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Abstract:

Connected devices, such as smartphones and tablets, are exposed to a

large variety of attacks. Their protection is often challenged by their re-

source constraints in terms of CPU, memory and energy. Security chains,

composed of security functions such as firewalls, intrusion detection sys-

tems and data leakage prevention mechanisms, offer new perspectives to

protect these devices using software-defined networking and network func-

tion virtualization. However, the complexity and dynamics of these chains

require new automation techniques to orchestrate them. This chapter de-

scribes an automated orchestration methodology for security chains in or-

der to secure connected devices and their applications. This methodology

exploits process learning to establish behavioral models and infer security
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constraints represented as logical predicates. It then generates and merges

a set of chains of security functions on the basis of these predicates. These

chains are finally compiled into low-level configuration rules and deployed

into the network, optimizing for the underlying topology. The benefits and

limits of such a methodology combining machine learning and verification

techniques are evaluated by a set of experimental results.1

Keywords: Security Management, Software-Defined Networking, Chain

Synthesis, Process Learning

1.1. Introduction
The relentless growth in the number of connected smart devices such as smartphones

and tablets has attracted the attention of malicious actors who exploit these devices as

both targets and vectors of attacks against user data and the network infrastructure.

For example, four million malicious applications were detected on the Google Play

Store in 2019 [22]. Although necessary, preventive screening of applications by the

store operators is not sufficient for detecting all malicious applications. Moreover, lim-

ited resources in terms of CPU and battery makes it difficult to develop and deploy

sophisticated on-device security mechanisms: this certainly applies to IoT applica-

tions, but can be true even for smartphones or tablets, depending on the nature of

expected processing. Finally, end users may be overwhelmed by the technical details

and unaware of unintended functionality that such applications exhibit.

With the development of software-defined networking (SDN), it is attractive to

deploy chains of security functions—including firewalls (FW), intrusion detection sys-

tems (IDS), deep packet inspection (DPI) or data leakage prevention (DLP) mecha-

nisms—into cloud infrastructures for a network-based protection. SDN relies on de-

1Partially supported by the Concordia project that has received funding from the EU’s

Horizon 2020 research and innovation programme under grant agreement No. 830927.
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coupling the network into the data plane, realized by SDN switches, that forward

traffic according to configuration rules, and the control plane, commonly realized by

a single controller, that reconfigures the switches. The standard OpenFlow protocol

may typically support communications between the controller and switches. Although

we do not rely on it here, network function virtualization (NFV) provides an elegant

abstraction for implementing such services.

However, deploying security chains in practice can be challenging. Their complexity

and dynamics is prone to inconsistencies and misconfigurations, resulting in security

breaches that could be exploited by attackers. As we discuss in Section 1.2, there has

been interesting work on applying formal methods in view of verification or synthesis

of chains. However, formal verification techniques tend to exhibit exponential com-

plexity in terms of response time, limiting their applicability in practice, in particular

for dynamic deployment in the network. Moreover, mobile applications have heteroge-

neous networking behavior and vulnerabilities and therefore require tailored security

chains for protecting end users and the network infrastructure itself.

This chapter proposes a method for automatically generating security chains for de-

ployment in SDN infrastructures. This method is driven by the security requirements

based on the networking behavior of individual applications that we infer using pro-

cess learning methods. We classify potential attacks using logical predicates and then

infer security rules that are grouped into security functions. The resulting application-

specific security chains are merged and optimized in view of deploying them in the

network.

The remainder of this chapter is organized as follows: Section 1.2 presents related

work, Section 1.3 introduces background notions, Section 1.4 gives an overview on

the proposed method, whereas the following Sections 1.5–1.8 describe in more detail

the different steps for learning networking behavior, generating security chains, formal

verification of correctness properties, and optimization. Section 1.9 presents results of

performance evaluations and Section 1.10 concludes the chapter and points out future

research perspectives.
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1.2. Related work
This section is centered on existing work related to chains of security functions and

formal verification techniques, in the context of the protection of smart devices and

their applications. Different methods have already been designed to mitigate attacks

targeting smart devices. These environments are exposed to a large variety of attacks,

such as denial of service attacks, port scans, worms and botnets [31]. Android sys-

tems are particularly concerned with a growing number of malicious applications, as

discussed in [17]. In addition, their resources are often limited, making it impractical

to deploy advanced security mechanisms on the devices [31]. The permission system

of Android is an important element contributing to security [44]. Permissions grant

applications the right for using different resources of the Android device, such as for

instance the Internet connection or the cameras. Nevertheless, this system may be

the source of misconfigurations [1]. It is possible to monitor the method calls of the

applications and compare them to the declared permissions to detect misbehaviors,

such as in [4]. However, this approach shows limitations with respect to attacks tar-

geting the network infrastructure, as the Internet permission does not provide a fine

granularity. Establishing network profiles of applications has also been explored by

several authors. In [44], a security monitoring framework was proposed to combine

permissions, user interactions, system calls, and network traffic, whereas the solution

developed in [30] permits to learn the communication behaviors of Android applica-

tions from their binary files. These approaches are mainly intended for screening new

applications rather than protecting end users from malicious behaviors of already in-

stalled applications. The lack of reactive methods for protecting devices from installed

malicious applications, together with the constrained resources of these environments,

goes in favor of exploring learning techniques for detecting specific misbehaviors and

developing protective measures that can be outsourced from the devices.

Chains of security functions. The development of software-defined networking

(SDN) as well as network function virtualization (NFV) has contributed to the de-
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ployment of security chains [18]. In particular, Virtual Network Functions (VNF) can

be deployed to enforce security mechanisms. They correspond to network functions

that are virtually deployed on commodity hardware [8], and may implement different

security functions. These functions can then be chained using the facilities offered by

software-defined networks.

There exists a large body of literature addressing the challenge of formally mod-

elling security functions implemented as VNFs. In [16], a generic model is proposed,

based on a dedicated language to express security functions. This language relies on

pre-conditions and post-conditions regarding the network traffic accepted by a secu-

rity function. While it provides a very precise and explicit specification of security

functions, it suffers from the lack of concrete implementations that would enable the

practical deployment of the specified functions. In addition, the high diversity of secu-

rity functions available on the market makes it difficult to design a generic language

without losing semantic properties. In [24], a method is introduced for resolving con-

flicts that may occur when combining several security functions. While the work has

been implemented, it is only focused on the case of firewalls, and does not cover any

other security functions. A major issue in the field of security function modelling is

therefore to build a model that is general enough to ensure a large coverage, and that

can be exploited in practice to support an automated deployment of security functions.

A second challenge concerns more specifically the deployment and configuration

of security functions. The use of NFV jointly with the programmability provided by

SDN enables a more flexible deployment of security policies. For instance in [3], a

framework is described for chaining network and security functions implemented as

middleboxes based on a high-level specification of composition. This latter is then

translated into low-level rules that are interpreted by SDN infrastructures, in order

to deploy security chains. Several research efforts analyze the deployment of security

functions as a resource allocation problem: indeed the problem is known to be NP-hard

in the general case. In [35], a three-stage formalization is considered: service function

chain (SFC) composition, SFC embedding and SFC scheduling. The first stage of the

5



problem is solved by characterizing the service requests in terms of network functions,

and optimally building the service function chains using an integer linear programming

(ILP) approach. The allocation takes into account that multiple service function chains

may exploit the same virtualized network functions, but also that there may exist

dependencies amongst some of the VNFs, requiring to place them in a specific order.

In the same manner, the authors of [36] explore automated security function allocation

to support reactive security in 5G infrastructures. The proposed framework relies on

SDN supervisory control and data acquisition honeypots. It follows the standardization

efforts from the IETF SFC working group, and exploits OpenDayLight controllers to

configure the infrastructure. It permits a continuous monitoring of industrial networks

and a fine-grained analysis of potential attacks that then serves to isolate attackers

and evaluate their level of sophistication.

Another important challenge is to exploit security patterns to drive the configura-

tion of security chains. In particular, network security patterns have been introduced

for leveraging the best practices from the security experts, and capturing different se-

curity constraints that enable the efficient selection of adequate security functions [41].

That paper also introduces a scalable networking and computing resources-aware op-

timization framework to properly provision different chains based on an open-source

cloud environment. For Android environments, the system developed in [25] can be

used to analyze the behavior of applications and to build behavioral patterns. These

are then exploited to select pre-configured security functions when some deviations

from the behavioral patterns are observed. This approach is extended by [26], which

integrates in the decision process the permissions initially declared by the applications.

However, the security functions are not automatically chained in these scenarios.

Formal verification of networking policies. Formal verification techniques

are a key enabler for automating the orchestration of security chains. Model check-

ing [15] designates a collection of techniques for evaluating if a property (typically

expressed as a formula of temporal logic) is true in a structure, such as a transition
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system. These techniques were originally applied to the verification of concurrent and

distributed systems, and their main limitation is the exponential growth of the num-

ber of reachable states in terms of the number of system components. Satisfiability

modulo theory (SMT) [11] is also relevant to our work. SMT extends the satisfiability

problem of propositional logic (SAT) by considering decidable theories such as frag-

ments of arithmetic, the theory of binary words or strings. Again, SMT solving is at

least NP-hard, but works surprisingly well in many practical cases.

These techniques have received much interest in recent years in the context of

software-defined networking, in order to check the consistency of network policies

before their deployment. The programmability of networks may introduce misconfigu-

rations, and even configuration vulnerabilities that can then be exploited by attackers.

For instance, techniques developed in [7] target the verification of the control plane

of network infrastructures. Considering a collection of router configurations and a

high-level specification of the network behaviors, the approach checks that these con-

figurations correctly enforce the specification for all possible network behaviors. Al-

ternatively, the solution can be exploited to synthesize correct configurations from the

high-level specification, to be implemented by network routers. In a similar manner,

the Vericon framework [5] is designed to verify that a SDN program (north-bound in-

terface) is correct for all admissible topologies and for all possible sequences of network

events. It exploits first-order logic to specify admissible network topologies and desired

network-wide invariants, that are then implemented using deductive verification with

the Z3 prover as an automatic backend. However, the approach does not take into

account temporal logics, which may restrict its overall coverage for preventing some

security attacks, such as Denial of Service (DoS) attacks.

Another important challenge is to verify the correctness of updates that are applied

to the network configuration at runtime. For instance, [20] proposes a solution based

on model checking for the verification of network updates. In this approach, each state

of the built automaton corresponds to a state of the network, transitions capture the

events affecting the network, such as the sending of packets or the deployment of new
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rules. This approach mainly focuses on rule updates and is designed to verify that

the configuration of the network remains correct after updates are applied. Due to

the considered level of granularity, it seems difficult to be applied in a fully dynamic

context, and provides better performance with an offline usage. An alternative solu-

tion [28] aims at verifying network-wide invariants that are checked at runtime. The

objective is to tame the complexity of the models by considering incremental rather

than overall verification. The solution targets the verification of new rules, with re-

spect to the remainder of the network policy. However, it requires the specification of

invariants that are defined manually by network experts.

Formal verification has been largely used for checking firewall policies. For instance,

SMT solving methods have been used to detect anomalies in large and distributed

firewall policies [2]. The insertion or modification of filtering rules may impact the

security of the infrastructure and its services. The solution aims at detecting conflicts

and redundancies that may occur amongst firewall rules. Two rules are in conflict

when they correspond to contradictory decisions, while two rules are redundant when

they partially or fully overlap. The verification is performed both in an intra-firewall

manner (concerning the rules of the same firewall), and in an inter-firewall manner

(concerning the rules that are distributed over several firewalls). Process algebra has

also been exploited [27] to support formal verification for SDN-based firewalls. The

verification is performed at each update of the network configuration.

1.3. Background
The method that we propose requires some background elements with respect to the

flow-based detection of attacks and to programming SDN controllers.

Flow-based detection of attacks. According to RFC 5101 [14], network flows

can be defined as collections of IP packets observed at a certain point in the network

during a certain time interval. They are generally described by different attributes such
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as source and destination IP addresses and port numbers (srcaddr , dstaddr , srcport ,

and dstport), their network protocol (protocol) and the numbers of packets or bytes

they contain (packets and bytes). We assume that flows are collected on-device [32],

and extended with a timestamp (timestamp) and the name of the application that

produced them (appname). Although the network flows do not represent the payload

transmitted during a communication, their analysis can indicate certain kinds of se-

curity attacks [43]. Combining the appname attribute with the permission system of

Android enables furthermore gaining some insight into the kind of data that may be

transmitted in a flow.

Denial of service (DoS) attacks target a victim in order to prevent it from providing

a service [23]. We consider DoS attacks that can be observed from a networking point of

view in that they produce abnormal quantities of traffic from or to a certain equipment.

For example, in a SYN flood attack a large number of SYN packets are sent to a host

in order to overload the TCP stack with connections that will never be closed.

In port scanning attacks, an application initiates connections with multiple port

numbers in order to detect open ports. For example, the port scanner nmap available

on standard Linux platforms gives rise to characteristic patterns in network flows.

A worm is a program that can execute independently while consuming the resources

of its host and that can replicate a fully executable version of itself to other devices [33].

Worms replicate by exploiting vulnerabilities of applications and operating systems,

or by methods of social engineering. We consider worms that scan certain ports on

devices.

A potentially malicious bot is a program installed on a system in order to execute

tasks, typically under the control of a remote administrator, called bot master [6].

The detection of botnets has been extensively studied. In particular, certain botnets

communicate using HTTP requests that are hard to identify from a networking point of

view, and some are based on a peer-to-peer architecture in order to transmit messages

of the bot master. We consider botnets that can be detected based on the large amount

of traffic that they exchange with their controller or by the use of network protocols
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that are abnormal in a certain context.

The objective here is to detect such attacks by profiling the behavior of an applica-

tion, based on methods of process learning. Modeling the interactions of an application

as a Markov automaton, we leverage methods designed to infer the automaton struc-

ture such as the K-tail algorithm [12] or its extensions Synoptic [9] or Invarimint [10].

These methods sometimes result in overly complicated models, and we introduce tech-

niques for reducing this complexity in order to make them applicable for dynamically

orchestrating security chains for smart devices.

Programming SDN controllers. Whereas SDN controllers typically use the

OpenFlow protocol to communicate with programmable switches, several higher-level

languages have been designed for programming them. Our method is based on the

Pyretic language [21], part of the Frenetic [19] family of programming languages de-

veloped by Foster, Rexford et al. This programming language, implemented in Python,

describes the behavior of the data plane for any kind of traffic accepted by the net-

work. Pyretic provides some basic policies as well as operators for combining policies.

The basic policies include:

• identity to forward all incoming packets,

• drop to remove all incoming packets,

• match(x1 = y1, . . . , xn = yn) to forward packets whose header fields xi equal yi,

• modify(x1 = y1, . . . , xn = yn) to forward all packets and changes the header fields

xi to yi,

• query to send packets to the controller for deeper analysis,

• countPackets(x1 = y1 , . . . , xn = yn) to count the number of packets whose header

fields xi contain the values yi,

• limitFilters(k, x1 = y1, . . . , xn = yn) to forward at most k packets whose header

fields xi contain the values yi,

• regexpQuery(pattern) to forward packets whose payload matches the given regular

expression.
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Operators for combining policies include sequential composition, parallel compo-

sition, and complement. The sequential composition p1 � p2 forwards all packets

accepted by both policies p1 and p2 (where p2 receives packets accepted and poten-

tially modified by p1). The parallel composition p1 + p2 forwards all packets accepted

by p1 or by p2, whereas the complement ∼ p1 forwards all packets rejected by p1 and

vice versa.

identity drop

attack

¬attack

Figure 1.1: Example of a Kinetic control plane automaton.

The Kinetic [29] extension of the Pyretic language enables the verification of the

control plane described as a finite state automaton. As a simple example, Fig. 1.1

illustrates an automaton that switches between the identity and the drop policies

on the basis of the detection of an attack. The idea is that the traffic is normally

forwarded without any further control unless an attack is detected, which would cause

the traffic to be dropped. Kinetic users can provide properties expressed in the CTL

temporal logic and verify the control plane automaton against this property. However,

verification is restricted to the control plane in Kinetic, and properties of the data

plane cannot be verified.

1.4. Orchestration of security chains
We now describe a collection of techniques for orchestrating chains of security functions

that are deployed in SDN environments. The illustrative use case corresponds to the

protection of smart devices with limited CPU and battery capacities such as presented
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in [37], in particular Android devices, but the methodology is also applicable to SDN

infrastructures in general. We give here an overview of the security chain orchestrator,

while the different steps related to the orchestration methodology will be described in

more detail in the subsequent sections.

Figure 1.2: Security chain orchestrator integrated into a SDN infrastructure.

A high-level picture of the orchestrator is provided in Figure 1.2. An agent in-

stalled on the device shown on the bottom left registers the security requirements of

the installed applications. As discussed in Section 1.2, the actual security functions

such as firewalls or intrusion detection systems are deployed in a cloud infrastructure,

symbolized by red points in the cloud in the bottom part. These security functions are

orchestrated by the security orchestrator which exploits different techniques to build,

verify and optimize the chains of security functions. These are then compiled into low-

level configuration rules and transmitted to the controller in order to be deployed. The

purpose of the chains is to filter the traffic between the device and the remote destina-

tions that it contacts, represented on the right. Devices transmit to the orchestrator

the list of applications that connect to the network. Security requirements related to

an application are inferred based on a model of its networking interactions in terms
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of network flows as well as on the permissions requested by the application in its

manifest file. While network flows do not represent the data transmitted in messages,

the permissions declared by the application are used in order to over-approximate the

data that may be exchanged.

The four main problems that we address are the following, and correspond to the

different steps of the proposed method (as shown in Fig. 1.3):

1. Build a model of the security requirements of the applications to be protected;

2. Synthesize automatically the chains of security functions;

3. Verify that the generated security chains meet the requirements;

4. Optimize their deployment in order to minimize the impact on the network.

Figure 1.3: Different steps of the proposed methodology.

The first step includes constructing concise and accurate models of the networking

behavior of an application; it is addressed by applying process learning techniques.

This step results in a finite automaton (more precisely, a Markov chain) that represents

the networking interactions of an application based on flow traces collected during its

execution. This model is analyzed in order to detect anomalies that may indicate some

malicious behavior of an application. These anomalies are represented as predicates

that will be used by the subsequent steps for generating abstract representations of

chains of security functions that will then be optimized before being compiled into a

concrete implementation and deployed.
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Concretely, the predicates inferred from the behavior model permit to generate

functional representations of single chains (second step). Chains corresponding to in-

dividual applications can be combined in order to factor common parts and minimize

the overall number of rules to be deployed. They are also formally verified to check

their consistency and user-specified correctness properties (third step). Finally, an op-

timization step computes the optimal placement of security rules according to the

topology of the network and criteria specified by the network operator (fourth step).

1.5. Learning network interactions
Process learning techniques are applied for modeling the networking behavior of ap-

plications, as presented in more detail in [39]. In preparation to the construction of a

security chain, network flows for an application are collected by the Flowoid agent [32]

that is deployed on the device, and they are then collected as a dataset. For our ex-

perimental evaluation, we consider a pre-existing dataset of flows of multiple Android

applications.

These learning techniques are of limited use when applied to strongly heterogeneous

datasets. Network flows typically contain many different IP addresses that correspond

to a single service provider. The flows collected by Flowoid are therefore enriched by a

field representing the owner of an IP address. This piece of information, abbreviated

as orgname, can be retrieved using the well-known whois tool, which also provides the

netname, i.e. the name of the network in which the IP address is deployed. Usually,

the netname is more specific than the orgname, and we decide on which of the two

fields to use based on a threshold for the number of occurrences.

Although whois is still the most widely used tool for querying the owner of an IP

address, it is also quite common that this information is not available or outdated,

motivating the interest for possible alternatives. A first good candidate is the RDAP

protocol [34] proposed as a successor to whois. This protocol is based on HTTPS
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and provides its answer in the JSON format. A second possible alternative is the

reverse DNS protocol (RDNS) used to retrieve the domain name associated with an

IP address. This solution is actually used by most mail servers to filter out IP addresses

that do not belong to any domain name, which could also be used in our approach to

identify unsafe IP addresses.

After collecting and enriching the flows of an application we use them to build its

behavioral model. A representation in the form of a finite automaton with probabilistic

transitions appears particularly appropriate, and we examined existing techniques for

learning automaton structures such as the K-tail algorithm [12] or its Synoptic [9]

extension, as well as Invarimint [10]. These three methods receive a list of the logs

of a system and output an automaton describing the behavior that can be derived

from the input logs. Both K-tail and Synoptic learn a Markovian automaton whose

transitions are labeled by probabilities, the limit of these approaches is nevertheless

the high level of complexity of their outputs. In contrast, Invarimint produces a simpler

automaton without probabilities that qualitatively describes the behavior observed in

the input logs. We found that on our datasets, Synoptic produced overly complicated

automata while Invarimint produced simpler automata, but it does not take into

account probabilities.

We therefore designed an algorithm that produces a Markov chain (similar to Syn-

optic) while producing a compact representation (similar to the automata generated

by Invarimint). Algorithm 1 represents the automaton using the tables States and

Transitions. It takes as input a list of size N of orgnames, obtained from the flows

in the dataset by splitting them into chunks with identical orgname attribute. Au-

tomaton states correspond to orgnames, while transitions indicate the probability of

succession between orgnames.

The algorithm creates an automaton with as many states as the input contains

orgnames, and the weight of a state corresponds to how often it appears. For every

pair of successive states, a transition is created and its weight is computed similarly.

At the end of the algorithm, transition probabilities are assigned by dividing the
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Algorithm 1 Learning a Markov chain.

Input: flow , a list of size N + 1 of orgnames (or netnames)

States := ∅
Transitions := ∅
orgname := flow [0 ]
States[orgname] := 1 . Count the occurrences of states and of transitions
for i ∈ 1..N do

transition := (orgname,flow [i ])
orgname := flow [i ]
if orgname ∈ States then

States[orgname] += 1
else

States[orgname] := 1
end if
if transition ∈ Transitions then

Transitions[transition] += 1
else

Transitions[transition] := 1
end if

end for
. Compute the probability of each transition

for transition ∈ Transitions do
Transitions[transition] := Transitions[transition]/States[transition0]

end for

weight of a transition by the weight of its source state. The states of the automaton

can be enriched in order to express more information contained in the original flows.

Concretely we compute the following standard network metrics from the flows directed

to addresses corresponding to each state l of the automaton; these will be used in the

following for generating chains of security functions:

• l .ports: the set of ports appearing in flows for l;

• l .protocols: the protocols used;

• l .count(x ): the highest number of occurrences of the address or port x;

• l .avg size: the average number of packets;

• l .avg interval : the average distance between communications based on timestamps.

Moreover, bgp ranking(ip) denotes a metric corresponding to a value of trust of

the IP address ip. In practice, this value is obtained by contacting a remote service
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Figure 1.4: Inferred Markov chain of the Pokemon Go Android application.

relying on various data sources to compute the trust ranking of an IP address.

As a concrete example, Fig. 1.4 shows the automaton computed for the dataset

corresponding to the Pokemon Go application.2 Compared to similar automata com-

puted by existing algorithms, our automata have 29.6 states and 141.5 transitions

on average against 27.6 states and 142.5 transitions on average for Invarimint. The

automata sizes are therefore comparable, but our automata include transition proba-

bilities, and they are much more compact than the automata computed by Synoptic

(55 states and 150 transitions on average).

2Probabilities have been rounded and may not add up to 1.
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1.6. Synthesizing security chains
From the Markov chain representing the network interactions of an application and

some thresholds set by the network operator, the next step in our method is to syn-

thesize a high-level representation of a chain of security functions designed to protect

the application against the types of attacks mentioned in section 1.3. Indeed, once a

user inadvertently installed a malicious application on a smart device it is then neces-

sary to protect the user as well as the network against potential attacks. The Markov

model of the behavior of an application helps detect suspicious application behavior

and prevent unfortunate consequences for the user or the network.

We use a rule-based approach for generating security chains in order to make the

algorithm easy to understand and easy to adapt. We assume the following thresholds

corresponding to the metrics introduced previously; concrete values for each of these

will be set by network operators.

• attack limit : maximal probability of transitions looping on a single state,

• min interval : minimal interval between flow arrivals,

• min size: minimal number of packets in a flow,

• ip limit : maximal number of occurrences for an IP address,

• port limit : maximal number of occurrences for a port number,

• port scan limit : maximal number of ports in a flow,

• unsafe threshold : maximal value of bgp ranking .

We also assume given a set Ddanger of Android permissions considered as potentially

dangerous. Given a Markov chain with states Lapp and transitions Tapp , each of the

form (l, p, l′) for states l, l′ ∈ Lapp and a probability p ∈ [0; 1], as well as trace tapp ,

observe that every flow record f ∈ tapp corresponds to precisely one state l ∈ Lapp ,

corresponding to f.orgname; we denote this state as lf .

The core of the detection corresponds to an algorithm for classifying destination

addresses a appearing in flows of tapp . Instead of hardwiring a fixed classification

algorithm, we represent each class of attack as a logical predicate and associate with
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it a rule that characterizes flows that exhibit the respective attack. In our work, we used

the rules shown below; however, they can be modified based on the domain knowledge

of the network operator. Use of a declarative programming framework (Prolog in our

implementation) helps making these definitions readable and easy to change.

dos(a) ← ∃f, p : f ∈ tapp ∧ a = f.dstaddr ∧ (lf , p, lf ) ∈ Tapp ∧ p ≥ attack limit ∧

lf .count(a) ≥ ip limit ∧ lf .avg interval ≤ min interval ∧

lf .avg size ≤ min size

port scan(a) ← ∃f, p : f ∈ tapp ∧ a = f.dstaddr ∧ (lf , p, lf ) ∈ Tapp ∧ p ≥ attack limit ∧

lf .count(a) ≥ ip limit ∧ lf .avg interval ≤ min interval ∧

lf .avg size ≤ min size ∧ | lf .ports | ≥ port scan limit

worm(a, pt) ← ∃f, p : f ∈ tapp ∧ a = f.dstaddr ∧ pt = f.dstport ∧ (lf , p, lf ) ∈ Tapp ∧

p ≥ attack limit ∧ lf .count(pt) ≥ port limit

botnet(a, pt) ← ∃f : f ∈ tapp ∧ a = f.dstaddr ∧

lf .count(a) ≥ ip limit ∧ pt = f.dstport ∨

lf .protocols ∩ {tcp, udp} 6= ∅ ∧ lf .avg interval ≤ min interval

unsafe(a) ← ∃f : f ∈ tapp ∧ a = f.dstaddr ∧ bgp ranking(a) ≥ unsafe threshold

safe(a) ← ¬dos(a) ∧ ¬port scan(a) ∧ ¬unsafe(a) ∧

¬∃pt : (worm(a, pt) ∨ botnet(a, pt))

danger(pm) ← pm ∈ Pf.appname ∩ Ddanger

Based on these classification rules, we associate elementary security rules with

IP addresses that appear in the trace. These rules are then composed in parallel,

yielding security functions such as firewalls or intrusion detection systems that are in

turn composed in sequence for building chains of security functions. We continue to

describe our methodology using declarative rules, and later explain how to translate

these into a Pyretic program.

We represent network traffic as a sequence t ∈ P∗ where P denotes the set of
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network packets. A security function f : P∗ → P∗ transforms network traffic. For an

integer n ∈ N, the function cut(t, n) returns the prefix of t of length (at most) n. Given

a predicate pred(p) on packets, the function restrict(t, pred) returns the subsequence

of t of those packets satisfying pred .

Given two traces t1 and t2, their merge t1 ⊕ t2 corresponds to the unique trace

formed by the elements of t1 and t2 in increasing order of time stamps, with the proviso

that whenever t1 and t2 contain flows f1 and f2 with f1.timestamp = f2.timestamp,

then f1 appears in t1 ⊕ t2 while f2 is dropped. Security functions can be composed in

sequence (◦�) or in parallel (◦+):

(f ◦� g)(t) = g(f(t)) (f ◦+ g)(t) = f(t) ⊕ g(t)

and these operators generalize to n-ary compositions ©� and ©+.

Elementary security rules make use of the following predicates that can be im-

plemented directly in Pyretic or using VNF rules if we were using Network Function

Virtualization:

• regexp(s, pm): true if the string s, representing the payload of the packet, satisfies

the regular expression associated with the permission pm;

• tcp check(t): true if the traffic t respects the standards of a TCP connection;

• http check(s): true if the string s, representing the payload of the packet, is a valid

HTTP request;

• inspect payload(s): true if the string s, representing the payload of the packet,

complies with the underlying deep packet inspection (DPI) policy.
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We now define elementary security rules:

forward(a, t) = restrict(t, λpk : pk.dstaddr = a)

block(a, pt, t) = restrict(t, λpk : pk.dstaddr 6= a ∧ pk.dstport 6= pt)

limit(a, n, t) = cut(forward(a, t), n)

filter(a, pm, t) = restrict(t, λpk : pk.dstaddr = a ∧ regexp(pk.payload , pm))

inspect(a, t) = restrict(t, λpk : pk.dstaddr = a ∧ inspect payload(pk.payload))

tcp(a, pt, t) =

 restrict(t, λpk : pk.dstaddr = a ∧ pk.dstport = pt) if tcp check(t)

〈〉 otherwise

udp(a, pt, t) = restrict(t, λpk : pk.dstaddr = a ∧ pk.dstport = pt)

http(a, pt, t) = restrict(t, λpk : pk.dstaddr = a ∧ pk.dstport = pt ∧ http check(pk.payload))

The following rules infer which security rules should be associated with addresses

classified according to the predicates presented above:

deployblock (a, pt) ← worm(a, pt)

deployblock (a, pt) ← botnet(a, pt)

deploy forward(a) ← ¬∃pt : worm(a, pt) ∨ botnet(a, pt)

deploy limit(a, ip limit) ← dos(a)

deploy limit(a, ip limit) ← port scan(a)

deploy tcp(a, pt) ← f ∈ tapp ∧ a = f.dstaddr ∧ pt = f.dstport ∧ f.protocol = tcp

deployudp(a, pt) ← f ∈ tapp ∧ a = f.dstaddr ∧ pt = f.dstport ∧

pt 6= 80 ∧ pt 6= 443 ∧ f.protocol = udp

deployhttp(a, 80) ← f ∈ tapp ∧ a = f.dstaddr ∧ f.dstport = 80

deployhttp(a, 443) ← f ∈ tapp ∧ a = f.dstaddr ∧ f.dstport = 443

deployfilter (a, pm) ← unsafe(a) ∧ danger(pm)

deploy inspect(a) ← unsafe(a)

Using the predicates deploy derived based on the flows, we now construct security
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functions by composing elementary actions in parallel:

stateless firewall(t) = ©+{ forward(a, t) : deploy forward(a), a ∈ Addr }

◦+ ©+{ block(a, pt, t) : deployblock (a, pt), a ∈ Addr, pt ∈ Port }

ids(t) = ©+ { limit(a, n, t) : deploy limit(a, n), a ∈ Addr, n ∈ N }

stateful firewall(t) = ©+{ tcp(a, pt, t) : deploy tcp(a, pt), a ∈ Addr, pt ∈ Port }

◦+ ©+{ udp(a, pt, t) : deployudp(a, pt), a ∈ Addr, pt ∈ Port }

◦+ ©+{ http(a, pt, t) : deployhttp(a, pt), a ∈ Addr, pt ∈ Port }

dpi(t) = ©+ { inspect(a, t) : deploy inspect(a), a ∈ Addr }

dlp(t) = ©+ {filter(a, pm, t) : deployfilter (a, pm), a ∈ Addr, pm ∈ D }

On the basis of these security functions we now define the chains to be deployed for

filtering traffic generated by the target application by associating addresses to those

chains corresponding to the classes to which the address belongs:

safe chain = stateless firewall ◦� stateful firewall

unsafe chain = stateless firewall ◦� stateful firewall ◦� dpi ◦� dlp

dos chain = stateless firewall ◦� ids ◦� stateful firewall

port scan chain = dos chain

worm chain = stateless firewall

botnet chain = stateless firewall

Finally, we provide rewriting rules for converting security functions into Pyretic

code. The argument t representing network traffic becomes implicit in Pyretic, which

applies the transformation to concrete incoming traffic. The functions DPIQuery ,

TCPFilter , UDPFilter , and HTTPFilter exploit the rules of dynamic query that

Pyretic provides. The overall security functions are obtained from the elementary
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ones by using the combinators � and + of Pyretic that correspond to ◦� and ◦+:

forward(a, t) ; match(dstaddr = a)

block(a, pt, t) ; ∼match(dstaddr = a, dstport = pt)

limit(a, n, t) ; LimitFilters(n, dstaddr = a)

filter(a, pm, t) ; match(dstaddr = a)� RegexpQuery(regexp(pm))

inspect(a, t) ; match(dstaddr = a)� DPIQuery

tcp(a, pt, t) ; match(dstaddr = a, dstport = pt)� TCPFilter

udp(a, pt, t) ; match(dstaddr = a, dstport = pt)� UDPFilter

http(a, pt, t) ; match(dstaddr = a, dstport = pt)� HTTPFilter

To sum up, our approach consists in synthesising a program that encods the chain of

security functions to be deployed in the network. To this end, we first learn the security

properties to be guaranteed by the chain from the Markov automaton encoding the

behavior of the application. These predicates are then used to derive the abstract

specification of the chain to be deployed based on a constraint programming method.

Finally this high level specification is used to generate the actual code of the concrete

chain of security functions that can be either directly deployed in the network or be

used for further optimizations.

1.7. Verifying correctness of chains
The next step consists in verifying correctness properties of security chains. As ex-

plained below, the chains generated by our method satisfy certain properties by con-

struction.

Packet routing. Two desirable properties for packet routing are the absence of

black holes and of loops. A black hole occurs when traffic is directed to a link where
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no security function is installed. A loop is a cycle in the connections between security

functions, such that network packets will be transmitted to a security function that

they are already cleared.

Proposition 1.1: The synthesis of security chains described in section 1.6 avoids

black holes and loops.

Proof. Our security functions and chains are constructed from elementary rules

by parallel and sequential composition. In particular, each component of the chain is

completely defined before being used, and there is no fixpoint construction or similar

cyclic construct. This ensures that no black holes or cycles can exist at the high level of

chain construction. We rely on the correctness of the translation to Pyretic to ensure

that this property is preserved at the implementation level.

Shadowing freedom and consistency. A security function is shadowing free

if for any packet it contains at most one applicable rule.

Proposition 1.2: Security functions generated by the algorithm of section 1.6 guar-

antee shadowing freedom.

Proof. In the definition of stateless firewall , shadowing would arise if for some

address a and port pt, both rules forward(a, t) and block(a, pt, t) were composed in

parallel. However, this is impossible because by definition the corresponding deploy

predicates are mutually exclusive. Similarly, the different deploy predicates used in

the definition of stateful firewall are incompatible for any given address and port.

We now show that our chains of security functions are consistent with the security

properties determined on the basis of the traces tapp used for their generation.

Proposition 1.3: Given a trace tapp characterizing the network trafic generated

by an application, the chain generated by the algorithm of section 1.6 forwards traffic

classified as safe to the corresponding destinations but blocks or limits malicious traffic.
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Proof. An address is considered as malicious if its tapp contains flows associated

with the orgname of the address that are classified as worm, botnet, DoS, port scan or

unsafe. Traffic directed to addresses considered as worm or botnet will immediately be

blocked by the stateless firewall. Traffic towards addresses belonging to flows classified

as DoS or port scan is transmitted to the IDS, which imposes a limit on the number

of packets that will be allowed to pass.

Addresses associated with unsafe flows, i.e., network traffic that potentially com-

promise the confidentiality of private data, are handled by the DPI and DLP security

functions that check for packet payload, according to the predicates regexp (associated

with Android permissions) and inspect payload . Encrypted traffic would have to be

handled by specific inspection methods [42]. Traffic directed to IP addresses consid-

ered as safe is only subject to the stateless and stateful firewalls, which forward it and

simply check conformance with the declared protocol.

Beyond these structural correctness properties, we implemented techniques for

verifying user-specified properties of both the control and the data planes of security

chains [38]. These techniques build upon the Kinetic extension [21] of the Pyretic

language that includes model checking capabilities for properties of the control plane,

but they enable the verification of properties of the data plane as well.

The first technique is based on constraint solving. We encode elementary Pyretic

actions as formulas in SMT-LIB, the input language of SMT solvers. For example,

identity and drop are represented as true and false, and match and modify give rise

to equational constraints on packet headers, where concrete IP addresses and port

numbers are mapped to symbolic constants. Sequential and parallel composition cor-

respond to conjunction and disjunction, and complement to negation. For example,

Fig. 1.5 shows the encoding of a simple security chain as a logical formula. Data plane

properties, such as whether certain packets are allowed to proceed or blocked, can

then be verified by querying the constraint representing the chain.

The second technique is implemented based on symbolic model checking. In this

case, Pyretic chains are represented as finite state machines. For this purpose, we
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F1 = match(srcip=IP("198.122.37.15")) +

match(srcip=IP("253.182.3.14"))

F2 = match(srcport=100) + match(srcport=200) + match(srcport=300)

F3 = match(srcport=400) + match(srcport=500) + match(srcport=600)

F4 = match(dstport=700) + match(dstport=800) + match(dstport=900)

chain = ((F1 >> F2) + (~F1 >> F3)) >> F4

allowed ≡ ∧ ∨ ∧ srcip = ip0 ∨ srcip = ip1
∧ srcpt = pt1 ∨ srcpt = pt2 ∨ srcpt = pt3
∨ ∧ ¬(srcip = ip0 ∨ srcip = ip1 )
∧ srcpt = pt4 ∨ srcpt = pt5 ∨ srcpt = pt6

∧ dstpt = pt7 ∨ dstpt = pt8 ∨ dstpt = pt9

Figure 1.5: A toy security chain in Pyretic and its encoding as a constraint.

extract strictly sequential subchains (such as F1� F2 in the example of Fig. 1.5), and

these give rise to state transitions that are guarded with conditions on header fields.

A packet is accepted by the chain if there exists a path to the final state of the state

machine all of whose transition conditions are satisfied, and this can be expressed using

formulas of the CTL temporal logic and verified by the symbolic infinite-state model

checker nuXmv [13]. This technique integrates well with the verification capabilities

that exist in Kinetic, but extend them to encompass the data plane.

1.8. Optimizing security chains
When applying the techniques for generating security chains described in Section 1.6

for several applications, we obtain multiple chains that must be deployed in the net-

work. However, many applications share certain services, such as for serving adver-

tisements or for performing analytics, and the security chains corresponding to these

applications are likely to contain similarities. Instead of simply combining chains us-

ing Pyretic’s operator for parallel composition, or of deploying several chains using

independent control planes (which could increase the overall vulnerability of the archi-

tecture), we aim at transforming several chains into a single one in a way that combines

similar elements in different chains, minimizing the number of security functions and
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rules. A security chain corresponds to a graph of security functions of different types

such as firewalls, intrusion detection or data leakage prevention systems [26]. In turn,

a security function consists of a set of security rules applied in parallel, where a rule

is described by a guard and an action.

Our transformation, presented in [40], is based on two procedures. The procedure

merge functions takes two security functions (assumed to be of the same type) as

inputs and merges them. Rules of either of the two functions whose guards are disjoint

from the rules of the other function cannot be conflicting and are simply added to the

merged function. For guards that appear in both security functions, if the associated

action is the same, the rule is again added to the result. In case of different actions,

we rely on priorities provided by the network operator in order to determine which

rule to include in the result. The procedure merge chains composes two chains. It

first identifies security functions of the same type that appear in the input chains and

merges them using merge functions, while functions that have no equivalent in the

other chain are simply added to the resulting chain. The edges of the output chain

mirror those of the input chains. A quantitative evaluation is provided in Section 1.9.

The transformations merge functions and merge chains do not involve structural

modifications of the chains and therefore preserve the structural properties stated in

propositions 1.1 and 1.2. The consistency with classification (proposition 1.3) may

not be preserved when an address is classified differently by the flows collected for

two different applications. In our experiments based on existing benchmarks, we have

never observed this happening.

The second aspect of optimization concerns the deployment of security chains in the

SDN network. The placement of security functions in a network has to satisfy certain

constraints: the order in which functions appear in the chain has to be respected,

the number of rules deployed on any given switch must not exceed the capacity of

that switch, and the capacity of channels connecting switches must be respected.

Within these constraints, we aim at optimizing metrics such as the number of required

switches, the congestion of the service, and its probability of availability.
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In order to make the optimization problem feasible using standard solvers, we

aggregate destination addresses, as well as network resources in our model. In our

context, we can consider collections of IP addresses that will be associated with SDN

switches and then assign the rules for these collections of destinations to the corre-

sponding network equipment. We call these collections of IP addresses destination

aggregates. It is important for the optimality of the placement that destination aggre-

gates represent comparable traffic load. Thus, we compute the destination aggregates

as the result of a knapsack problem. The number of knapsacks is computed as the ratio

between the overall traffic load and the capacity of the smallest channel in order to

guarantee that we will be able to place every destination aggregate on every channel.

We also aggregate switches as network paths, i.e. as sequences of switches connected

in line without branching. The properties of network paths are computed depending

on the properties of their internal switches and channels. We will consider the following

properties in the remainder of this chapter:

• length: the number of switches connected in sequence,

• rule capacity : the minimal rule capacity in the path,

• load capacity : the minimal load capacity in the path, and

• path probability : the availability probability of the path.

The information describing the chains and the network are provided as input for

the placement. Destination aggregates are represented by the set dests. The number

of flows to handle per destination aggregate is represented by a dictionary dest load

indexed by the set dests. In a similar manner, we introduce a dictionary dest weight

that associates with each destination the number of aggregated IP addresses. The

dictionary function weight associates with each security function its number of rules

per destination. For each security function, our synthesis algorithm guarantees that

a destination will be protected by exactly two rules, one for incoming trafic and one

for outgoing trafic. Network paths are represented by the set paths. The dictionary

path length provides information about the length of each path, rule capacity asso-
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ciates with each path the smallest rule capacity among the switches on that path,

load capacity stores the load capacity of each path, and path probability indicates the

availability probability of each path. The relation path connection indicates if a path

is the successor of another path. Finally, we derive two sets incomings and outgoings

which represent incoming and outgoing paths of the network. Namely, i ∈ incomings

if and only if ∀p ∈ paths, path connection(p,i) = 0 and o ∈ outgoings if and only if

∀p ∈ paths, path connection(o,p) = 0.

We represent the placement of rules by the variables dest placement , a matrix of

binary variables indexed by paths and dests that indicate whether the rules concerning

a destination d are placed on a path p and the array used path of binary variables

that identify used network paths. The following constraints must be respected for a

placement to be valid:

1. Constraints on path usage:

(a) A path is used if the rules for at least one aggregate of destinations are

placed on it.

∀p ∈ paths, |dests| × used pathp ≥
∑

d∈dests dest placement (p,d)

(b) A path can be used only if at least one of its successors is used.

∀p ∈ paths, |dests| × used pathp

≥
∑

suc∈paths path connection(p,suc) × used pathsuc

(c) The symmetric constraint requiring that a path can be used only if at least

one of its predecessors is used.

2. Constraints on destination placement:

(a) Each destination must be placed on at least one incoming path.

∀d ∈ dests,
∑

p∈incomings dest placement (p,d) ≥ 1

(b) The symmetric constraint requiring that each destination must be placed

on at least one outgoing path.

3. Capacity constraints:
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(a) Constraints on the rule capacity of each path in the network.

∀p ∈ paths, rule capacityp ≥

function weight ×
∑

d∈dests dest weightd × dest placement (p,d)
(b) Constraints in terms of traffic load of each path in the network.

∀p ∈ paths, load capacityp ≥
∑

d∈dests dest loadd × dest placement (p,d)

We want to optimize several objectives while ensuring the above constraints: (i)

network utilization, i.e., the number of switches needed for deploying the security

chains, (ii) service congestion due to the concentration of traffic load on a few chan-

nels and (iii) probability of availability, i.e., the probability for the service to be avail-

able and not affected by network downtimes. In our case, these three criteria are

combined in a single objective function to minimize. Results of experiments with non-

linear solvers, linear approximations, and optimizing SMT solvers are described in

Section 1.9.

1.9. Performance evaluation
We implemented the techniques described in this chapter in a prototype consisting of

13457 lines of Python 2.7 and 111 lines of SWI-Prolog (v7.6.4) and evaluated them

on a Macbook Pro (13-inch, 2017) with an Intel R© core i7 processor (2.5 GHz) and

16 GB RAM. The back-end solvers used for verification (Section 1.7) are the model

checker nuXmv (v1.0.1) and the SMT solvers cvc4 (v1.5) and veriT (v201506). For

optimization (Section 1.8) we employed the simplex solver glpsol (v4.64), the MINLP

solver couenne (v0.5.6) and optimization module of the SMT solver z3 (v4.8.0). During

our experiments we considered 10 Android applications given in Table 1.1. For each

application we indicate the number of recorded flows, the corresponding number of IP

addresses, the presence of a manifest file and the number of requested permissions.

In our experiments we evaluated the following criteria: the complexity of the chains

(numbers of security functions and rules), the response times for synthesis, factoriza-
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Table 1.1: The set of Android applications considered for evaluation.

Applications Flows Addresses Manifest Permissions Functions Rules

disneyland 282 5 no – 4 44

dropbox 1000 17 yes 5 5 311

faceswitch 151 30 yes 3 5 425

lequipe 1000 151 no – 4 1640

meteo 1000 80 no – 4 716

ninegag 1000 88 no – 4 930

pokemongo 275 24 yes 6 5 485

ratp 779 3 no – 4 28

skype 1000 161 yes 11 5 6529

viber 1000 78 yes 15 5 4163

tion and verification, the accuracy with which security chains detect attacks, and the

overhead incurred by deploying chains in a network.

Complexity of security chains. Table 1.1 shows the numbers of security func-

tions and rules of the chains generated for the different applications. Each chain con-

tains either 4 or 5 security functions, depending on the presence of the manifest file,

which causes DLP rules to be generated. The number of rules clearly illustrates the

high disparity of network behavior observed for the applications.

Table 1.2: Number of rules for combined chains.

Nb. of apps Parallel Composition Combined Generation Chain Merging

1 311 311 311

2 1951 3987 1947

3 2376 6033 2367

4 2420 6153 2407

5 3136 8289 3119

6 3164 8361 3143

7 9693 25949 9667

8 13856 51041 13825

9 14341 61181 14305

10 15271 71147 15231

Table 1.2 shows the number of rules corresponding to a chain obtained by suc-

cessively combining chains for individual applications. We compare three different
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approaches: parallel composition simply composes individual chains using Pyretic’s +

operator, combined generation generates a single chain from the concatenation of the

flows corresponding to the applications, and chain merging implements the algorithm

presented in Section 1.8. The results show that parallel composition and merging

produce significantly fewer rules than a combined generation. In contrast to parallel

composition where the number of overall functions corresponds to the sum of the num-

bers of functions per application, merging preserves the number of security functions

to be deployed, reducing overhead and attack surface.

Response times. In our experiments, the time needed for learning the behavior of

an application from a recorded trace is on the order of minutes, whereas generating and

merging chains takes at most a few seconds. For example, merging the security chains

for the ten applications in our benchmark set takes 5 seconds. These numbers clearly

illustrate the fact that learning the Markov automaton representing an application

is not feasible at runtime. However, assuming that applications are relatively stable,

learning can be done offline, and the cost of a learning session can be amortized over

time. In our overall architecture, we suggest that security chains corresponding to

applications be stored in a database. Given the applications to protect, we can at

deployment time load the corresponding chains, merge them, and install the result

through the SDN controller.

In order to evaluate the performance of formally verifying properties of chains,

we artificially generated chains whose numbers of rules varied between 1,000 and

10,000 [38]. The SMT-based verification technique results in linear growth with about

15 seconds for the largest chains, whereas nuXmv exhibits super-linear growth and

requires more than 40 seconds for the largest chains. However, nuXmv performed better

for long chains with many security functions composed sequentially. In both cases,

these numbers indicate that formal verification is feasible as an off-line task.

Accuracy of security chains In order to evaluate the accuracy of the generated

chains, we used 70% of the recorded flows for an application for generating the chain
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and then used the remaining 30%, into which we injected a simple port scan, for

evaluating its accuracy. We measured accuracy as the ratio between the sum of true

positives and true negatives by the total number of flows. We also fixed a threshold,

varying between 0 and 10, corresponding to the number of attack flows that must

be analyzed before blocking the traffic. Table 1.3 shows the minimal, maximal and

average accuracy observed for each chain of security functions. We also computed the

corresponding results for the combined chain for all 10 applications in order to observe

a potential loss of accuracy, but obtained identical values.

Table 1.3: Accuracy of chains generated for protecting applications.

Applications Avg. Accuracy Min. Accuracy Max. Accuracy

viber 0.683 0.502 0.997

faceswitch 0.812 0.518 0.990

dropbox 0.997 0.993 1.000

ninegag 0.509 0.498 0.526

disneyland 0.992 0.986 1.000

pokemongo 0.743 0.512 0.994

skype 0.998 0.998 0.998

lequipe 0.518 0.496 0.537

meteo 0.837 0.510 0.998

ratp 0.940 0.692 0.999

The results are mixed, depending on the considered application. For certain appli-

cations, the 30% of logged flows used for the evaluation only contain flows that were

already encountered during the learning phase, and we obtain an accuracy close to

100% while for other applications the recorded flows have stronger disparity. These

results indicate that the quality of the data used for learning is important. We be-

lieve that our approach is acceptably stable, since the orgnames of servers contacted

by an application should not change in between major updates. We also believe that

the definitions of the predicates that we use for classifying attacks are probably quite

naive. Since our approach makes it easy to plug different definitions into our algorithm

for chain synthesis, one can experiment different rules without modifying the overall

architecture.
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Overhead incurred by deploying security chains. In order to evaluate the

cost in terms of bandwidth related to deploying our security chains, we simulated

the traffic generated by each application with and without the corresponding chains

and measured the resulting bit rate. The results of these experiments are presented in

Fig. 1.6.

Figure 1.6: Overhead in terms of bandwidth introduced by security chain deployment.

In contrast to the other evaluations described here, we used a Frenetic imple-

mentation of security chains because the Pyretic language is no longer supported by

modern SDN controllers. For most applications, the overhead is negligible. The ob-

served differences are minor, probably due to the underlying OVS switches and their

dictionary-based flow tables. However, we were unable to deploy the chains for two

applications (lequipe and skype) because the Frenetic controller generated too many

rules by compiling our chains into OpenFlow. Because our approach is agnostic to

implementation languages, it could easily be extended by new implementations based

on P4 or involving Network Function Virtualization.
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1.10. Conclusions
This chapter introduces a method for automating the orchestration of security func-

tions driven by process learning, and illustrates how it could be used for protecting

Android devices by relying on software-defined networks. It contributes to bridging

the gap between learning and verification techniques.

The method that we propose addresses four main problems: (i) modeling the spe-

cific security needs of applications through process learning techniques, (ii) generat-

ing corresponding chains of security functions based on methods of formal synthesis,

(iii) verifying the correctness properties of these chains, and (iv) optimizing their de-

ployment by merging chains and adapting them to the network infrastructure. We

evaluated the performance of the method through extensive series of experiments.

The flexibility of SDN infrastructures enables synthesizing and deploying security

chains that are specific to the networking behavior of individual applications running

on smart devices. By construction, the obtained chains ensure certain correctness

properties, and specific properties can be formally verified based on SMT solving and

model checking. Finally, by applying appropriate optimization methods, the impact

of deploying security chains on network performance can be substantially reduced.

This work opens several directions for future research. A closer coupling of network

and system aspects could be investigated, beyond the generation of regular expressions

based on the permissions declared in manifest files of applications. Emerging methods

from explainable artificial intelligence could also be considered for facilitating the in-

terpretation of automation results, together with the use of more elaborated detection

techniques. Finally, it could interesting to explore complementary synthesis techniques

for taking into account the dynamics of attacks, for instance with more sophisticated

models expressed in temporal logic, by following a similar overall methodology.
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