end languages that are more
familiar to system designers, while still enabling the use of formal verification
techniques. In the context of TLA+, PlusCal [11] is a language for describing se-
quential or concurrent algorithms at a high level of abstraction. PlusCal combines
⋆ This version of the publication has been accepted for publication, after peer re-

view but is not the Version of Record. The Version of Record is available online
at http://dx.doi.org/000000. Use of this Accepted Version is subject to the pub-
lisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/
open-research/policies/accepted-manuscript-terms.

the “look and feel” of imperative pseudo-code with the power of mathematical
set theory, used for modeling the data structures manipulated by the algorithm.
The PlusCal translator generates a TLA+ specification from a PlusCal algorithm,
and this specification can be verified using the existing TLA+ model checkers
TLC [17] and Apalache [6] or the TLAPS proof assistant [2], thus allowing a
system designer to obtain high confidence in the correctness of the algorithm.

However, PlusCal lacks certain constructs that would be useful for modeling
distributed algorithms. In particular, it only offers top-level parallel processes,
making it difficult to model distributed systems where nodes consist of several
threads executing in parallel. In PlusCal, different threads of the same node must
be modeled as individual processes, and variables shared by these threads must
then be declared as global variables, obscuring the structure of the code. PlusCal
also lacks primitives that support inter-process communication through message
passing. Instead, such operations have to be described by defining global vari-
ables representing the channels and implementing the send/receive operations
using low-level TLA+ operators. Constructs similar to those missing in PlusCal
can be found in several languages used for programming distributed systems.
For example, lightweight threads exist in Ada [1] in the form of tasks and in
Go [3] as goroutines. The latter also offers built-in channel primitives, which are
also available in other programming languages including DistAlgo [12], MPI [14],
and Erlang [18].

We propose an extension of PlusCal, that we call Distributed PlusCal, which
allows users to specify multi-threaded processes and that provides built-in com-
munication channels accessible with classical send/receive primitives. The syn-
tax for threads is simple and intuitive and the translation to TLA+ takes into
account the possible interactions with other PlusCal features such as macros,
procedures or fairness. Distributed PlusCal supports two types of channels that
differ in whether they guarantee that messages are received in the order that
they were sent or not. The operations on channels include standard send and
receive, as well as a multicast operation that can be used to send a given message
to several nodes simultaneously.

In the next section we briefly present TLA+ and PlusCal. Section 3 describes
the Distributed PlusCal language and the translation to TLA+. In Section 4 we
discuss the specification of two classical algorithms in Distributed PlusCal. We
eventually conclude and discuss future work.

2 TLA+ and PlusCal

2.1 The specification language TLA+

TLA+ [10] is a formalism for describing algorithms and systems at a high level
of abstraction. It is based on mathematical set theory for representing data
structures in terms of sets and functions, and on the Temporal Logic of Actions
TLA for representing executions of systems. TLA+ specifications usually have
the form

Init ∧2[Next]v ∧ L

where Init is a predicate describing the possible initial states, Next is a pred-
icate that represents the possible state transitions, v is a tuple containing all
state variables that appear in the specification, and L is a liveness or fairness
property expressed as a formula of temporal logic. Specifications are structured
in modules; in particular, standard modules provide frequently used data struc-
tures such as integers, sequences or bags (multisets). A module may contain
constant and variable declarations, statements of assumptions and theorems,
and definitions of operators that are used in assembling the overall specification
as well as correctness properties. Specifically, state formulas such as the ini-
tial condition or state invariants contain constant and variable symbols, where
actions such as Next may also contain primed variable symbols, and temporal
formulas additionally contain the operators 2 (“always”) and 3 (“eventually”) of
linear-time temporal logic. State formulas are evaluated over individual states,1
action formulas over pairs of states with unprimed variables denoting the value
of the variable in the state before the transition and primed variables the value
in the state after the transition. Temporal formulas are evaluated over infinite
sequences of states.

As a concrete example, consider the specification

x ∈ Nat ∧2[x ′ = x + 1]⟨x⟩ ∧ WF⟨x⟩(x ′ = x + 1)

of a counter represented by the variable x . The state predicate x ∈ Nat requires
the initial value of x to be some natural number. The action [x ′ = x + 1]⟨x⟩
asserts that at every step, x either increments by 1 or remains unchanged,2 and
the temporal formula WF⟨x⟩(x ′ = x + 1) states that the counter is incremented
infinitely often. In general, the formula WFv (A) representing weak fairnes of
action A abbreviates the temporal formula 2

(
2(enabled ⟨A⟩v) ⇒ 3⟨A⟩v

)
that asserts that whenever an A transition that changes the value of v is forever
enabled, then such a transition must occur eventually. Replacing the subformula
2(enabled ⟨A⟩v) with 23(enabled ⟨A⟩v), one obtains the definition of SFv (A)
representing strong fairness of action A.

The formal verification of TLA+ specifications is supported by the explicit-
state model checker TLC [17], the SMT-based symbolic model checker Apa-
lache [6], and the proof assistant TLAPS [2]. Konnov et al. [7] present an overview
of the different verification tools applied to a common case study.

TLA+ is an untyped language that provides a rich language of expressions.
The expression [x ∈ S 7→ e] denotes the function with domain S such that every
element x of S is mapped to the expression e (in which x may occur). This is
reminiscent of a λ-expression while also introducing the domain of the function.
Function application is written f [x], and the expression [f EXCEPT ![v] = e]
denotes the function that is similar to f , except that argument v is mapped to e.
Within e, the symbol @ can be used to denote f [v]. A tuple s = ⟨e1, . . . , en⟩
is a function with domain 1 ..n. In particular, s[i] (for i ∈ 1 ..n) denotes ei .
1 A state assigns a value to each variable.
2 TLA+ formulas are invariant under finite stuttering, and in particular specifications

always allow for stuttering transitions.

algorithm <algorithm name>

(* Declaration section *)
variables <variable declarations>

(* Definition section *)
define <definition name> == <definition body>

(* Macro section *)
macro <name>(var1, ...)

<macro body of statements>

(* Procedure section *)
procedure <name>(arg1, ...)
variables <local variable declarations>
<procedure body of statements>

(* Process section *)
process (<name> [=|\in] <expr>))

variables <variable declarations>
<process body of statements>

Fig. 1. General structure of a PlusCal algorithm.

Similarly, a record such as [foo 7→ 42, bar 7→ FALSE] is a function whose domain
is the set of strings {"foo", "bar"}; r .foo is shorthand for r ["foo"] and record
update can be written [r EXCEPT !.foo = @+ 1].

2.2 The Algorithmic Langage PlusCal

PlusCal [11] was designed as a language for describing algorithms, providing
a syntax that resembles imperative pseudo-code. PlusCal’s expression language
is TLA+, and this makes the language highly expressive, but also means that
PlusCal algorithms are in general not executable. PlusCal algorithms are written
inside a comment in a TLA+ module, using either a C-like syntax or the P-syntax
closer to the Pascal programming language. The PlusCal translator generates a
TLA+ specification from the algorithm and inserts it within the module con-
taining the algorithm. Properties of algorithms are expressed as TLA+ formulas
and are verified using the standard TLA+ tools. A central objective in designing
PlusCal was to ensure a simple translation from PlusCal to TLA+, resulting in
human-readable specifications.

The overall structure of a PlusCal algorithm is shown in Figure 1. It is subdi-
vided into several (possibly empty) sections that must appear in the given order.
Global variables are declared first, followed by definitions of operators that may
be used in the remainder of the algorithm and that may refer to the previ-

ously declared variables. Macros may contain PlusCal statements; their bodies
are expanded at translation time, similarly to the expansion of macros in the C
language. In contrast, procedures are invoked using the call statement of Plus-
Cal. They may declare local variables and may themselves contain procedure
calls, including recursive calls. Procedures do not return values but may modify
global variables; the return statement transfers control back to the calling site.

The final section contains either process declarations as shown in Fig. 1
or a single body of statements for representing a sequential algorithm. Process
declarations may introduce a single or a fixed number of instances of the process;
the expression on the right-hand side must evaluate to a constant or to a finite
set of constants that represent the process identities. Within the body of the
process, the identity is denoted by self. Process declarations may be annotated
by fairness conditions fair for weak fairness or fair+ for strong fairness.

PlusCal statements include skip (which does nothing), assignments, condi-
tional statements, while loops, and procedure calls. Processes may synchronize
using await (or, synonymously, when) instructions that block until a predicate
becomes true. PlusCal also includes two forms of non-deterministic control struc-
tures: either ... or ... can be used to introduce a choice between a fixed
number of alternatives, whereas the statement with x ∈ S expresses a choice
among the values in a set S . In particular, combining either ... or and when
provides guarded commands à la Dijkstra.

An important concern when describing concurrent algorithms is to model the
“grain of atomicity”, i.e., which statements are assumed to execute without inter-
leaving with statements of other processes. PlusCal uses statement labels to this
effect: all statements appearing between two labels are executed atomically. In
addition, PlusCal imposes certain rules on the placement of labels. For example,
every while statement must be labeled, and therefore processes may interleave
between every iteration of the loop body. Labels may also take modifiers + or -
that increase or decrease the fairness constraints with respect to that of the
enclosing process.

As an example, Fig. 2 shows the PlusCal representation of a semaphore-
based mutual exclusion algorithm between N processes where the constant N is
declared in the enclosing TLA+ module. In particular, the test and decrement of
the semaphore are executed atomically since the instructions are not separated
by a label, and strong fairness guarantees starvation freedom.

2.3 Translating PlusCal to TLA+.

Using the example of Fig. 2, we outline how the PlusCal translator generates the
TLA+ specification corresponding to an algorithm.

1. Generate TLA+ variable declarations for all variables declared in the algo-
rithm, regardless of their scope. The translator also declares the pc variable
for tracking control flow, as well as a stack variable if the algorithm contains
procedures. Define the tuple vars of all variables and the set ProcSet of all
process identifiers.

--algorithm SemaphoreMutex {
variables sem = 1;
fair+ process (p \in 1..N) {

start:- while (TRUE) {
enter: await sem > 0;

sem := sem - 1;
cs: skip;
exit: sem := sem + 1;
} } }

Fig. 2. Semaphore mutex example in PlusCal.

VARIABLES sem, pc
vars == << sem, pc >>
ProcSet == (1..N)

2. Generate Init, the predicate that specifies the initial values of all the de-
clared variables. Process-local variables (including pc) are represented as
functions with domain ProcSet in order to distinguish the values corre-
sponding to different instances of processes.

Init == /\ sem = 1
/\ pc = [self \in ProcSet |-> "start"]

3. For each label appearing in the algorithm, generate a TLA+ action that rep-
resents the effect of the statements following that label. In a multi-process
algorithm, the definition takes the parameter self that stands for the iden-
tifier of the process instance executing the statements.

enter(self) == /\ pc[self] = "enter"
/\ sem > 0
/\ sem’ = sem - 1
/\ pc’ = [pc EXCEPT ![self] = "cs"]

4. For every process, generate a TLA+ action that corresponds to the possible
transitions of an instance of that process, as the disjunction of the actions
generated for each label appearing in the process. Generate the action Next
as the disjunction of the actions corresponding to each process, existentially
quantified over its instances. In case control flow may reach the end of a
process, Next contains an extra disjunct Terminating that requires all vari-
ables to remain unchanged. Finally, generate the overall specification Spec,
including fairness conditions corresponding to the annotations in PlusCal.

p(self) == start(self) \/ enter(self) \/ cs(self) \/ exit(self)
Next == \E self \in 1..N: p(self)
Spec == /\ Init /\ [][Next]_vars

/\ \A self \in 1..N: SF_vars(pc[self] # "start" /\ p(self))

3 Distributed PlusCal

Distributed PlusCal extends PlusCal with two independent features: it adds light-
weight (sub-)processes, as well as communication channels with standard oper-
ations. Both of these features are available for the C-syntax and the P-syntax;
we mainly use the former in this paper. These features are activated using the
option -distpcal either on the command line or using the PlusCal options line
in the enclosing TLA+ module.

3.1 Sub-processes

A Distributed PlusCal process may have several sub-processes that we also call
threads. When using the C-syntax, each thread appears within a pair of curly
braces, a process with only one pair of braces corresponding to an ordinary
PlusCal process. For P-syntax, threads are enclosed by begin and end thread.
An example illustrating the declaration of threads using both syntaxes is given in
Fig. 3. Threads cannot declare local variables but can access the local variables
of the enclosing process as well as global variables. This corresponds to the
intuition that in a distributed system, threads share local memory whereas nodes
(represented by Distributed PlusCal processes) communicate via messages.

Translation to TLA+. At every step in the algorithm, one of the threads performs
a transition. Consequently, although the syntax additions for threads are quite
minor compared to the single-threaded processes of PlusCal there are multiple
aspects that have to be taken into account in the translation to TLA+.

The VARIABLES declaration as well as vars and ProcSet are generated as for
plain PlusCal. For Distributed PlusCal algorithms, the program counter progresses
in each thread and thus, in order to distinguish the values corresponding to each
thread, the pc variable is represented as a two-dimensional array indexed by
the process identity and a thread index. The set SubProcSet of thread indexes
depends on each process:

SubProcSet[p] = {1, 2, . . . ,ntp}, p ∈ ProcSet

with ntp the number of threads for process p. For the algorithm of Fig. 3, in
TLA+ this corresponds to:3

ProcSet == {3} \union (1..2)
SubProcSet == [self \in ProcSet |-> CASE self = 3 -> 1..2

[] self \in 1..2 -> 1..1]

The pc of each thread is initialized to the label corresponding to its first
action:

pc[p] = ⟨l1, l2, . . . , lntp ⟩, p ∈ ProcSet

3 The complete translation is presented in Figure 4 at the end of this section.

1 --algorithm MyAlgo {
2 variables
3 tab = [x \in 1..2 |-> 0];
4 process (pid = 3)
5 variables lv = 0;
6 {
7 s1: lv := lv + 1;
8 tab[1] := tab[1] + lv;
9 }

10 {
11 s2: lv := lv + 1;
12 tab[2] := tab[2] + lv;
13 }
14

15 process (qid \in 1..2)
16 variables t = 0;
17 {
18 rc: await tab[self] > 0;
19 t := tab[self];
20 ut: t := t + 1;
21 }
22 }

--algorithm MyAlgo
variables

tab = [x \in 1..2 |-> 0];
process pid = 3
variables lv = 0;
begin

s1: lv := lv + 1;
tab[1] := tab[1] + lv;

end thread
begin

s2: lv := lv + 1;
tab[2] := tab[2] + lv;

end thread

process qid \in 1..2
variables t = 0;
begin

rc: await tab[self] > 0;
t := tab[self];

ut: t := t + 1;
end thread

end algorithm

Fig. 3. A Distributed PlusCal algorithm in which one process has two threads.

with li the label of the first action in the thread i of process p. If procedures are
defined, they can be called from any thread and thus, the stack variable is also
a two-dimensional array initialized to the empty record for each thread:

stack[p] = ⟨⟨⟩, . . . , ⟨⟩⟩, p ∈ ProcSet, size(stack[p]) = ntp

For our example we have:

Init == ...
/\ pc = [self \in ProcSet |-> CASE self = 3 -> <<"s1","s2">>

[] self \in 1..2 -> <<"rc">>]

Then, the translation of each thread corresponds to the disjunction of all its
atomic actions, and a process corresponds to the disjunction of all its threads.
Thus, for each p ∈ ProcSet:

p =
∨

i=1..ntp

pi with pi =
∨

l∈Ap,i

l

where Ap,i denotes the set of (labeled) actions of the thread i in process p.
If p is a process template (specified with \in), the translation of p and of its

threads takes the parameter self that stands, as in PlusCal, for the identifier of
the process instance executing the statements.

The first process in our algorithm consists of two threads, translated respec-
tively with the operators pid1 and pid2 which correspond to the PlusCal action
translations but taking into account the fact that the pc variable depends not
only on the process id (3 in this case) but on the thread as well.

1 s1 == /\ pc[3][1] = "s1"
2 /\ lv’ = lv + 1
3 /\ tab’ = [tab EXCEPT ![1] = tab[1] + lv’]
4 /\ pc’ = [pc EXCEPT ![3][1] = "Done"]
5 /\ UNCHANGED << stack, y, lvp, t >>
6 pid1 == s1
7

8 s2 == /\ pc[3][2] = "s2"
9 /\ ...

10 pid2 == s2
11

12 pid == pid1 \/ pid2

For the second process there is only one thread, and since this is a process
template (qid \in 1..2), the translation uses a parameter self:

rc(self) == /\ pc[self][1] = "rc"
/\ ...

ut(self) == /\ pc[self][1] = "ut"
/\ ...

qid1(self) == rc(self) \/ ut(self)

qid(self) == qid1(self)

The Spec operator and in particular the Next operator are generated as for
a single-threaded PlusCal specification, with the stuttering action Terminating
adapted to activate only when all threads have terminated:

Terminating == /\ \A self \in ProcSet : \A sub \in SubProcSet[self]:
pc[self][sub] = "Done"

/\ UNCHANGED vars
Next == pid \/ (\E self \in 1..2: qid(self)) \/ Terminating

Macros and procedures. Macros can be used as in plain PlusCal and behave as
textual substitutions. Procedures are also used similarly to PlusCal but some
care has to be taken in the translation since a procedure can be called in any
thread. First, as explained above, the stack variable is a two-dimensional array
in Distributed PlusCal. For the same reasons, the TLA+ variable declarations
corresponding to the procedure parameters and local variables are also two-
dimensional arrays. Moreover, the operators corresponding to the procedure and
to its actions are parameterized not only by a process, as in PlusCal, but also by
a thread.

For example, consider the following procedure:

procedure foo(ind = 0, y = 0)
variables lvp = 0;
{
s: lvp := lvp + y;

tab[ind] := tab[ind] + lvp;
e: return;
}

Three variable declarations corresponding to the parameters and to the local
variable of the procedure are added to the Init operator:

/\ ind = [self \in ProcSet |-> [thd \in SubProcSet[self] |-> 0]]
/\ y = [self \in ProcSet |-> [thd \in SubProcSet[self] |-> 0]]
/\ lvp = [self \in ProcSet |-> [thd \in SubProcSet[self] |-> 0]]

and the following operator is generated for the action labeled s:

s(self, thd) ==
/\ pc[self][thd] = "s"
/\ lvp’ = [lvp EXCEPT ![self][thd] = lvp[self][thd] + y[self][thd]]
/\ tab’ = [tab EXCEPT ![ind[self][thd]] = tab[ind[self][thd]]

+ lvp’[self][thd]]
/\ pc’ = [pc EXCEPT ![self][thd] = "e"]
/\ UNCHANGED << stack, ind, y, lv, t >>

The operator e is handled in a similar way and finally, an operator is generated
for the whole procedure:

foo(self, thd) == s(self, thd) \/ e(self, thd)

One could use this procedure in the specification in Fig. 3 and replace the
line 8 by call foo(1,lv) in which case the line 3 in the original translation of
s1 becomes

/\ /\ stack’ = [stack EXCEPT ![3][1] = << [procedure |-> "foo",
pc |-> "Done",
lvp |-> lvp[3][1],
ind |-> ind[3][1],
y |-> y[3][1]] >>

\o stack[3][1]]
/\ ind’ = [ind EXCEPT ![3][1] = 1]
/\ y’ = [y EXCEPT ![3][1] = lv’]

Fairness. As in PlusCal, fairness conditions can be attached to the algorithm,
to process templates or to labels. When fairness is introduced at the top level
with fair algorithm, we indicate that some statement must eventually be ex-
ecuted if the algorithm can take a step, and this corresponds to the condition
WF_vars(Next) in the definition of Spec.

One can strengthen the condition to ensure that a process will eventually
execute if it remains enabled by using the fair keyword at the process level. For
Distributed PlusCal this corresponds to fairness for each thread of the respective
process template. In our example, when writing fair process (pid = 3), the
following conditions are added to Spec:

/\ WF_vars(pid1)
/\ WF_vars(pid2)

As in PlusCal, we can strengthen even more the condition with fair+ and in this
case the condition SF_vars is used instead of WF_vars for all the threads.

The overall fairness requirement attached to a process can be modulated
for individual actions and we can exclude a label from the fairness assumption
using - or assume strong fairness using +. If, for the sake of the example, we
change the specification of the first process to

fair process (pid = 3)
variables lv = 0;
{
s1a:+ lv := lv + 1;
s1b:- tab[1] := tab[1] + lv;
}
{

// unchanged
}

then, the conditions added to Spec become

/\ WF_vars((pc[3][1] # "s1b") /\ pid1) /\ SF_vars(s1a)
/\ WF_vars(pid2)

PlusCal’s -termination option can be used to generate a TLA+ formula that
asserts that all processes and threads will eventually terminate.

Spec == /\ Init /\ [][Next]_vars
/\ WF_vars(pid1)
/\ WF_vars(pid2)
/\ \A self \in 1..2 : WF_vars(qid1(self))

Termination == <>(\A self \in ProcSet: \A sub \in SubProcSet[self] :
pc[self][sub] = "Done")

3.2 Communication Channels

In contrast to threads that communicate using shared variables, processes (or
nodes) in distributed systems usually communicate by message passing. In a
PlusCal algorithm, channels must be modeled explicitly using global variables,
and operations on channels be defined using TLA+ operators or macros.

VARIABLES tab, pc, lv, t
vars == << tab, pc, lv, t >>

ProcSet == {3} \cup (1..2)
SubProcSet == [self \in ProcSet |-> CASE self = 3 -> 1..2

[] self \in 1..2 -> 1..1]

Init == /\ tab = [x \in 1..2 |-> 0]
/\ lv = 0
/\ t = [self \in 1..2 |-> 0]
/\ pc = [self \in ProcSet |-> CASE self = 3 -> <<"s1","s2">>

[] self \in 1..2 -> <<"rc">>]

s1 == /\ pc[3][1] = "s1"
/\ lv’ = lv + 1
/\ tab’ = [tab EXCEPT ![1] = tab[1] + lv’]
/\ pc’ = [pc EXCEPT ![3][1] = "Done"]
/\ t’ = t

pid1 == s1
s2 == /\ pc[3][2] = "s2"

/\ lv’ = lv + 1
/\ tab’ = [tab EXCEPT ![2] = tab[2] + lv’]
/\ pc’ = [pc EXCEPT ![3][2] = "Done"]
/\ t’ = t

pid2 == s2
pid == pid1 \/ pid2

rc(self) == /\ pc[self][1] = "rc"
/\ tab[self] > 0
/\ t’ = [t EXCEPT ![self] = tab[self]]
/\ pc’ = [pc EXCEPT ![self][1] = "ut"]
/\ UNCHANGED << tab, lv >>

ut(self) == /\ pc[self][1] = "ut"
/\ t’ = [t EXCEPT ![self] = t[self] + 1]
/\ pc’ = [pc EXCEPT ![self][1] = "Done"]
/\ UNCHANGED << tab, lv >>

qid1(self) == rc(self) \/ ut(self)
qid(self) == qid1(self)

Terminating == /\ \A self \in ProcSet : \A thread \in SubProcSet[self]:
pc[self][thread] = "Done"

/\ UNCHANGED vars

Next == pid \/ (\E self \in 1..2: qid(self)) \/ Terminating
Spec == Init /\ [][Next]_vars

Fig. 4. Translation in TLA+ of the algorithm in Fig. 3.

--algorithm ChannelAlgo {
variables s = 0;
channels ch[Nodes];
define {

Nodes == 1..2
Id == 3

}

process (pid = Id) process (qid \in Nodes)
{ variables t = 0;

s1: send(ch[1],Id+1); {
} rcv: receive(ch[self],t);
{ add: s := s + t;

s2: send(ch[2],Id+2); }
} }

Fig. 5. A PlusCal algorithm using channels.

Channels in Distributed PlusCal are built-in and can be declared just after
the global variables of the algorithm. Channels that guarantee that messages are
received in the order in which they are sent are declared using the keyword fifo
whereas channels that do not offer such guarantees are declared as channel.4
Channels are unbounded, meaning that there is no maximum capacity for the
number of messages they can hold.

One can declare an N -dimensional matrix of unordered channels by writing

channel id [Expr1][Expr2] . . . [ExprN]

with id the name of the channel and ⟨Expri⟩, i = 1..N , the expressions defining
the indexing sets; no set is specified for a simple 0-dimensional channel. Such a
declaration gives rise in TLA+ to the declaration of a variable named id and to
an initialisation

id = [x1 ∈ Expr1, . . . , xN ∈ ExprN 7→ EmptyBag];

or just id = EmptyBag for a simple channel, where EmptyBag is the operator
from module Bags representing an empty bag (i.e., multi-set). More precisely,
unordered channels are represented in TLA+ using bags and ordered channels
using sequences. Thus, if the channel were declared with fifo the initialisation
would use the empty sequence ⟨⟩ instead of the empty bag.

The following initialization predicate is generated for the algorithm in Fig. 5:

Init == ...
/\ ch = [_n20 \in Nodes |-> EmptyBag]

4 Following the PlusCal convention that the keyword variable can also be written
variables, we also allow the plural forms for fifo and channel.

with _n20 a freshly generated variable.
The following operations are supported on (unordered or ordered) channels:

– send(chan, expr): sends a message corresponding to the expression expr on
channel chan;

– receive(chan, var): receives a message from channel chan and stores it in
the variable var ;

– multicast(chanId , [i1 op1 expr1, . . . , iN opN exprN 7→ expr): for an N -
dimensional channel (N > 0) named chanId , sends on all the channels whose
indexes match ⟨expri⟩ with respect to opi (with opi either = or ∈), the
message corresponding to the expression expr .

Sending a message corresponds to adding the message to the bag (respec-
tively, at the end of the sequence). For our example, this corresponds to the
following statement added to the action labeled s1:

/\ ch’ = [ch EXCEPT ![1] = @ (+) SetToBag({Id+1})]

where SetToBag is the operator for constructing a bag from a set and (+) denotes
bag union. If ch had been declared as fifo, its new value would have been
Append(@, Id+1).

The receive operation consists in checking the existence of a message in the
channel, removing it and assigning it to the target variable. For our example,
this corresponds to:

/\ \E __c1__ \in DOMAIN ch[self]:
/\ ch’ = [ch EXCEPT ![self] = @ (-) SetToBag({__c1__})]
/\ t’ = [t EXCEPT ![self] = __c1__]

For a fifo channel, the message at the head of the channel is received using a
similar definition in terms of the standard operators Len, Tail and Head on se-
quences. Note that in both cases receive is a blocking operation that is enabled
only if a message is present on the channel.

The process pid in the algorithm ChannelAlgo could be replaced by a single-
threaded one consisting of a single multicast operation:

multicast(ch, [n \in Nodes |-> Id+n]);

sending a message on ch[1] and ch[2]. In TLA+ this corresponds to:

/\ ch’ = [n \in DOMAIN ch |-> IF n \in Nodes
THEN ch[n] (+) SetToBag({Id+n})
ELSE ch[n]]

In this example, the domain of the multicast coincides with the domain of the
channel but an expression restricting the domain such as Nodes \ {1}, can be
used.

Macros handle channels as any other PlusCal object and, in particular, chan-
nels can be passed as arguments to macros. The broadcast of a message m on all
the channels of an N -dimensional channel can be expressed using a macro:

macro broadcast(chan,m) {
multicast(chan,[ag \in DOMAIN chan |-> m]);

}

Procedures are also compatible with channels. We should note however that,
since the modifications performed in the procedure on its arguments are not
persistent, passing as parameter a channel or the target variable for a receive
operation is not really useful.

4 Evaluation

PlusCal and Distributed PlusCal are front-ends for writing TLA+ specifica-
tions: they provide an input syntax that is more familiar to programmers than
writing logical formulas, without giving up on a precise formal semantics. The
main objective of Distributed PlusCal is to help the user express distributed al-
gorithms in a more natural way than would be possible using regular PlusCal,
while remaining backward compatible for algorithms that do not make use of
the extensions.

The tool has been developed as a fork of the TLA+ repository5 and, in par-
ticular, extends the version 1.11 of PlusCal. The source code as well as some
examples and a quite extensive test suite are publicly available.6 A README
file provides instructions on compiling the source code and using it (or the pre-
compiled distribution available in the tlatools/dist directory) to translate Dis-
tributed PlusCal algorithms. The examples presented in this paper are available
in the tlatools/examples-distpcal directory.

4.1 Two distributed algorithms expressed in Distributed PlusCal

We briefly discuss our experience with modeling distributed algorithms using
Distributed PlusCal. Figure 6 shows the distributed mutual-exclusion algorithm
from [8] written in Distributed PlusCal; the GitHub repository also contains a
Distributed PlusCal expression of the Paxos consensus algorithm [9]. Both algo-
rithms consist of N nodes, each of which has a main thread and a concurrently
executing helper thread that handles messages received from other nodes. The
distributed mutual-exclusion algorithm relies on FIFO communication between
nodes, Paxos does not impose any ordering on messages. In both cases, the pos-
sibility of declaring multiple threads per node rather than having only top-level
processes, makes expressing the algorithms more natural. In particular, the local
scope of variables would be lost if the language did not provide threads. We be-
lieve that this observation explains why these algorithms are available from the
collection of TLA+ examples7 only in the form of TLA+ specifications rather
than PlusCal algorithms.
5 https://github.com/tlaplus/tlaplus
6 https://github.com/DistributedPlusCal/DistributedPlusCal
7 https://github.com/tlaplus/Examples/tree/master/specifications

------------------------ MODULE LamportMutex -------------------------
EXTENDS Naturals, Sequences, TLC
CONSTANT N
ASSUME N \in Nat
Nodes == 1 .. N
(* PlusCal options (-distpcal) *)
(**--algorithm LamportMutex {

fifos network[Nodes, Nodes];
define {

Max(c,d) == IF c > d THEN c ELSE d
Request(c) == [type |-> "request", clock |-> c]
Release(c) == [type |-> "release", clock |-> c]
Acknowledge(c) == [type |-> "ack", clock |-> c]

}
process(node \in Nodes)

variables clock = 0, req = [n \in Nodes |-> 0],
ack = {}, sndr = self, msg = Request(0);

{ * thread executing the main algorithm
ncs: while (TRUE) {

skip; * non-critical section
try: clock := clock + 1; req[self] := clock; ack := {self};

multicast(network, [m = self, n \in Nodes |-> Request(clock)]);
enter: await (ack = Nodes /\ \A n \in Nodes \ {self} :

\/ req[n] = 0
\/ req[self] < req[n]
\/ req[self] = req[n] /\ self < n);

cs: skip; * critical section
exit: clock := clock + 1;

multicast(network, [m = self, n \in Nodes \ {self} |->
Release(clock)]);

} * end while
} { * message handling thread

rcv: while (TRUE) { with (n \in Nodes) {
receive(network[n,self], msg); sndr := n;
clock := Max(clock, msg.clock) + 1

};
handle: if (msg.type = "request") {

req[sndr] := msg.clock;
send(network[self, sndr], Acknowledge(clock))

}
else if (msg.type = "ack") { ack := ack \cup {sndr}; }
else if (msg.type = "release") { req[sndr] := 0; };
msg := Request(0); sndr := self;

} * end while
} * end message handling thread

} **)

Fig. 6. Lamport’s distributed mutual-exclusion algorithm.

The main safety properties of these algorithms are mutual exclusion (for
LamportMutex) and agreement (for Paxos), expressed respectively as the TLA+

formulas

Mutex ∆
= ∀m,n ∈ Nodes : m ̸= n ⇒ ¬(pc[m] = "cs" ∧ pc[n] = "cs")

Agreement ∆
= ∀m,n ∈ Nodes : chosen[m] ̸= None ∧ chosen[n] ̸= None

⇒ chosen[m] = chosen[n]

The TLC model checker is able to verify these properties for the specifications
generated from our Distributed PlusCal algorithms.8 For example, when fifos is
replaced by channels in algorithm LamportMutex, TLC generates a counter-
example that illustrates why FIFO channels are necessary for this algorithm. The
size of the state space for LamportMutex matches that of the existing TLA+

specification of this algorithm. For Paxos, the state space generated by the Dis-
tributed PlusCal version is larger than that of the existing TLA+ specification,
which makes a few shortcuts whereas we emphasized readability.

As for existing PlusCal algorithms, the interactive proof assistant TLAPS can
also be used for reasoning about Distributed PlusCal algorithms. The use of the
symbolic model checker Apalache requires type annotations for variables and
operator definitions; just as for regular PlusCal these have to be added manually
by the user. A future version of the translator could propagate type annotations
at the Distributed PlusCal level to the generated TLA+ specification.

4.2 Related Work

Modular PlusCal is a variant of PlusCal based on archetypes (similar to PlusCal’s
processes), mapping macros (a more disciplined form of macros avoiding side-
effects), and distinguishes parameter passing by value or by reference. The PGo
compiler [4] can generate either regular PlusCal algorithms or Go programs from
Modular PlusCal algorithms. Just like PlusCal processes, archetypes in Modular
PlusCal cannot contain multiple threads executing in parallel. Unlike Distributed
PlusCal, Modular PlusCal is not backward compatible with ordinary PlusCal.

The DistAlgo language [13] is a domain-specific language, implemented in
Python, for writing distributed programs. It provides primitives for interprocess
communication through messages, including asynchronous message reception,
and contains declarative constructs such as queries over the histories of sent and
received messages. However, its focus is on execution rather than verification.

IronFleet [5] introduced a methodology for describing distributed algorithms
as state machines, similar to TLA+, in a form that was amenable to automated
program verification with Dafny. Languages such as EventML [15] or Verdi [16]
embed the semantics of distributed algorithms and systems in interactive proof
assistants and therefore require familiarity with these frameworks for modeling
and verification.
8 As is standard in finite-state model checking, finite bounds have to be introduced

for variables that could grow indefinitely such as clocks or ballots.

5 Conclusion

We presented an extension of the PlusCal algorithm language for describing
distributed algorithms. Rather than introducing many new features that could
break the design objectives of PlusCal being a lightweight front-end to writing
TLA+ specifications, our objective was to add few, orthogonal concepts while
both remaining compatible with the existing language and keeping simple the
generation of human-readable TLA+ specifications. The added concepts are in-
spired from those found in distributed programming languages. Compared to
the original PlusCal language, Distributed PlusCal allows processes to consist of
multiple threads that communicate via process-local variables, and it introduces
communication channels that can be declared as preserving FIFO order or not.
Whereas PlusCal supports writing concurrent programs by providing a process
abstraction, elevating threads to top-level processes requires all variables shared
between threads to be declared as global variables, breaking locality. Moreover,
PlusCal does not provide communication channels with corresponding opera-
tions. Although these can be represented using global variables and macros or
operator definitions, this requires that users write low-level TLA+ instead of
expressing their algorithm in PlusCal.

We have illustrated Distributed PlusCal using two well-known algorithms and
our preliminary findings indicate that the extensions provided by Distributed
PlusCal help us express distributed algorithms in a natural way. Moreover, any
overhead incurred in verification with respect to a specification written in TLA+

is not different from that of ordinary PlusCal. However, more experience, includ-
ing by users of Distributed PlusCal different from its authors, will be necessary
for a more thorough evaluation of the language.

As for PlusCal, the semantics of the language is given by the translation
towards TLA+ and, in the future, we intend to give a formal description in
order to compare it with semantics of distributed programming languages and
eventually aim for a translation of some Distributed PlusCal specifications into
distributed programs.

Currently, Distributed PlusCal supports a fixed number of distinct threads
per process. It may be interesting to add replicated instances of threads, just
as processes can be replicated in PlusCal. For example, such a feature could be
used for modeling processors having multiple CPU and GPU cores. Distributed
PlusCal does not currently allow threads to be nested inside another thread.
Doing so would require maintaining a tree of control locations and would thus
result in a more complicated translation to TLA+.

Beyond providing just two types of FIFO and unordered channels, one could
imagine providing a collection of user-extensible libraries for representing chan-
nels supporting different abstractions of causality in distributed systems.

Eventually, we aim at integrating Distributed PlusCal into the existing PlusCal
translator.

Acknowledgments. We would like to thank several Master students, and in par-
ticular Heba Alkayed, who contributed to earlier versions of Distributed PlusCal.

References

1. John Barnes. Programming in Ada 2012. Cambridge University Press, USA, 2014.
2. Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz, Daniel Ricketts,

and Hernán Vanzetto. TLA+ proofs. In Dimitra Giannakopoulou and Dominique
Méry, editors, 18th Intl. Symp. Formal Methods (FM 2012), volume 7436 of LNCS,
pages 147–154, Paris, France, 2012. Springer.

3. Alan A.A. Donovan and Brian W. Kernighan. The Go Programming Language.
Addison-Wesley Professional, 1st edition, 2015.

4. Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan Beschast-
nikh. Compiling distributed system models with PGo. In Tor M. Aamodt, Natalie
D. Enright Jerger, and Michael M. Swift, editors, Proc. 28th ACM Intl. Conf. Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS),
pages 159–175, Vancouver, Canada, 2023. ACM.

5. Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath T. V. Setty, and Brian Zill. Ironfleet: proving prac-
tical distributed systems correct. In Ethan L. Miller and Steven Hand, editors,
Proc. 25th Symp. Operating Systems Principles (SOSP), pages 1–17, Monterey,
CA, U.S.A., 2015. ACM.

6. Igor Konnov, Jure Kukovec, and Thanh-Hai Tran. TLA+ model checking made
symbolic. Proc. ACM Program. Lang., 3(OOPSLA):123:1–123:30, 2019.

7. Igor Konnov, Markus Kuppe, and Stephan Merz. Specification and verification with
the TLA+ Trifecta: TLC, Apalache, and TLAPS. In Tiziana Margaria and Bern-
hard Steffen, editors, 11th Intl. Symp. Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA 2022), volume 13701 of Lecture Notes in Com-
puter Science, pages 88–105, Rhodes, Greece, 2022. Springer.

8. L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

9. Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–
169, 1998.

10. Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, USA, 2002.

11. Leslie Lamport. The PlusCal algorithm language. In M. Leucker and C. Morgan,
editors, 6th Intl. Coll. Theor. Asp. Comp. (ICTAC 2009), volume 5684 of LNCS,
pages 36–60, Kuala Lumpur, Malaysia, 2009. Springer.

12. Yanhong A. Liu, Scott D. Stoller, and Bo Lin. From clarity to efficiency for dis-
tributed algorithms. ACM Transactions on Programming Languages and Systems,
39(3):1–41, May 2017.

13. Yanhong A. Liu, Scott D. Stoller, and Bo Lin. From clarity to efficiency for dis-
tributed algorithms. ACM Trans. Program. Lang. Syst., 39(3):12:1–12:41, 2017.

14. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard
Version 4.0, June 2021.

15. Vincent Rahli, David Guaspari, Mark Bickford, and Robert L. Constable. Eventml:
Specification, verification, and implementation of crash-tolerant state machine
replication systems. Sci. Comput. Program., 148:26–48, 2017.

16. James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Thomas E. Anderson. Verdi: a framework for implementing
and formally verifying distributed systems. In David Grove and Stephen M. Black-
burn, editors, Proc. 36th ACM SIGPLAN Conf. Programming Language Design
and Implementation (PLDI), pages 357–368, Portand, OR, U.S.A., 2015. ACM.

17. Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking TLA+ specifi-
cations. In Laurence Pierre and Thomas Kropf, editors, Correct Hardware Design
and Verification Methods, pages 54–66, Bad Herrenalb, Germany, 1999. Springer.

18. Peter Zeller, Annette Bieniusa, and Carla Ferreira. Teaching practical realistic
verification of distributed algorithms in Erlang with TLA+. In Annette Bieniusa
and Viktória Fördós, editors, Erlang Workshop, pages 14–23. ACM, 2020.

